
6

Adrian Udenze and Marwan Elfallah,
University of East London, UK

ABSTRACT
KEYWORDS

Teaching Programming

Teaching Computer Science

Programming Framework

PRIDAM: a framework for
teaching programming

The drive to teach programming
across Key Stages 1–4 in UK schools
has resulted in computer science
teachers without computer science
degrees. Many of these teachers
find it difficult to teach an abstract
concept like programming to children.
The work presented here proposes a
framework for teaching programming
to aid teachers and pupil progress.
PRIMM, a state-of-the-art framework,
was implemented in two Year 9 classes
of a comprehensive school in England.
Results presented show that when it
comes to solving problems, PRIMM
performs well for simple single-
statement problems but fails for more
complex multi-statement problems.
PRIDAM improves on PRIMM by
introducing problem Decomposition
and Arrangement which makes it
more suitable for more complex multi-
statement problems. The authors
conclude that whereas the PRIMM
framework is suitable for introducing
concepts, PRIDAM is suitable both
for introducing concepts and solving
programming problems

INTRODUCTION
In 2013, the UK Government
introduced a computing curriculum for
England that requires programming
to be taught in Key Stages 1–4 (Gov.
uk 2013). To make this happen,
the Government pledged £78m of
funding and went into partnership
with Raspberry PI to train up to 40,000
teachers in England, many of whom do
not have computer science degrees
(Murgia 2018). Over the past six
years, many teachers have discovered
that pupils find the concepts of
programming difficult, and teachers
also find it difficult to know how to
help struggling pupils (Sentance &
Waite 2017).

Even before the introduction of
England’s new curriculum, how to teach
programming had been studied by

researchers with the aim of identifying
and solving the problems involved
(Saeli et al. 2011). Many approaches to
teaching programming are currently in
place: the use of robots (Merkouris &
Chorianopoulos 2018), use of simulated
robot environments (Cyberbotics.com
2020), e-learning (Tundjungsari 2016),
the use of different tools (Nowicki et
al. 2013; Yildiz 2020) and gamification
(Papadakis & Kalogiannakis 2018), to
name a few. A good review of current
literature can be found in Garneli et
al. (2015).

The many different approaches and
tools to facilitate the teaching of
programming in schools is testament
to the fact that there is no magic bullet
that guarantees pupils will learn how to
program in a programming course or
class. However, the software industry
faced a similar problem through the
1980s and 90s, going from ad hoc,
structured programming techniques
that resulted in one-off error-prone
software, to the modern software
engineering concepts of reusable,
object-oriented programming (Mall
2003) resulting in robust, reusable
and maintainable software. Computer

76

RESEARCH in TEACHER EDUCATION

Vol.10. No 1. May 2020 pp 00-006–11

science teachers now face the same order
of problems as the software industry did,
and the current focus on and research
into delivering structured lessons that
conform to best practice, resulting in
optimal progress of pupils, will no doubt
pay off in the future.

The aim of this research was to investigate,
and devise a framework for, teaching
programming in secondary schools. Such
a framework has a number of advantages
for teaching computer science. Not
all computer science teachers have
computer science degrees (Gibbs 2016;
Murgia 2018), and a framework will help
them plan lessons to a uniform standard
that ensures pupil progress. A framework
is also beneficial for pupils, as a standard
way of planning lessons will allow pupils
to prepare for lessons that they know will
conform to a set pattern, thus improving
pupil progress. Also, a framework will be
the foundation of using teaching tools like
artificial intelligence (AI) in the classroom.
If lessons conform to a framework,
then AI can be used to train machines
on assessment, lesson planning and
differentiation (Roll & Wylie 2016).

This research began with a literature
review of existing techniques for teaching
in general, and teaching programming
in schools. A state-of-the-art existing
framework called PRIMM (Predict, Run,
Investigate, Modify, Make; Sentance et
al. 2019) was identified, implemented
and investigated as a first step. Results
presented show that PRIMM worked
well for small single-statement problems,
but pupils found the Make step very
challenging when it came to more
complex multi-statement problems.
Based on the results of PRIMM, the
authors have developed PRIDAM (Predict,
Run, Investigate, Decompose, Arrange,
Make). PRIDAM improves on PRIMM
for more complex problems with multi-
statements. PRIDAM was trialed in a
UK comprehensive school on two Year
9 classes. Results presented show that
PRIDAM outperforms PRIMM for more
complex problems with multi-statements
in terms of pupil progress and learning

outcomes. The authors conclude that
PRIMM is adequate for demonstrating
concepts and statements but falls short
on problem solving, whereas PRIDAM
works well for demonstrating concepts as
well as problem solving.

