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Abstract

Existing methods for nonlinear robust control often use scenario-based
approaches to formulate the control problem as large nonlinear optimization
problems. The optimization problems are challenging to solve due to their size,
especially if the control problems include time-varying uncertainty. This paper
draws from local reduction methods used in semi-infinite optimization to solve
robust optimal control problems with parametric and time-varying uncertainty.
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We show that the local reduction method for optimal control problems con-
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sists of solving a series of simplified optimal control problems to find worst-case
constraint violations. In particular, we present examples where local reduction
methods find worst-case scenarios that are not on the boundary of the uncer-
tainty set. We also provide bounds on the error if local solvers are used. The
Funding information proposed approach is illustrated with two case studies with parametric and
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additive time-varying uncertainty. In the first case study, the number of sce-
narios obtained from local reduction is 101, smaller than in the case when all
214+3x192 extreme scenarios are considered. In the second case study, the number
of scenarios obtained from the local reduction is two compared to 512 extreme
scenarios. Our approach was able to satisfy the constraints both for parametric
uncertainty and time-varying disturbances, whereas approaches from literature

either violated the constraints or became computationally expensive.
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1 | INTRODUCTION

Robust optimal control problems are often solved using a scenario-based approach, where each scenario corresponds to a
separate realization of uncertainty. Increasing the number of scenarios improves robustness, while increasing the size of
the optimization problems. Mitigating the size of the problem by reducing the number of scenarios requires knowledge
about how the uncertainty affects the system which is a challenge especially if uncertainty varies with time. This paper

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
i© 2023 The Authors. International Journal of Robust and Nonlinear Control published by John Wiley & Sons Ltd.

1370 wileyonlinelibrary.com/journal/rnc Int J Robust Nonlinear Control. 2024;34:1370-1396.


http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/RNC
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frnc.7038&domain=pdf&date_stamp=2023-10-17

ZAGOROWSKA ET AL. 1371
WILEY—22

draws from approaches used in semi-infinite optimisation to solve robust optimal control problems by selecting scenarios
in an efficient way.

1.1 | Background

To ensure that the optimization problems resulting from scenario-based approaches to robust control are tractable, the
number of scenarios must be limited.! Usually, the choice of scenarios is done from experience®? and requires knowl-
edge about both the controlled system and the uncertainty to ensure that the chosen scenarios guarantee robustness.
A recent review of scenario-based methods indicated that scenario selection is highly affected by the knowledge about
the uncertainty distribution.” In practice, to tackle problems with limited knowledge about the uncertainty, it is often
assumed that the worst-case scenarios lie on the boundary of the uncertainty set.”® The worst-case scenario in nonlinear
systems may lie in the interior of the uncertainty range.”'® In this paper we show that the worst-case scenarios may
be inside the uncertainty set, even for a linear dynamic system and present a method for choosing potential worst-case
scenarios assuming limited knowledge about uncertainty.

Systematic approaches to choosing scenarios for time-varying uncertainty are usually based on creating scenario
trees.®!! In these approaches, a large set of scenarios is chosen at the beginning of the time horizon. The number of
elements in the set of scenarios increases combinatorially.!> However, there is no guarantee that the chosen set of sce-
narios includes the actual worst-case scenarios.'? To overcome this drawback, we propose to use a method derived from
semi-infinite optimisation to iteratively add new scenarios to the current set, to provide more flexibility in adjusting the
set of scenarios and finding worst-case scenarios.

Previous studies provided an in-depth review of semi-infinite optimization methods. In particular, it has been
indicated'?® that local reduction methods allow overcoming the dependence on the initial choice of scenarios. In these
methods, the set of scenarios is created iteratively by alternating between solving an optimisation problem with the cur-
rent set of scenarios and solving interim optimisation problems to find the maximal violation of constraints and extend
the set of scenarios.!® Therefore local reduction methods enable adding scenarios that may not have been considered at
the beginning, such as scenarios from the interior of the uncertainty set.

The iterative approach based on alternating between optimization problems has been already used for robust control,
which suggests potential usefulness of local reduction. The D-K iteration found in p-synthesis consists in alternating
between the synthesis of an H,, controller and minimization of the singular value for the corresponding controller."
However, the D-K iteration method depends on the optimality of each step, which indicates that the local reduction
method will also be affected by how the interim optimization problems are solved. In particular, due to the need to solve to
global optimality the interim problems,!” the complexity of local reduction methods prevented their use in robust optimal
control problems. An approach based on simulated annealing has been proposed to facilitate finding a global solution.?
We show that the local reduction method provides good results even if local solvers are used and provide bounds on the
solution.

Existing applications of semi-infinite optimization methods in control systems with uncertainty are limited.
Semi-infinite optimization methods have been used for optimal control?! to find optimal trajectories for robotic arms.
However, the authors considered only exogenous uncertainty due to obstacles that did not affect the dynamics of the con-
trolled systems. Parametric uncertainty for linear systems was considered?>?* to apply semi-infinite optimization methods
for model identification. However, these works did not consider time-varying uncertainty. Similarly, semi-infinite opti-
misation methods has been used to solve an optimal control problem with only parametric uncertainty.!? Time-varying
uncertainty was considered in works where local reduction was applied to find the interim worst-case scenarios.?
However, the authors assumed that at every time step the number of possible scenarios was finite.

13-17

1.2 | Contributions
The main contributions of the current work are:
1. Formulation of a local reduction method as a way of automatically generating scenarios in robust nonlinear control

problems if time-varying and constant uncertainties are present,
2. Formulation of error bounds on constraint violation if local optimization solvers are used in local reduction,
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3. Numerical demonstration of local reduction methods for solving nonlinear robust optimal control problems with
parametric uncertainty and linear robust optimal control problems with both parametric and time-varying uncertainty.

A preliminary version of the application of local reduction for scenario generation is available.?*

The rest of the paper is structured as follows. Section 2 introduces robust optimal control problems. Section 3 presents
the new method for solving robust optimal control problems. The numerical results are shown in Section 4 where we
compared the results obtained with the scenarios from local reduction to three commonly used approaches: nominal case
with no uncertainty, random case with randomly drawn realizations of uncertainty, boundary case with only extreme
values. The paper ends with conclusions in Section 5.

2 | PROBLEM FORMULATION
2.1 | Semi-infinite optimization problem

A semi-infinite optimization problem is formulated as:

Q: min Q@) (1a)
subject to R(f,p) <0 forall pe B (1b)

where A ¢ R™ and B ¢ R" are nonempty and compact sets, and Q and R are continuous functions of their respective
arguments.'® The problem (1) has a finite number of variables 6 but includes an infinite number of constraints if B has
an infinite number of points. In particular, B may be uncountable.

One approach to remove the infinite number of constraints consists in rewriting the constraint (1b) as:

S(6) := max R(0,p) < 0. @)
pEB

The challenge in solving the equivalent problem with constraint (2) is in non-differentiability of the function S(-). The local
reduction method proposed by Reference 18 allows overcoming the non-differentiability of S(-) by sequentially solving (1)
with finite subsets of constraints taken from B.

The main challenge in formulating robust optimal control problems as semi-infinite optimization lies in inclusion
of system dynamics in the form of equality constraints. In this paper, we show that optimal control problems can be
formulated as semi-infinite optimization problems and solved using the local reduction method.!®

2.2 | Dynamic system with uncertainty

The system to be controlled is described by a nonlinear difference equation with time-varying uncertainty wy € W ¢ R™
and constant uncertainty d € D ¢ R":

Xier1 = fi(X, Uk, Wi, d) (3)

where f} is continuously differentiable. The state xp at time zero is w.l.0.g. assumed to be equal to a given %.