LITERATURE REVIEW
Given that not all computer science
teachers have computer science degrees
(Murgia 2018) and also that the subject
of programming is an applied knowledge,
which ideally requires years of
experience solving problems to develop
a deep understanding, it is not surprising
that teachers and pupils alike find
programming daunting (Sentance & Wylie
2017). Those that have the necessary field
experience, most likely in industry, are not
teachers, and most teachers do not have
industrial experience.

There has been an ongoing discussion
in the teaching profession on how best
to enable learning. There are those who
advocate so-called minimalist guidance
techniques (also sometimes referred
to as problem-based learning, inquiry
learning, discovery learning) where
students are left to learn by themselves.
Examples of this approach to learning
include where science students are
placed in inquiry learning contexts
(laboratory environments) and asked to
discover fundamental and well-known
principles of science (by experimenting).
Exponents of this idea include Van
Joolingen et al. (2005), Papert (1980) and
Rutherford (1964).

On the other hand, there are those who
propose that rather than leaving students
to learn by themselves, direct support
should be given, and concepts and
procedures explained. Proponents of this
idea include Cronbach & Snow (1977),
Klahr & Nigam (2004), Mayer (2004) and
Kirschner et al. (2006). Then there are
those who propose a combination of
the two, where fundamental concepts
are taught and then students are left to
gain deeper knowledge by themselves,
(Kirschner et al. 2006; Meerbaum-Salant
et al. 2013; Hubwieser et al. 2014;

Grover et al. 2015).

On the pedagogy of teaching programming
and computer science in general, Cutts et
al. (2012) detail a framework that involves
three levels of abstraction described as
English, CS speak and Code. Students are
required to be able to move from one
step to the next.

Another framework in which four
levels are proposed, namely execution,
program, algorithm and problem, termed
the Levels of Abstraction framework, is
proposed in Armoni (2013). Lister et al.
(2004, 2009) emphasise the need to read
code and decipher what it does before
attempting to write new code. Teague &
Lister (2014) propose that students new
to programming should begin with very
small tasks with single elements.

A comprehensive literature review of
teaching computing in primary and
secondary schools (K-12) can be found
in Garneli et al. (2015). Of the three
questions the authors try to answer, ‘RQ3:
What are the most common instructional
practices and how are educators putting
them into practice?’ is of interest. Bennett
et al. (2011) suggest that a problem-
project based approach where students
follow a step-by-step procedure helps
students create their own projects but
could have a negative impact on the
learner’s creativity. To boost creativity,
Kacmarcik et al. (2009) suggest using a
‘Study, Modify, Extend’ model.

Sentance et al. (2019) extend this idea
further, where students are required to
Predict, Run, Investigate, Modify and then
Make programs. PRIMM encapsulates
the idea of providing students with a
framework which is directed but also
allows the student to develop creatively
by giving them the time to investigate and
modify on their own.

METHODOLOGY
The research was carried out in an English
comprehensive school in Greater London.
Following a recent inspection, the school
was rated ‘Good’ across all areas by the
Office for Standards in Education (Ofsted);

8

in the 2018/19 academic year, the Progress
8 score was 0.2, attainment 8 score 49.04,
46% of pupils achieved grade 5 or above
in English and maths, 67% achieved
grade 4 or above in English and maths,
65.4% of pupils entered Ebacc, with 35%
of the entrants achieving it. Two Year 9
classes were chosen for the research. To
be allowed to choose computer science
as a subject, pupils must have a certain
level of maths and so the abilities of the
Year 9 classes were above average for
the school. Of the two Year 9 classes, one
was slightly more able academically, the
more able class scoring between 4 and 6%
better in class tests. The pupils did some
block-based visual programming in Years
7 and 8; however, they were completely
new to text-based programming and the
Python programming language which was
used in the research.

The literature suggests three techniques
for collecting research data, namely
quantitative, qualitative and a mixture
of quantitative and qualitative data
(Creswell 2003; Castellan 2013). For
the research, the authors decided on
the mixed approach. The research focus
was to implement PRIMM, evaluate
its performance for teaching Python
programming to Year 9 pupils in a UK
comprehensive school and, based on
results, come up with appropriate
improvements.

The performance metrics were:

• Given programming problems of
varying complexity and difficulty, how
well does PRIMM perform in terms of
pupil scores for the different tasks?

• What was the pupil experience for
the different tasks? Did they find the
tasks easy or difficult and did they
enjoy the challenge of completing
the tasks?

For student scores, given various
tasks, the authors decided to adopt a
quantitative approach to collecting data.
For pupil experience, we decided to adopt
a qualitative approach to collecting data.

The research began with the authors

preparing presentation slides and
worksheets for the pupils based on
PRIMM. As previously described , the
authors adopted a mixture of guided
learning and inquiry-based learning as a
teaching approach. A typical lesson would
be along the following lines:

• Introduce a programming concept
to pupils

• Get the pupils to carry out the
PRIMM (or PRIDAM)-based exercises
in the worksheet

• Review the exercises with the pupils

The complexity of the problems was
evaluated using Lines of Code (LOC), the
idea being that optimum solutions for
simple problems would have fewer LOC
than more complex problems. To begin
with, for simple problems with single
elements, one or two LOC were given to
the pupils. The pupils had to complete
Predict, Run, Investigate, Modify and
Make tasks. Following the Investigate and
Modify steps of the PRIMM framework,
pupils were expected to Make programs
which involved applying the knowledge
gained in previous steps to solving
problems or Making a program. The
Make step of the worksheets started off
with simple one-statement problems
and gradually increased to more complex
multi-statement problems. At the end of
each task, pupils were asked for feedback
on the completed tasks. The feedback
was in the form of selecting one of three
choices on how difficult they found the
task, whether it was Easy, Hard or Very
Hard. There was also space provided for
pupils to comment in their own words on
the Make task.

Initially, PRIMM was used for tasks. When
LOC got to 5 and above, the performance
of pupils on Make tasks dropped to
the point that they simply could not
answer the questions. To aid pupils, the
authors introduced the idea of problem
Decomposition and Arrangement. One of
the fundamental ideas of programming
is problem decomposition, where a
programming task is broken into smaller

manageable tasks. For the Year 9 class,
this amounted to decomposing problems
until each task had a Python equivalent
statement. At this point the problem
could not be decomposed further and
the next task was to arrange the sub-tasks
(Python statements) to solve the given
problem. The results in the next section
will show a significant improvement
in pupil performance when problem
Decomposition and Arrangement is used.
The new framework which improves on
PRIMM the authors have called PRIDAM:
Predict, Run, Investigate, Decompose,
Arrange, Make. The Modify step of PRIMM
was condensed into the Investigate step.
The results section also shows a sample of
pupil worksheets and pupil feedback for
PRIMM and PRIDAM.

RESULTS
Figure 1 shows images of pupil worksheets
using PRIMM and PRIDAM for multi-
statement Make problems. The pictures
in the top row are for PRIMM tasks. The
pupils do nothing as they do not know
how to progress with the Make questions
after successfully completing the other
PRIMM steps. Note that in all cases the
pupils score 0 for the Make tasks since
they have no idea how to progress. This
was the case for most of the class after
LOC got to greater than 5. The bottom
row shows pupil worksheets using
PRIDAM. Bottom left shows how problem
Decomposition and Arrangement was
taught. Bottom middle and right show
the application of PRIDAM to solving
problems. Note the methodical approach
to solving the problems using PRIDAM
and note that even if the final result isn’t
correct, the pupil still scores some marks
for work done.

Table 1 shows the results of pupil ratings
for the two classes for different LOC. The
results show that there isn’t a significant
difference between the performance of
the two classes.

Table 2 shows the performance of both
classes for different PRIMM tasks. At 5
LOC and above, the average score of class

PRIDAM: a framework for teaching programming

98

RESEARCH in TEACHER EDUCATION

Vol.10. No 1. May 2020 pp 00-006–11

Figure 1: Pupil worksheets using PRIMM (top row) and PRIDAM (bottom row) for multiple-element Make questions

Table 1: Comparison of pupil ratings for the two Year 9 classes.

10

A dropped to 16% for the Make task and
17% for class B. For other tasks prior to
Make, the scores remained consistently
high for both classes.

At this stage, PRIDAM as discussed in the
previous section was introduced. Table
2 shows the result of PRIDAM for Make
tasks, where pupils are required to write
programs for problems, for classes A and
B. The results show a significant increase
compared to PRIMM across both classes,
with class B performing slightly better.

Plot 1 shows the performance for different
LOC using the PRIMM and PRIDAM
frameworks. PRIDAM shows an increase
of between 40 and 50% for different LOC.

Plots 2 and 3 show the spread of scores
and mean, median, mode, range for
PRIMM versus PRIDAM for Make tasks.
PRIDAM clearly outperforms PRIMM.

On the qualitative data collected, analysis
showed that pupils were comfortable
with simple tasks with single elements for
PRIMM, with comments such as ‘I found
it easy because I did other tasks’, whereas
for more complex Make problems, pupils
struggled to know where to begin, and
comments like ‘I don’t know what to do’
were common. For PRIDAM, pupils were
more comfortable with more complex
tasks and gave feedback such as ‘Easy
because I learned to do the tasks’.