The control trajectory u := (up, ... ,un-1) is generated by a causal dynamic feedback policy uy := zr(xo, ... ,Xk;
dos --- »qk, ') that is parameterized by q := (qo,q1, ... ,gqn-1) € R™ and r € R™. The state trajectory x := (xp, ... ,Xn).
The time-varying uncertainty wy, at time k and the constant uncertainty d affect the dynamics in both an additive and
non-additive way, and take on values from compact and uncountable (infinite cardinality) sets. Uncertainty in the mea-
sured value of x; can be modeled by a suitably-defined choice of fi, 7x and wy. In this work, we assume that the structure
of the dynamic feedback policy, and hence the parameterization, is already defined.

A trajectory (x, u) satisfying the dynamics (3) and control policy for a given parameterization (q, r) and realization of
uncertainty (w, d), where the trajectory w := (wo, ... ,Wn_1) € WY = Wx---x W, is defined as:

z(q,r,w,d) 1= {(X,w)|xo = X, Xp41 = fie Ok, Uk, Wi, ), U = 7p(Xo, - . Xk3qo0s --- - qk:7),k=0,1, ... N-1}. (4)
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2.3 | Robust optimal control problem
2.3.1 | Objective function and constraints

The cost function for the optimal control problem over a horizon of length N is:

N-1
JN(X, u,w, d) = "Tf(xNa Wy, d) + Z fk(xka Up, W, d)' (5)
k=0

Both the terminal cost function J¢(:, -, -) and stage cost £ (-, -, -, -) are continuously differentiable and depend on the uncer-
tainty w and d. The objective of the optimal control problem is to find a feedback policy = for system (3) such that the
worst-case cost in (5) is minimized and the constraints

80k, ug, wi,d) <0 (6)
are satisfied for all time instants k = 0, ... , N — 1, all states x, control u, uncertainty w and d. The vector function of ng
components, gi(:, -, *, -), is continuously differentiable and depends on uncertainty w and d. Note that a constraint on xy

can be included by incorporating fy_; in a suitable definition of gn_;.
To ensure that the optimal control problem with the objective (5) and the constraints (6) is well-defined over the
horizon N, we introduce the following assumption on the trajectories (4):

Assumption 1. The trajectories (4) are bounded over a finite horizon N:

VNeR,qeR%,reR*weWV,deDigeR: |z(q,r,w.d)2<¢ (7)

We note that the boundedness of (4) need not imply stability of the dynamics (3).

2.3.2 | Semi-infinite formulation

Given a set of uncertainties H C W" x ID, the problem in this work is stated as:

Py(H) : min max Jy (x,u’,w',d') (8a)
v
ol
s.t. gl up,wi,d)<0,VieJ,k=0, ... ,N-1 (8b)
(x\u')=z(q.r.w,d),Vie] (8¢c)
where J := {1, ... ,cardH} and (x!,u’) is the state and input trajectory associated with the i disturbance realization

(w, d") such that

= (W)}

ie]

If z(-) in (8c) is linear jointly in all arguments, the problem (8) can often be solved using scenario-based methods for robust
control,!? provided additional convexity assumptions are satisfied by the uncertainty set W. In this work, the dynamics
from (3) are nonlinear and W is only non-empty and compact. Moreover, the set H is assumed uncountable, which is a
common case if the disturbances belong to a polytope.

Theorem 1. The robust optimal control problem (8) is equivalent to the semi-infinite optimization problem (1)
with 8 := (q,r,y), where y is an additional scalar parameter characterizing the cost upper-bound, p := (w,d)
andthesets A =R xR xR, B :=H.
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Proof. In contrast to (1a), the objective function in (8a) contains uncertainty. Introducing y € R, we
rewrite (8) as:

Py (H) : min __ y (9a)
rarxiuiie]
st gk (. up,wi,d') <0,Vie J,k=0, ..., N-1 (9b)
x,u) =z(q,r,w,d),Vie ] (9¢)
I, u, W d)<y,Vie] (9d)

The problem (9) has uncertainty exclusively in the constraints. If cardH is finite, then the problem (9) is con-
venient to solve numerically using tailored efficient finite-dimensional optimization methods that exploit the
sparsity in the relevant Jacobians and Hessians. However, infinite cardinality of H yields an infinite number of
both constraints and variables, which means that the problem (9) needs to be further reformulated to become
(1). Noticing that the constraint (9b) is equivalent to

max g0, up,wy,d) <0, Viel, (10)
we introduce
G(x',ul,wi,d',y) := max{r%:i.x e gk (. uf,wi.d') Iy (x',u, w,d') — }'} (11)

In (11), ey, is the h'! column of an identity matrix ]I,,g. Using (4) and (11), we can write (9) as:

Py(H) : 1?]:131}:1 y (12a)
s.t. G(z(q,r,w,d),w,d,y) <0, V(w,d) € H, (12b)
The problem (12) is equivalent to
Py(H) : 1?]:131}:1 y (13a)
s.t. (‘E}ingG(z(q, r,w,d),w,d,y) <0. (13b)

Taking @ := (q,r,y) and p := (w, d) in (12) (similarly in (13)) we obtain the form of (1) (similarly (2)). ]

Theorem 1 makes no assumptions on the cardinality of the set H, which is uncountable in general. As a result, problem
(12) has an infinite number of constraints, in general, in a similar way to (1). Using the fact that (12) is equivalent to
(1), and (8) is equivalent to (12), we note that solving (12) using methods developed for semi-infinite optimization of the
form (1) is equivalent to solving the optimal control problem (8). Thus, Theorem 1 allows one to solve the optimal control
problem (8) as a semi-infinite optimization problem of the form (1) using local reduction.'®

2.3.3 | Robust solution

We now introduce definitions of robust solutions that we are going to use in the remainder of the paper. First, we notice
that the left-hand side of (13b) is equivalent to:

Gmax(q, 1,7, H) 1= max Gx,u,w,d,y) (14)
(w,d)cH
(xu)=z(q.r,w.d)

Using (14) allows us to introduce the necessary definitions.
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Definition 1 (Scenario). A scenario is a realization of the uncertainty (w, d) € W~ x I.

Definition 2 (Worst-case scenario). A worst-case scenario for a given (q,r,y) is a realization of the
uncertainty (w*, d*) € W" x ) that maximises constraint violation:

x*,u’,w",d") € argmax G(x,u,w,d,y) 15)
(w,d)eWN=D
(xu)=z(q.r,w.d)
Definition 3 (Robust solution). A triple (q*,r*,y*) is called a robust solution if Gmax(q*, 7*,y*, W, d) < 0 for
all (w,d) € WN x D.

Definition 4 (Solution robust to s scenarios). A triple (q*, r*, y*) is called a robust solution to the s scenarios
in H if Gpax(q*, r*,y*,w,d) < 0 for all (w,d) € H and cardH = s.

3 | LOCAL REDUCTION FOR OPTIMAL CONTROL

We will now extend the local reduction methods'® to robust nonlinear optimal control.

3.1 | Algorithm

The local reduction method!® consists in iteratively solving finite-dimensional optimization problems. We use the local
reduction methods for the problem (9) or (12) by iteratively solving optimal control problems parametrized by scenarios.
The iterations alternate between solving minimization and maximization steps that will now be described.

3.2 | Minimization step

The local reduction algorithm for robust optimal control is shown in Algorithm 1. The proposed algorithm in iteration j
solves an optimal control problem of the form (9) or (12) assuming that the number of scenarios cardHj at step j is finite.
The algorithm needs an initial guess for the parameters of the controller. For instance, the initial guess can be obtained by

Algorithm 1: Exact local reduction method
Input: Initial guess forq, r,y and H; # @
Output: Optimal q*, r*, y*, set of scenarios H*
18etq! < qrl —ryl«y,je<1
2 repeat
3 | Compute Guax(¢, ¥, ¥/, WN x D) and a maximizer (x/, w,w/, &) by solving (14) with H = W x D.
a | if Guax(q, ¥, ¥, WN x D) < 0 then

5
Hjy < Hj
6 | else
7 Add new scenario
Hjy < Hu {(W, d)) (16)
8 Find a (¢/*1, #*1, y/*1) that solves Py (Hj;1) using (9) or (12).
9 | end

10 | Setj«—j+1
u | Set(q*,r*,r*) < (¢,r,y’) and H* < Hi;.
12 until card H; = card Hj_y;
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solving (12) for one scenario, that is, card H; = 1. Alternatively, the initial guess can be found by solving (12) for a small
number of scenarios, obtained for example from a coarse discretization of the uncertainty set.?

In the first step of Algorithm 1 (line 3), the algorithm checks whether worst-case scenarios exist that would lead to
a violation of constraints (11). If no constraints are violated (line 4), the current parameters give a robust solution to the
current set of scenarios Hj. If there exists at least one violated constraint, then a scenario corresponding to the maximum
constraint violation is added to the scenario set Hj,, in the next iteration (line 7). The new set Hj,, is then used to find a
new set of control parameters (line 9). The algorithm ends if no new scenarios are added, that is, card H; = card H;_;.

In this work, any scenario corresponding to the maximum constraint violation can be added to the set of scenarios.
However, it has been shown that computational performance may be improved if multiple scenarios are added.?

3.3 | Maximization step

The maximization step consists in solving (14) with H = W~ x ID. Solving (14) is equivalent to solving ng - (N — 1) + 1
optimization problems, where n, denotes the number of elements in the vector function g(:) from constraints in (6). The
algorithm is presented in Algorithm 2. Without loss of generality, we assume that the first constraint to include in the
maximization problem corresponds to the reformulated objective function (5). A scenario that corresponds to maximal
value of this constraint is added to an auxiliary set K. The remaining ng - (N — 1) constraints are included as objectives in
the respective maximization problems (lines 4 to 8 in Algorithm 2). Note that the problem corresponding to the objective
(line 2) and all the problems corresponding to the constraints (lines 4 to 8) can be solved in parallel.

Algorithm 2: Maximization-Line 3 in Algorithm 1
Input: Current values of ¢, ¥/, y/

Output: Worst case scenario (W, ) in iteration j
1 Find any x*, u*, w*, d* that solves:

max  Jy(x,u,w,d) -/
xuw,d

s.t. (x,u) = z(¢, ¥, w, d)
(w,d) e W xD

2 Set K « (w*, d*, Jy(x*, u*, w*,d*) — ¥)
sforh=1,...,ngdo

4 | fork=1,....N—1do

5 Find any x*, u*, w*, d* that solves:

T
max e g(xk, Uk, Wk, d)

st (x,u) = z(¢, ¥, w, d)
(w,d) e W x D

Set K « KU (W*,d*, e/ gk(x;, uj, wi, d*))
6 | end

7 end
8 Set v* « max{vs | (v, v3) € K};
9 Choose any (W, /) € {(v1,12) | (v1,v2,V%) € K}

All maximization problems are subject to the same equality constraints capturing the dynamics. This formulation
allows us to treat the maximization problems as optimal control problems and preserve the sparsity of the relevant
Jacobians and Hessians. We solve the maximization problems as optimal control problems where q, r, and y are known
parameters whereas w and d are treated as unknown inputs. Thus, the maximization problems can be solved using any
off-the-shelf solver for optimal control problems.
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Solving (14) with H = W~ x D corresponds to lines 4 to 8 in Algorithm 2 and can be done by solving a number of
finite-dimensional optimization problems in parallel.?*

3.4 | Analysis
34.1 | Convergence of Algorithm 1

The convergence of local reduction method in the case of the form (1) was shown in several previous works.!#?7-2% The
authors required that the sets .4 and Bin (1) are non-empty and compact, and that the functions Q and R are continuous
with respect to all their arguments. They showed that the sequence of solutions obtained for a sequence of finite and
countable subsets of B converges to the solution of (1). A discussion on convergence rate of local reduction methods also
follows.'® We show in Theorem 2 when the Algorithm 1 solves problem (8).

Theorem 2. The solution (q*,r*,y*) obtained from Algorithm 1 for a non-empty and compact set WN x
converges to the solution of (8) if the set F ¢ R™ x R"™ X R such that G : F x WN x D — R" is non-empty and
compact.

Proof. From Theorem 1, we have @ :=(q,r,y) and p := (w,d), A :=TF, B := H. In (12), we take Q(#) :=y
which is linear and thus continuous. Then we have R(9, p) := G(q,r,y, w, d) which is continuous because
both maxj e:gk(-,-,-,-) and Jy(-,-,+,+) are continuous. The proof follows Lemma 2.2 from a previous
study.”8 .

Theorem 2 requires the constraints in G to be defined over a compact set F x WY x ID. As a direct consequence, we
obtain Remark 1.

Remark 1 (Boundedness of constraints). Gpax is bounded on F x WV x D, that is,
Im,MeR :Y(q,r,y,w,d) EFXWN XD : m < Guax(q, 7,7, W,d) <M a7

Proof. The proof follows directly from the extreme value theorem because Gmax(q, 1, ¥, W, d) is continuous
over a compact set F x WV x D. L]

Boundedness of G ensures that the maximization step presented in Algorithm 2 is well-posed. Section 3.5.1 will further
demonstrate the impact of boundedness on the solution obtained from Algorithm 1.

We also note that similarly to Assumption 1, the requirement of boundedness of G need not imply stability of the
dynamics (3). In particular, the method can be used for solving finite horizon optimal control problems with unstable
linear dynamics affected by uncertainty, as will be demonstrated in Section 4.

34.2 | Constraint dropping

The method presented in Algorithm 1 assumes that the cardinality of the sets Hj is increasing with j, that is, H; ¢ Hj;, for
all j. The increasing cardinality corresponds to an increase in the size of the optimization problem in line 9 in Algorithm 1.
The authors'® provide additional convexity conditions allowing one to drop elements from the set H;. In particular, they
require (1a) to be strictly convex with respect to 8 and R(8) to be convex with respect to 6 for p € B. Following Theorem 1,
the conditions provided in previous works'® correspond to strict convexity of (12a), and convexity of G(z(-, -, w, d), w, d, -)
for any (w, d) € WV x D. In the current work, we do not assume convexity of (11) and (12a) is only convex, not strictly
convex, so dropping constraints from the set I; does not guarantee convergence of the local reduction algorithm. To
enable constraint dropping, we consider a special case of problem (8) where the cost is independent of the uncertainty:

Py(H) :  min Jn(q.r) (18a)

&
st g, up,wi,d)<0,VieJ,k=0,... N-1 (18b)
&, u)=z(q,r,w,d),Vie] (18¢)
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Then we can adjust Algorithm 1 to Problem (18) to enable dropping constraints. First let us rewrite (11) as:

i i iy . T i i i
G(X':u':wlad) = ]:?‘t‘?clx ehgk(xkiukswksd) (19)
and (14) as:
Gmax,new(q, }‘, ]HD = (‘E{]a?‘gH G(X'} l.l, w': d) (20)
(xu)=z(q.r,w.d)

where (q,7) € Frew € R™ X R™ are found in a subset of the whole search space.