CONCLUSIONS
A framework for teaching programming
can standardise lessons, making it easier

PRIDAM: a framework for teaching programming

Table 2: Performance of class A and class B for
different PRIMM tasks.

Table 3: Average performance scores for classes A and B for Make tasks.

Plot 1: Scores versus LOC for PRIMM and PRIDAM for Make tasks.

Plot 2: Spread of scores for PRIMM versus PRIDAM

Plot 3: Mean, median, mode and range of scores for PRIMM versus PRIDAM.

1110

RESEARCH in TEACHER EDUCATION

Vol.10. No 1. May 2020 pp 00-00

Armoni, M. (2013). ‘On teaching abstraction in computer science to novices’.
Journal of Computers in Mathematics and Science Teaching, 32(3), 265–84.
Bennett, V., Koh, K. & Repenning, A. (2011). ‘CS education re-kindles creativity
in public schools’. In Proceedings of the 16th Annual Joint Conference on
Innovation and Technology in Computer Science Education, pp. 183–7. New
York: ACM.
Castellan, C. M. (2013). ‘Quantitative and qualitative research: a view for
clarity’. International Journal of Education, 2(2), 1–14.
Creswell, J. W. (2003). Research design: qualitative, quantitative and mixed
methods approaches. London: Sage Publications.
Cronbach, L. J., & Snow, R. E. (1977). Aptitudes and instructional methods: a
handbook for research on interactions. New York: Irvington.
Cutts, Q., Esper, S., Fecho, M., Foster, S. & Simon, B. (2012). ‘The abstraction
transition taxonomy: developing desired learning outcomes through the
lens of situated cognition’. In Proceedings of the Ninth Annual International
Conference on International Computing Education Research (ICER ’12), pp.
63–70. New York: ACM.
Cyberbotics.com. Cyberbotics official website. Online: https://cyberbotics.
com/ [accessed 19 February 2020]
Garneli, V., Giannakos, M. and Chorianopoulos, K. (2015). ‘Computing
education in K-12 schools: a review of the literature’. In IEEE Global
Engineering Education Conference (EDUCON), 543–551. Piscataway, NJ:
Institute of Electrical and Electronics Engineers.
Gibbs, D. (2016). Stem UK official website. Online: https://www.stem.org.uk/
news-and-views/opinions/deep-end-%E2%80%93-non-specialists-teaching-
computer-science [accessed 2 March 2020]
Gov.uk. (2013). UK Government official website. Online: https://www.gov.
uk/government/publications/national-curriculum-in-england-computing-
programmes-of-study [accessed 20 March 2020]
Grover S., Pea, R. & Cooper, S. (2015). ‘Designing for deeper learning in a
blended computer science course for middle school students’. Computer
Science Education, 25(2), 199–237.
Hubwieser, P., Armoni, M., Giannakos, M. & Mittermeir, R. T. (2014).
‘Perspectives and visions of computer science education in primary and
secondary (K-12) schools’. ACM Transactions on Computer Education, 14(2),
7:1–7:9.
Kacmarcik, G. & Kacmarcik, S. (2009). ‘Introducing computer programming via
gameboy advance homebrew’. ACM SIGCSE Bulletin, 41(1), 281–5.
Kirschner, P., Sweller, J. & Clark, R. (2006). ‘Why minimal guidance during
instruction does not work: an analysis of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based teaching’. Educational
Psychologist, 41(2), 75–86.
Klahr, D. & Nigam, M. (2004). ‘The equivalence of learning paths in early
science instruction: effects of direct instruction and discovery learning’.
Psychological Science, 15, 661–7.
Lister, R., Adams, E., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M.,
McCartney, R., Moström, J., Sanders, K., Seppälä, O., Simon B. & Thomal
L. (2004). ‘A multi-national study of reading and tracing skills in novice
programmers’. ACM SIGCSE Bulletin, 36, 119–50.
Lister, R., Fidge, C. and Teague, D. (2009). ‘Further evidence of a relationship
between explaining, tracing and writing skills in introductory programming’.
In Proceedings of the 14th Annual ACM SIGCSE Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’09), pp. 161–5. New York:
ACM.
Mall, R. (2003). Fundamentals of software engineering, 4th edn. New Delhi:
PHI Learning.