Theorem 3 (Adapted'®). If In(-,-) is strictly convex, (19) is convex w.r.t. x; and u}_ for any (w},d") € W x ID,
and Frey, is convex, then (16) can be replaced by:

Hj,y < Hju (W, d)\ Z (21
where

Zj = {(W, d) e Hlemax,new (qj= FJ?HJ') < 0} (22)

and the solution of the modified algorithm will converge fo the solution of (18).

Algorithm 3: Inexact local reduction method

Input: Initial guess for q, r, y, H; # @, and the tolerances ¢, and ¢4
Output: Optimal q*, r*, y*, set of scenarios H* that includes the worst-case
18etq! «q,rl—ryl «y,je<1
2 repeat

3 | Compute Gumax(q/, ¥, ¥/, WN x D) and a maximizer (¥, W, w/, @) by solving (14) with H = W~ x D.
5
Hj+1 — ]HIJ. (23)
6 | else
7 forall (w, d) € H; do
8 lf#”“ﬂ—w"% > g, OF ||(;U_d||% > ¢; then
9
Hj+l - Hj U (\H}", G.U) (24)
10 else
1
Hﬂ_] — HJ (25)
12 end
13 end
14 Find a (¢/*1, #*1, y/*1) that solves Py (Hj;1) using (9) or (12).
15 | end
16 | Set(q’,r*,y*) < (¢/,¥,y) and H* « H.
17 | Setj«—j+1.

18 until card H; = card H;_,;
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Proof. Taking 6 :=(q,r), p := (w,d), Q(0) :=Jn(q,r), R(8,p) := G(z(q,r,w,d),w,d), A 1= Fpeyy C R" x
R™ in (18) we obtain the form of (1). Then the proof follows from theorems 2.2 to 2.4 in
Reference 18. ]

3.5 | Inexactlocal reduction

To simplify the exact local reduction from Algorithm 1 we propose an inexact formulation of the algorithm focusing
on numerical properties of the solvers used for the optimal control problems. The exact algorithm for local reduction
presented in Algorithm 1 assumes that the maximization step finds the global solutions to the maximization problem and
only one scenario obtained in this step is then added to the scenario set. These assumptions are often difficult to satisfy.
In practice, there are two possible cases:

1. The maximization step in a given iteration has multiple solutions in general, but only a limited number is used,
2. The maximization step is solved approximately.

In particular, we will focus on analyzing the case when local solvers are used.

If a global solver is used, but only a limited number of scenarios is added, the local reduction algorithm needs more
iterations to find a solution than in the case of adding all the scenarios. Therefore there exists a trade-off between the
speed of convergence of the local reduction method and the size of the problem solved in the minimization step. We show
the impact of approximate solutions by considering similarity of scenarios, that is, when the interim worst-case scenarios
from line 3 in Algorithm 1 are considered similar.

Definition 5 (Similar scenarios). Let (w',d") and (w?, d?) be two scenarios and let e, > 0 and ¢; > 0 be
fixed parameters. The two scenarios are similar if

1
ﬁllwl -wW3 <6, (26)

ld* — d?||? < eq. (27)

Using Definition 5, we modify line 7 in Algorithm 1 so that the scenario (w/, &) in iteration j is added to the current set
of scenarios if it is not similar to any of the scenarios in Hj. Algorithm 3 summarizes the inexact local reduction method
with the evaluation of when the scenarios are similar.

3.5.1 | Impact of similarity of scenarios

The algorithm provides a solution that is robust to s scenarios in the sense of Definition 4, where s = card H*. From
Remark 1 and (11), we already have that for any two scenarios (w!,d'), (w?,d?), the constraints g are bounded
and hence:

gL wh, db) — ge@2 w2, )z < llg(zl, wh, dbll2 + llge@2, w2, )|z < 2M. (28)

A tighter bound can be obtained if we use Assumption 1 and note that for a chosen parameterization q*,r*,y* the
trajectories z are BIBO-stable w.r.t. disturbances, that is,

Vow>0: [[((W,d)|l2<c¢w=3c;>0: |zl < ¢ (29)

Theorem 4 uses (29) to show the impact of the similarity of scenarios on the constraint satisfaction.

Theorem 4. Let (w',d"), (w2, d2) be two identical scenarios with e,, = =€, and eq = €%, and ||(W', d")||2 < ¢w
for i=1,2. Let q*,r*,y* be the solution of (8) obtained for (w',d') and let z'= z(q*,r*,w',d"),
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z? = z(q*, r*, w?, d?). Then the constraint violation for (w2, d?) is bounded and

g (2. wio di) = e (25 Wi d7) I3 < L7 (e + € +4¢z) (30)
where ch is the trajectory z! at time k, i = 1,2, and L is a local Lipschitz constant for a given k.

Proof. We have

W' —w?|3 < e (31)
and
lld' — &3 < €} (32)
‘We can write (31) as:
W' = w13 = || (w) — w1, ... ,wy —wy) II3
N 2
= Z.’.’k(w}c -w?)
k=1 )
<ep (33)

where ¢ is the k™ row of an identity matrix Iy. Without loss of generality, we can assume that wi - wi #0

for k =1, ..., N. Then from orthogonality of the set {e; (w; —w?) }kzl > and using (31), we get from the
Pythagorean theorem:
N 2 N
e > |[Dex (wp—wi)|l =D llex (wp —wi) I3 (34)
psi =

Taking into account that ||ex(w; —w7)[|3 > 0 for all kand [lex(w; —w?) (13 = [|(w; —w?) I3 in (34), we get:
llwy, — will3 < €5, (35)
forallk=1, ... ,N. Summing up (32) and (35) gives:
wy —wi||? + [|d" — d?|I2 < €} + €}, (36)
Then we have:
(Wi = wi, O3 + 110, d* — d)II3 = || (wy, —w,d' —d?) |13 (37)
where 0 denotes the origin of R" and we used the Pythagorean theorem in R"+!, Then we have:
Il (wy = wi,d' —d?) I3 = Il (0,w, —w}.d' = d) || (3%)
where 0 denotes the origin of R™+",

At the same time, from the assumption that g is continuously differentiable with respect to all its
arguments, we get the local Lipschitz condition [Chap. 2]:%°

llgk (23 wi-d') — g( 2 Wi @) ll2 < LIl (2 wy ') = (25, W, @) Il2 (39)
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where L is the local Lipschitz constant of gi. Taking a square in (39) and using (38), we obtain:

g (zs wi ') = ge(gs wis &) I < 21 (g wio ) = (2 wio )1
= L%ll(5 — 22 0.0) + (0w —wp. ' — &)1
= L*(ligg = 2l + Il (wy — wi. d' — %) 13)
< L2( (Il + 120)* + 1l (wf — w2, d = ) I2)
< L€+ e +4¢7) (40)

which concludes the proof. L]

In a similar way the proof can be done for the constraint from (9d) because the cost Jy is also continuously
differentiable.
Theorem 4 shows that the satisfaction of constraints depends on:

1. The local Lipschitz constant of the constraints,
2. The response of the system to disturbances,
3. The choice of similarity of scenarios.

The local Lipschitz constant and the response to disturbances are inherent to the system. We note from Theorem 4
that the assumption about having a global solution to the maximization problem in Algorithm 1 is crucial to ensure no
constraint violation. Even if the maximization step is solved exactly and e, = 3 = 0, the constraint violation in (30) is
defined by 4L%¢2. At the same time, the choice of parameters in Definition 5 affects the constraints violations.

We also note that (29) makes no assumptions on g,. For unstable systems, ¢, may be large, thus making the bound in
Theorem 4 uninformative. However, the value of ¢; depends also on the chosen control policy zx which can be used to
modify the control invariant set® and thus tighten the bound.

Furthermore, the impact of the similarity of scenarios provides information about the solution if local, instead of
global, optimization solvers are used to solve the maximization problems. To make this precise, let (W', d') in Theorem 4
be a local solution from Algorithm 2, and let (w?, d?) be a global solution. Taking €}, and €} such that ||w' —w?||2 < €,
[|ldt — t12||2 <€), and (Wi, d)||2 < g fori = 1, 2, the maximal constraint violation is bounded by (30).

As a direct consequence of Theorem 4 we obtain the following result:

Theorem 5. Let us assume that Algorithm 3 finished with scenario set H*, card H* = H. The con-
straint violation for scenario (w*,d*) & H* is bounded by (30) with &, =max,-=1,_“,H||w"—w*||% and
) =maxe, . |ld —d*|)2

Proof. From Theorem 4 we have that foralli=1, ... ,H:
g (el who d) — gz Wi, dIE < 12(ef, + 3, + 42 ) (41)
where we assumed that ||w' — w*||3 < €’ and ||d’' — d*||3 < €] . Thus, we have:

Ing(z‘k,wk,d‘) gk(zk,wpd*)”z max Lz( w1+ d|+4gz)

= Lz( r_ru:u(‘H‘r—:wr + linaxﬂed F 4g‘z) (42)
Taking in Theorem 4
= ax e, = max Iw' - wl;
and
€)= ,ZIPaXHGd = izli(}?.?{ﬂudi - d*||2
concludes the proof. .
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3.5.2 | Impact of number of scenarios

The bounds obtained in Theorem 5 allow inference about constraint violation in a practical implementation of
Algorithm 3. In particular, we will now analyze how fixing the number of scenarios H affects the constraint violation. For
simplicity, we focus on the constraint from (9b) but an analogous reasoning can be done for (9d). Let us assume that the
function g from (9b) is such that:

- R% X R™% X R™ x R™ — Q c R™ (43)
8

where Q) is Lebesgue-measurable. The Lebesgue measure of the set will be called its n-dimensional volume [Chap. 21]*!
and denoted Vol @} = Q. We assume that the values of g are from a uniform distribution over (. for any realization of
uncertainty. Let us also introduce for every scenario (W', d') € H* the following subsets:

Sjc,s = {§k € Q : g, —gk(zj,wi,di)"z < 5} (44)

where § > 0 is a constant such that SL 5 € Q. Then we can introduce

H‘?
Sks = Sis (45)

such that S}c‘ 5 # S‘;ﬁ 5 fori,j =1, ... ,Hg,i #j. The setfrom (45) collects H, sets SL 5 corresponding to distinct values of con-
straints g (z}c, ch, d') obtained from scenarios (Wic, d') and trajectories zi. We have that H; < H, with strict inequality if at
least two different realizations of scenarios (w‘,'c, d'), (w’k, ') and the corresponding trajectories z}c, 2,i#j,i,j=1,...,H,
lead to the same value of the constraint, that is, g (z;, w}.d') = g(z,. w}, @). The n-dimensional volume of Sy  is now:

Hq'
Vol S5 = Vol | Js} ; (46)

From countable subadditivity of Lebesgue measure,” we get Vol | J; S} ; < ¥, Vol §; _, and then:

Hq'
Vol § ; < Vol S5 < Y Vol S ; (47)

Noticing that S; | is a ball in R" with radius &, we have [p. 135]:**

Zcn
Vol S;, = e L (48)
1“(5 + 1)
2
where I' is the gamma function, and then:
e Loy
Z2O ol < Homz 0 (49)

r(g +1) r(§+1)

‘We can now state:

Theorem 6. Let us assume that Algorithm 3 is used to solve (8) where g satisfies (43) forallk=0, ... ,N -1
with Vol Qi = Qi, and thevalues of gy are uniformly distributed over Q. Let us assume that Algorithm 3 finished
with scenario set H*, card H* = H. Let us assume that a threshold é§ € R has been chosen so that the sets S;i; 5

from (44) satisfy Sica CQforallk=0, ... ,N—-1,i=1, ... ,Hy. The probability that the constraint violation
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exceeds the threshold é for scenario (w*, d*) & H*such that gk(z;, w;, d*) = E; is bounded as follows:

xon ng n
I—LMZP(EEESES)ZI—M (50)
ri(%&ﬂ) ’ ri(% +1)
where SLS is the complement of the set Sy s, that is, SLS 1= Qx \ Sks.
Proof. Dividing by Qi > 0 all the terms in (49) we obtain
Xz n, X n
—k H 2 6
1O < P(F € Sis) < 2 51)

ri(% +1) ri("f +1)

because P(E,Z € Sis) 1= %. Substituting P(E,Z €Sis)=1- P(E,: €S a) into (51) and rearranging, we
k th

obtain (50). n

Theorem 6 combines the number of scenarios H; obtained from local reduction with the threshold for constraint
violation 8. Assuming that g has been normalized so that Q = 1, we rewrite (50) as:

P(g,: € Si‘é) > 1 - xH;6" (52)

where x := ———— is a constant depending on the number of constraints n,. We see in (52) that there is a trade-off

r(%+1

between the threshold é and the number of scenarios H;s. For a given threshold &, increasing the number of scenar-
ios will decrease the probability of violation. Conversely, if the number of scenarios is constant, a small threshold
may be exceeded with high probability. An example of the trade-off is shown in Figure 1 as a function of the

dimensions n,.

Probability of constraint violation

ng=>5
L0 Lo
0.9
0.8 0.8
] 0,7 v
= o
E 0.6 E 0.6
£ 0.5 =
E 0.4 g o0s
= 0.3 =
0.2 0.2
0.1
0 0.0
0 100 200 300 400 500 0 100 200 300 400 500
# of scenarios H; # of scenarios H,
n, =10 n, =20
10 10
0,8 0.8
o o 0.7
=) -
E E 0.6 0.6
& < 0.5
g g oa 0.4
£ =
= = 0.3
0.2 0.2 0.2
0.1
0,0 0.0 0
0 100 200 300 400 500 0 100 200 300 400 500
# of scenarios H; # of scenarios H;

FIGURE 1 Trade-off between the number of scenarios H; and the desired threshold 6 as a function of dimensionality n, of the
uncertainty space.
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Finally, Theorem 6 has a practical interpretation. Assuming that the allowed probability of constraint violation is pges,
from (52) we obtain a bound on the number of scenarios Hj to satisfy this requirement for a given §:

1- Pdes

Hs K6

v

(53)

The number of scenarios obtained from (53) can be used as an additional stopping criterion (line 18 in Algorithm 3).

Finally, should the probability distributions of the uncertainty be available, our approach can be extended to explicitly
include chance constraints and probability distributions a priori in the problem formulation by using an appropriate
problem structure.**

4 | EXAMPLES

We will first show that the realization of uncertainty leading to the maximal constraint violation can be anywhere, not
necessarily on the boundary of the uncertainty set even for a linear system. We also show the performance of the local
reduction applied to an unstable system.

We then show that the local reduction method described in Section 3 finds scenarios from inside the uncertainty sets
and provides robust solutions to optimal control problems with uncertainty in two numerical examples: temperature
control in a residential building and flow control in a centrifugal compressor. The solution provided by local reduction
is then compared with the case obtained for boundary scenarios and for scenarios chosen randomly from a uniform
distribution.