Mayer, R. (2004). ‘Should there be a three-strikes rule against pure discovery
learning? The case for guided methods of instruction’. American Psychologist,
59, 14–19.
Meerbaum-Salant, O., Armoni, M. & Ben-Ari, M. (2013). ‘Learning computer
science concepts with Scratch’. Computer Science Education, 23(3), 239–64.
Merkouris, A. & Chorianopoulos, K. (2018). ‘Programming touch and full-body
interaction with a remotely controlled robot in a secondary education STEM
course’. In Proceedings of 22nd Pan-Hellenic Conference on Informatics (PCI
’18), 5pp. New York, ACM. Online: https://doi.org/10.1145/3291533.3291537
[accessed 19 February 2020]
Murgia, M. (2018). ‘How the UK plans to teach computer science to every
child’. Ft.com. Financial Times official website. Online: https://www.ft.com/
content/a712f6de-ef37-11e8-89c8-d36339d835c0 [accessed 19 February
2020]
Nowicki, M., Matuszak, M., Kwiatkowska, A., Sysło, M. & Bała, P. (2013).
‘Teaching secondary school students programming using distance learning: a
case study’. In X World Conference on Computers in Education Toruń, Poland,
pp. 246–54.
Papadakis S. & Kalogiannakis M. (2018). ‘Using gamification for supporting
an introductory programming course: the case of classcraft in a secondary
education classroom’. In Brooks A., Brooks E. &Vidakis N. (eds), Interactivity,
game creation, design, learning, and innovation. ArtsIT 2017, DLI 2017.
Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, vol. 229. Cham: Springer.
Papert, S. (1980). Mindstorms: children, computers and powerful ideas.
Brighton: Harvester.
Rutherford, F. J. (1964). ‘The role of inquiry in science teaching’. Journal of
Research in Science Teaching, 2, 80–4.
Roll, I. and Wylie R. (2016). Evolution and revolution in artificial intelligence in
education. International Journal of Education, 26, 582–99.
Saeli, M. et al. (2011). ‘Teaching programming in secondary school: a
pedagogical content knowledge perspective’. Informatics in Education, 10(1),
73–88. Online: https://pdfs.semanticscholar.org/6502/3157d05f80b46d492bd
4c75741027b94a895.pdf [accessed 19 February 2020].
Sentance, S., & Waite, J. (2017). ‘PRIMM: Exploring pedagogical approaches
for teaching text-based programming in school’. In Proceedings of the 12th
Workshop in Primary and Secondary Computing Education: WIPSCE ’17.
Nijmegen.
Sentance, S., Waite, J. & Kallia, M. (2019). ‘Teachers’ experiences of using
PRIMM to teach programming in school’. In The 50th ACM Technical
Symposium on Computing Science Education: SIGCSE 2019. New York: ACM.
Teague, D. & Lister, R. (2014). ‘Programming: reading, writing and reversing’.
In Proceedings of the 2014 Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’14), pp. 285–90. New York: ACM.
Tundjungsari, V. (2016). ‘E-learning model for teaching programming language
for secondary school students in Indonesia’. In 13th International Conference
on Remote Engineering and Virtual Instrumentation (REV), pp. 262–6.
Piscataway, NJ: Institute of Electrical and Electronics Engineers.
Van Joolingen, W., De Jong, T., Lazonder, A., Savelsbergh, E., & Manlove, S.
(2005). ‘Co-Lab: research and development of an online learning environment
for collaborative scientific discovery learning’. Computers in Human Behaviour,
21, 671–88.
Yildiz, D. (2020). ‘The effects of using different tools in programming: teaching
of secondary school students on engagement, computational thinking and
reflective thinking skills for problem solving tech know learn’. Online: https://
doi.org/10.1007/s10758-018-9391-y [Accessed 19 February 2020].

REFERENCES

for teachers to teach and at the same
time facilitating pupil progress. Results
obtained from two Year 9 classes in a
UK comprehensive school show that a
framework called PRIDAM outperforms
PRIMM, a state-of-the-art framework,
when it comes to solving programming
problems. PRIMM was shown to work
well for teaching programming concepts
that involve single statements but failed
when it came to solving more complex
problems involving multi-statements.

PRIDAM was shown to match PRIMM
for teaching concepts, and results also
showed that PRIDAM outperformed
PRIMM by as much as 50% for solving
complex multi-statement problems.

The research was carried out in two Year 9
classes with a total of 60 pupils. In future
the authors will be looking to expand the
field trials to more schools and pupils. The
PRIDAM framework was implemented
with a lumped model for each step. Each

model presents an opportunity for further
research. How long should each step last
for a given pupil? How is scaffolding to
be done for each step? More granular
models for PRIDAM will be researched.
This work also lays the foundation for
future work on AI-assisted teaching.
A simulation environment in which
different frameworks and modelling for
frameworks can be experimented with to
secure optimal pupil progress would be of
great assistance to teachers. n

6–11