The examples were implemented in Julia 1.6% using JuMP 0.21.4.3¢ The problems were then solved using Ipopt
version 3.12.10.%7 All tests were performed on an Intel® Core™ i7-7500U with 16 GB of RAM.

4.1 | Scenarios not on the boundary

An example of scenarios not on the boundary for a nonlinear system was provided in previous works.*!? We show that a
linear system with parametric uncertainty may have interim worst-case scenario in the interior of the uncertainty range.
The worst-case scenario in the sense of Definition 2 for a robust optimal control problem of the form (12) may be in the

interior of the set W x ID..
Let us assume that we have a system with dynamics affected by parametric uncertainty d:

X1 = (A + d)xi + Buy, (54)

wherek =1, ... ,Nandd € [d, E], A, B are constant scalar matrices, Xx; is known. Let us assume further that the optimal
control problem includes a constraint of the form:

X <0 (55)

The constraint (55) must be satisfied for all k. The maximization step in the local reduction method consists in solving a
series of optimization problems with the objective for every k:

max  x (56)
subject to (54) (57)
Every k corresponds to a different optimization problem of the form (57).

Let us now take k = 4,xp = 0, A = —0.5, B = 1, and we are looking for the maximal constraint violation for a constant
d € [-0.5,0.5]. Let us assume that the current optimal control input uy, k = 0, ... ,4isug = uy = u3 = —landu; = uy = 1.
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The maximization problem from (57) becomes a maximization of a fourth order polynomial of d:
4
m?x;ug,_j(—o.s +dy (38)

Looking for the maximum of the polynomial (58) yields d ~ 0.2 which is not on the boundary of the interval [-0.5, 0.5].

This example confirms that considering boundary scenarios would miss the actual worst-case scenario. In a similar
way, selecting a priori a number of scenarios would result in adding unnecessary scenarios that may or may not be the
worst-case scenario.

4.2 | Unstable system

To show that the boundedness of constraints required in Theorem 2 need not imply stability, we analysed a system with
dynamics:

Xy1 = adxy + ug (59)

where a = 2.1, the uncertainty d € [0.9,1.1], and with x; = 0.5. The constraints to be satisfied were 0 < x; < 1, for all
k=1, ... ,Nwith N = 10. The controller u; was parameterised as an affine function of the state:

ur = Kxi + qy (60)

and the constraints u; € [—1, 1] were enforced by a smooth saturation function

sat __ ﬂO
= B e TP eV

where g; are constants. Here fy = —2.0229, p) = 1, f» = 1.2963, f3 = 1.01145. The objective was to minimize the square
of the control over the whole horizon N:

N-1
J= Z ui. (62)
k=0

The trajectory obtained from maximization of the violation of the constraint x;g < 1 is shown in Figure 2A. The time
horizon is finite, N = 10, so the trajectory x is bounded for any value of d and thus the local reduction can be used. Using
the local reduction algorithm resulted in three scenarios: d; = 1, d, = 0.9, d3 = 1.1 that ensure robustness, as indicated
in Figure 2B. The trajectories in Figure 2B were obtained for 500 randomly chosen scenarios uniformly distributed in
[0.9,1.1].

The example shows that stability of the dynamics is optional, provided the constraints are bounded. Nevertheless, it is
recommended to take instability into account when numerically solving the minimization problems in Algorithm 2. To
show the influence of instability on the numerical performance, we computed the violation for six different values of the
horizon N and the results are collected in Table 1. For instance, the maximization problems can be solved approximately,
terminating as soon as a violation has been found. Such approaches correspond to choosing large values of ¢,, and ¢4 in
Algorithm 3, so the analysis in Section 3.5.1 holds.

4.3 | Linear system with parametric uncertainty

This numerical example consists in a linear system with both parametric and additive time-varying uncertainty. The
example describes a single zone building affected by time-varying internal heat gain, solar radiation, and external

temperature.*® The objective is to follow a time-varying set-point for internal temperature xkemp. The dynamics are discrete
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(A] Trajectory x corresponding to maximization of upper bound (black) with the respective bounds (green) (B) Walidation of the ins from local reduction for 500 randomly chosen i i distributed in [0.9, 1.1]
FIGURE 2 Application of local reduction for the unstable system (59).
TABLE 1 Constraint violation obtained for the unstable system (59) with different time horizon N.
N 5 10 15 20 25 30
Violation 3.75 39.37 49829.0 2.63163e6 2.00637e8 1.35451e9
and linear:
Xi1 = Axg + Bui + Wy (63)

with matrices:

0.8511 0.0541 0.0707 35 22217 1.7912 422123
A=|01293 08635 0.0055| B=10703|, W=10"| 1.5376 0.6944 2.29214 |
0.0989 0.0032 0.7541 0.2 103.1813 0.1032 196.0444

The states x describe the indoor temperature x**™P, wall temperature x**!, and the corridor temperature x°°. The con-
trol u represents the amount of heating and cooling delivered to the building. The initial condition was chosen as
Xp = [25.0 240 24.0] e Moreover, we assume that the wall temperature and the corridor temperature can only be
measured approximately, so there are two additional sources of uncertainty in the initial condition for these two states.
We assume xf} = 24 + di, i = wall, corr, where d' € [-0.5,0.5]. We also assume that the matrices A = [ai;j]1 and B = [b;],
i,j = 1,2, 3 are affected by uncertainty:

a;;-ém and bj'b

where §;;, n; are uncertain parameters. Two cases will be considered: Case A with §;;, ; € [0.98,1.02] and Case B with
8ij, 1jj € [0.96,1.03]. The minimal control effort is ensured by the objective function:

=
2
=N Z U (64)
k=0
It is assumed that the day starts at 6:00 a.m. and lasts 12 h. The temperature indoors must stay within limits:

Trin < X% < Tonax (65)
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TABLE 2 Ranges of uncertain parameters throughout the day.
Day Night
Internal heat gain [4, 6] [0, 2]
Solar radiation [4, 6] 0
External temperature [6, 8]°C [2,4]°C

During the day, the indoor temperature must be kept above 23°C and during the night can drop down to 17°C:

- {17°C during night time 66)

23°C during day time

The maximal temperature is the same during the day and night, Ty = 26°C.

The optimal control problem is solved over a period of 48 h starting at 6:00 a.m. the first day, with N =192. As a
result, the trajectory constraints (65) impose 192 - 2 constraints corresponding to every sampling time. The three uncertain
parameters, internal gain, solar radiation, and external temperature, vary with time within the limits provided in Table 2.

The control variables are parameterised as:

U = Kx;c'amp +qk (67)
where K and g are decision variables. Furthermore, we include saturation of the control inputs:

—-500 W for u; < -500 W
22t = sat(up) = q uk for —500 W <y <1200 W (68)
1200 W for ui > 1200 W

u

The saturation was approximated by a smooth function:

sat __ ﬂO
= B e T ©

where g; are constants. Here f; = —5030, #; = 2.937, §, = 0.003, 3 = 1207.
In total, there are 14 uncertain parameters affecting the matrices A, B, and the initial condition for the wall and corridor
temperatures. We assume no knowledge about the scenarios, except the ranges of uncertainty.

43.1 | Results—Case A

In case A, we ran Algorithm 1 with the time-varying uncertainties from Table 2 and parametric uncertainties §;;,#7; €
[0.98,1.02].

Overall performance

The local reduction method in Case A reduced the number of scenarios to five. The resulting controller obtained for the
interim worst-case scenarios was then validated for 500 random realizations from a uniform distribution of uncertainty.
The validation of the controller is shown in top left plot in Figure 3. The black curves stay within the green bounds
corresponding to constraints (65). The results suggest that local reduction was able to find a robust solution despite using
a local solver for maximizations.

The results also indicate that the local reduction method handles time-varying uncertainty without specifying the
scenarios over the whole time horizon. This is because there is no need to specify time-varying scenarios as they will be
found in the maximization step in Algorithm 2. Moreover, Algorithm 2 treats time-varying uncertainty as one realization
over the whole horizon, thus overcoming the limitations of separate robust horizon.?
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FIGURE 3 Comparison of local reduction with scenario based approaches in Case A (left) and Case B (right).

An example of an interim worst-case scenarios obtained in the maximisation step is shown in Figure 4.

Comparison with other approaches
The results obtained from local reduction are then compared with three scenario-based approaches from the literature:*

1. Nominal approach, with a controller obtained assuming there is no uncertainty, that is, (w, d) = 0 (further denoted as
“Nominal”)

2. Randomised approach, with a controller obtained for a number of randomly chosen scenarios (further denoted as
“Random”)

3. Extreme approach, with a controller obtained for three scenarios: nominal, lower bound, and upper bound for all
uncertainties® (further denoted as “Nominal+two extreme™)

Validating the nominal controller with 500 random scenarios shows that the approach based on nominal values leads
to violation of constraints as shown in the plot ‘Nominal’ in the left column of Figure 3.

The second set of controllers we used was derived using three sets of random scenarios: five scenarios because five
scenarios were found in local reduction, 100 scenarios, and 250 scenarios. The results are shown in the plot ‘Random’
in the left column of Figure 3, with black corresponding to the controller obtained from five scenarios, yellow to the
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External temperature
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FIGURE 4 Anexample of a time-varying scenario found by the local reduction in Case A.

controller with 100 scenarios, and blue to the controller with 250 scenarios. In all the cases the controller violated at
least one of the bounds (100 scenarios gave 0.2°C, 250 scenarios gave 0.1°C), with the controller based on five scenarios
violating both the lower and upper bound (1.1°C). Even though the violation decreased with increasing the number of
scenarios, further increasing the number of random scenarios to 600 proved unsuccessful in avoiding the violation. Larger
problems could not be solved on the computer.

A possible reason for the random controller being unable to satisfy the constraints is due to not including extreme
scenarios in the scenario set. If we were to take only extreme values for every uncertainty and consider all extreme scenar-
ios, we would need to solve a problem with 2!4+3%192 scenarios, which is intractable. To reduce the number of scenarios,
we chose to use the nominal scenario, combined with two extreme scenarios. The extreme scenarios were taken as all
uncertainties on their lower or upper bound simultaneously. The results of validating the controller for 500 scenarios are
shown in the plot ‘Nominal + two extreme’ in the left column of Figure 3. The controller based on the extreme scenarios
was also able to avoid constraint violations with three scenarios.

The results of the comparison show that the local reduction method provides better results than the nominal control or
a controller based on a random choice of scenarios. At the same time, the number of scenarios found in the maximization
step from Algorithm 2 is comparable to the controller based only on nominal and two extreme scenarios. Further analysis
of the performance comparison will be done for Case B in Section 4.3.2 to show that other controllers fail if parametric
uncertainty is more significant.

Time performance

The results from Figure 3 indicate that the local reduction method enables reducing the number of scenarios compared
to approaches based on random choice or on time-varying extreme scenarios. Figure 5 shows in the left column the time
necessary to solve each step of the local reduction method. The plot in the top left shows the time to solve the minimization
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Minimisation

Minimisation

time necessary for solving the minimization problem (line 3 in Algorithm 3) as a function of iteration of local reduction, corresponding to the
number of scenarios in the current set H. The second row shows the time necessary to solve the first maximization problem related to the
objective as a function of iteration of local reduction (line 1 in Algorithm 2). The two bottom rows show the time necessary to solve the
maximization problems corresponding to n, = 2 trajectory constraints (65) as a function of samples over the horizon of 48 h, N = 192

(lines 4-8 in Algorithm 2).

problem as a function of iterations of the local reduction. The iterations correspond to the number of scenarios included
in the minimization problem. The number of scenarios is relatively small (five scenarios), so the time for each iteration
is below 3.5s.

The second plot in the left column shows the time for solving the maximization problem if the objective is considered
(line 2 in Algorithm 2). The time to solve the maximization problem in every iteration is comparable to the time to solve
the minimization problem. The subsequent two plots show the time for the maximization of the constraint violation
corresponding to the lower and upper bounds over the overall time horizon (one maximization per time step, lines 4-8 in
Algorithm 2). In both cases, the average time to solve a single maximization problem was 0.35 s. The total time for finding
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the five scenarios was 10 min 48 s. The algorithm can be parallelized so that the maximization problems are solved simul-
taneously.?* Therefore, it can be expected that the time to find a solution in a single iteration of the local reduction method
will be equivalent to the solution of the minimization problem and the maximal time needed to solve the maximization
problems.

43.2 | Results—Case B

In case B, we ran Algorithm 1 with the time-varying uncertainties from Table 2 and parametric uncertainties 6;;,; €
[0.96,1.03]. The range for parameters §;;, #; was chosen to increase the parametric uncertainty in the dynamics while still
ensuring that a controller of the form (67) exists.

Overall performance

In contrast to Case A, which has given only five scenarios, the local reduction method in Case B found 101 scenarios.
A validation for 500 scenarios is shown in the top right plot in Figure 3. The plot shows that the controller obtained for
101 scenarios from the local reduction avoided violating constraints. This result indicates that local reduction can handle
parametric uncertainty.

Comparison with other approaches
The controller in Case B has also been compared with the same set of controllers as in Case A, obtained for the new
range of uncertainty. As expected, the nominal controller and the random controller were unable to satisfy the constraints
(middle plots in the right column in Figure 3). In contrast to Case A, the controller based on nominal and two extreme
scenarios was also unable to satisfy the constraints, as shown in the bottom right plot in Figure 3. The black lines after 24
h cross the green lines so that the lower bound on the temperature is violated (0.5°C). Therefore, taking extreme scenarios
may be insufficient, as shown in Section 4.1.

The performance of local reduction in handling parametric uncertainty will be also confirmed in the nonlinear case
study in Section 4.4.

Computational time performance

Figure 5 shows in the right column the time performance of the elements of the local reduction method in terms of time
needed to solve them. As expected, the time to obtain the solution to the minimization problems increases with iterations.
The increase is due to the fact that the number of scenarios considered in every iteration is greater than in the previous
one. At the same time, the time necessary to solve a single maximization problem remained similar across the iterations.
This result indicates the potential for parallelization to improve performance.

In this work, we also assume that the structure of the dynamic feedback policy in (3) is known. The improved com-
putational time of the local reduction can be used to validate whether the chosen control parametrization is suitable
for robustness, because it enables obtaining a solution more quickly. Thus, if the results for a given parametrization are
unsatisfactory, a different parametrization can be evaluated.

4.3.3 | Results-Properties of interim scenarios

Finally, we show the impact of the choice of when two scenarios are considered similar in Algorithm 3. The results of
varying e are collected in Table 3. The time was obtained using BenchmarkTools.jl.*

As expected, a high threshold for similarity of scenarios leads to fewer scenarios added to the problem. This is visible in
particular in Case B with more significant parametric uncertainty, where the high threshold e = 0.1 led to two scenarios,
whereas a lower threshold € = 0.001 led to 101 scenarios. The middle column in Table 3 shows that robustness to the
three scenarios in Case B for € = 0.1 is insufficient to robustify the system against random realizations of uncertainties.
Conversely, both ¢ = 0.01 and ¢ = 0.001 seem to robustify the system against the random realizations. Unless explicitly
stated, the paper considered ¢ = 0.001.

The number of scenarios also affects the time necessary to solve the resulting optimization problem corresponding to
all the scenarios (right column of Table 3).
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TABLE 3 Influence of the tolerance for checking the similarity of scenarios on the resulting number of scenarios, maximal
constraint violation over 500 random scenarios, and the time to obtain a solution for the scenarios obtained

€ # Scenarios Max violation Time
Case 0.1 3 0 6.4 min
A 0.01 5 0 10.8 min
0.001 5 0 10.5 min
Case 0.1 2 1.5°C 5.3 min
: 0.01 101 0 5h
0.001 101 0 5h
4.4 | Nonlinear system with a dynamic controller

441 | Dynamics

A further case study is presented to show how our proposed method can be used in nonlinear systems. We want to design
a flow controller for a centrifugal compressor. The dynamics for a compressor are nonlinear:*’

ps= ?s(min —m+ my),
pd = a_gl(m — Moyt — mr),
Vi

A
m= L—l(ﬂ(m,w)ps - Pa)s

d’ = %(T - TC)'}
. 1
my = _(mSP - m;), (70)
Tr

where p; and p4 are the suction and discharge suction pressures, an, Vs, 41, L, J are constant parameters defining the
geometry of the compressor, the piping, and the shaft, mgp is the controller for the recycle valve, m, is the mass flow
through the recycle valve, m is the mass flow through the compressor, w is the speed of the shaft of the compressor in
rad s, 7 is torque provided by a flow controller, 7, is the reaction torque of the compressor. The function I1(-, -) gives the
pressure ratio across a compressor as a function of compressor mass flow and speed:

(M, ®) = ap + aym + a0 + asme + aym? + asw?. (71D

The coefficients a;, i = 0, ... , 5 are usually estimated from operating data. Here we assume ag = 2.691, a; = —0.014, a3 =
—0.041, a3 = 0.0009, a, = 0.0002, a5 = 0.00002. The uncertainty in a; is described in Section 4.4.3.

The value of my, and mg, captures the external mass flows on the suction and discharge side, respectively. The mass
flows depend on the pressures ps and pg, and external pressures pi, and pout:

Min = 0.4kinAin \/ Pin — Ps. (723)
Moyt = O-SkoutAout vV Pd — Pout>» (72]3)
mgp = krecurecArec Pd — Ds- (720)

where Ain, Aout, Arec Tepresent the inlet, outlet and recycle valve orifice areas and kin, kout, krec the respective valve gains.
The values of constant parameters were taken from Reference 41. The value of uy. is obtained from an auxiliary PI
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controller and can take values between 0 and 1, ensured by a smoothed saturation function of the form (69) with
fo = 0.072, p, = 0.071, f = 5.279, f3 = —0.001.
44.2 | Optimal control

The objective is to reach the desired flow level my = 100 kg s~! without violating speed and flow constraints, imposed due
to safety. The objective function was formulated as:

fy
I(r) = / 100m2(s) + 0.1w%(s) + 1000(m(s) — mq)*ds (73)
0
where ff = 100s.
The constraints on the mass flow and the speed are:

m €[65,105] kgs™* (74a)

w €[550,876] rads~! (74b)
The control input 7 is a PI controller parametrised by K, and K;:

t
7(t) = Kp(m(t) — ma) + Ki/(m(s) — mg)ds (75)
0

The parametrization from (75) is typical for centrifugal compressors.*! The torque that can be applied to the compressor
must be between zero and 1000 Nm. The bounds on the torque were ensured by a smoothed saturation function of the
form (69) with gy = 73.324, p; = 0.072, > = 0.005, f; = 0.

4.4.3 | Uncertainties

The uncertainties we considered in this case study are in the valve gains kin, kout, krec, and correspond to +5%, and in the
parameters g; in the polynomial compressor map (71), and correspond to +2%. Thus, there are nine uncertain parameters.

4.4.4 | Results

To find the flow controller from (75), the dynamics were discretized using the trapezoidal collocation method with time
step 0.5s.

Overall performance

The local reduction method applied to the compressor case study resulted in two scenarios. Figure 6 shows the results
of the validation for the two scenarios obtained from the local reduction method with € = 107%. The controller obtained
from the local reduction did not violate the constraints on either the mass flow (top left) or the speed of the compressor
(top right).

Comparison with other approaches

If we were to consider all extreme realizations of the uncertainties, we would obtain 2° = 512 scenarios. The local reduc-
tion method we propose in this paper reduced the number of scenarios to two. Conversely, the nominal controller was
not able to satisfy the constraints and both the mass flow and the speed violated their upper limits (second row of plots in
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FIGURE 6 Compressor case study—comparison of four approaches.

Figure 6). The controllers based on randomly chosen scenarios (from a uniform distribution) are shown in the third row,
with black indicating a controller based on two random scenarios. The controller based on two random scenarios was
insufficient to ensure constraint satisfaction and both the mass flow and the speed of the compressor violated their upper
limits. The minimal number of random scenarios needed to ensure constraint satisfaction was nine (yellow). Finally, the
bottom row in Figure 6 shows the performance of the nominal + extreme controller obtained for three scenarios (one
scenario on the lower bound, one scenario on the upper bound, and one scenario with no uncertainty). The controller
based on the nominal and two extreme scenarios was insufficient to satisfy constraints. Thus, the comparison with other
scenario-based approaches confirms the potential of local reduction for solving robust optimal control problems with
parametric uncertainty.

5 | CONCLUSIONS

Solving robust nonlinear optimal control problems is challenging, especially if the knowledge about the uncertainty is
limited. Scenario-based approaches provide a way of reformulating the optimal control problems as nonlinear optimiza-
tion problems. The choice of scenarios and their number affects the robustness of the solution as well as computational
complexity of the resulting optimization problems. In this work, we formulated robust optimal control problems with
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time-varying and parametric uncertainty as semi-infinite optimization problems to facilitate the choice of scenarios. The
new formulation enabled usage of semi-infinite optimization algorithms, such as local reduction methods. By adding
interim worst-case scenarios, the local reduction method enables finding a trade-off between the size of the resulting opti-
mization problem and robustness of the solution to the original optimal control problem. We overcome the dependence
on global solvers in the original local reduction formulation by proposing inexact local reduction and providing theoret-
ical bounds on possible constraint violation. The new method consists in solving multiple optimal control problems of
reduced size compared to the full scenario-based optimization. In particular, the small control problems can be solved in
parallel, further improving the computational speed.

The performance of our approach was evaluated in two case studies with both additive and parametric uncertainty:
thermal comfort control in a residential building and mass flow control in a centrifugal compressor. A comparison with
common approaches based on a random choice of scenarios and on extreme scenarios indicates that local reduction
allows solving robust optimal control problems in an efficient way while ensuring robustness. In particular, the case
studies confirm that the proposed inexact local reduction method allows finding worst-case scenarios in the interior of the
uncertainty sets. As a result, the new method was able to handle larger parametric uncertainty than other scenario-based
approaches.

In this work we required that the constraints must be satisfied for all realisations of the uncertainty. In the future, it
would be advisable to look at the conservatism of the obtained solutions and possible relaxations of this requirement. In
particular, tighter bounds on constraint violation can be derived if a distribution of the uncertainty is available. Future
work could include numerical improvements of approximate local reduction, including warm-starting and use of custom
nonlinear optimization solvers, as well as explicit parallelization of the optimal control problems.
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