
RESOURCE ALLOCATION IN FULL-DUPLEX UAV ENABLED MULTI-SMALL CELL NETWORKS, VOL. ?, NO. ?, ? 2019 1

Resource Allocation in Full-Duplex UAV Enabled
Multi-Small Cell Networks

Amirhosein Hajihoseini Gazestani, Seyed Ali Ghorashi, Senior Member, IEEE, Zhaohui Yang,
and Mohammad Shikh-Bahaei, Senior Member, IEEE

Abstract—Flying platforms such as Unmanned Aerial Vehicles (UAVs) are a promising solution for future small cell networks. UAVs
can be used as aerial Base Stations (BSs) to enhance coverage, capacity and reliability of wireless networks. Also, with recent
advances of Self Interference Cancellation (SIC) techniques in Full-Duplex (FD) systems, practical implementation of FD BSs is
feasible. In this paper, we investigate the problem of resource allocation for multi-small cell networks with FD-UAVs as aerial BSs with
imperfect SIC. We consider three different scenarios: a) maximizing the DL sum-rate, b) maximizing the UL sum-rate, and finally c)
maximizing the sum of UL and DL sum-rates. The aforementioned problems result in non-convex optimization problems, therefore,
successive convex approximation algorithms are developed by leveraging D.C. (Difference of Convex functions) programming to find
sub-optimal solutions. Simulation results illustrated validity and effectiveness of the proposed radio resource management algorithms in
comparison with ground BSs, in both FD mode and its half-duplex (HD) counterpart. The results also indicate those situations where
using aerial BS is advantageous over ground BS and reveal how FD transmission enhances the network performance in comparison
with HD one.

Index Terms—Full-Duplex (FD), Unmanned Aerial Vehicle (UAV), Resource Allocation, D.C. Programming, Power Management.
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1 INTRODUCTION

R ECENTLY Unmanned Aerial Vehicle (UAV) communi-
cations have attracted researchers’ attention [1], [2], [3].

When events like earthquake occur and the communication
infrastructures are destroyed, UAVs can play an important
role as a temporary aerial Base Station (BS) to achieve rapid
service recovery. Besides, UAVs can dynamically reposition
themselves to improve coverage, spectral efficiency and user
quality of experience in comparison with ground BSs which
have fixed locations [4], [5]. Compared to the ground BSs,
UAVs can adjust their altitude, avoid obstacles and enhance
the likelihood of establishing the line-of-sight connection to
the ground users [3], [6], [7], [8]. Therefore, UAV commu-
nications have been considered as a promising technology
for the fifth-generation (5G) of cellular network technology
and beyond [1], [9], [10]. Due to the spectrum scarcity, in-
band Full-Duplex (FD) communication has attracted atten-
tion, because it increases the throughput and capacity in
comparison with Half-Duplex (HD) counterpart, by sending
and receiving data in the same frequency band and the
same time [11], [12], [13]. To achieve advantages of FD
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communication, the most important challenge is how to
cancel the self-interference (SI) [14]. Recent advances in SI
Cancellation (SIC) techniques achieves more than 110dB SI
reduction [15], [16], [17], therefore, FD communication can
be considered for the next generations of wireless networks.
As a result, several works have investigated the achievable
performance of FD in various applications which are pre-
sented in detail in [18].

One of the important applications of FD technology is to
increase the capacity of the network for cellular BSs . One
small cell with FD BS and multiple HD users are considered
in [11]. The authors formulated a joint power allocation and
user pairing problem to maximize the total sum-rate. The
problem is divided into two subproblems using a novel
decomposition method. Finally, results are compared with
the greedy algorithm and random pairing method. In real
scenarios, usually, there are more than one single cell and
hence, the intra-cell interference is added to the SI and
inter-cell interference. Unlike [11] which has not considered
multi-cell and intra-cell interference, the authors in [19] con-
sidered the FD system in small multi-cell networks where
BSs are armed with FD technology and users operate in
HD mode. The authors maximized the sum of uplink (UL)
and downlink (DL) sum-rates considering SI, inter-cell and
intra-cell interference. A joint resource and power allocation
algorithm is presented to assign resource blocks for FD
operation and pair users with appropriate power levels. The
authors compared the results with HD mode and mentioned
that the performance limiting factor is intra-cell interference.
The mentioned papers consider ground BSs which support
limited coverage area, while using UAVs as aerial BSs can
be a promising solution for future networks to increase the
capacity and coverage of small cells [4], [6].

The problem of resource allocation for UAV enabled
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vehicular communication was considered in [20] where
UAVs work as cellular BSs to serve cellular and vehicle-to-
vehicle communication users. The authors maximized the
sum achievable rate of vehicle to infrastructure communica-
tions and ensured the reliability of vehicle-to-vehicle com-
munications. In addition, the control of the UAV trajectory
is obtained using Q-Learning to adapt to the time-varying
channel. An UL power control for UAV assisted network
was investigated in [21]. The authors considered a UAV
which serves UL users. The altitude, antenna beamwidth,
UAV’s location, bandwidth and power of users are jointly
optimized to minimize the sum UL power, while consid-
ering the minimal rate demand. Unlike [20], [21] which
considers UAVs in a single-cell scenario, authors in [22]
considered UAVs as aerial BSs as a solution for deploy-
ing dense networks. The authors assumed that UAVs and
ground BSs coexist and then maximized user satisfaction
with provided data rates by finding the optimal position of
UAVs and associating users to ground BS or UAVs. Authors
in [20], [21], [22] employed HD transmission in UAVs, while
authors in [23] investigated the problem of 3-D drone BS
placement with FD communication in the heterogeneous
networks. The authors employed FD drones in coexistence
with ground BS to improve network throughput. The au-
thors assumed different frequency spectra for drone BSs and
hence, there is no interference between drones. We review
networks with ground FD BSs, aerial HD BSs and aerial FD
BSs without frequency reuse and intra-cell interference. This
literature review is summarized in Table 1.

In this paper, we consider multiple FD small cell net-
works in which each cell is covered by a UAV as an aerial BS.
We assume that UAVs are armed with FD technology (FD-
UAV) with imperfect SIC to serve both UL and DL users at
the same time and the same frequency band, simultaneously
while users operate in HD mode because of hardware limi-
tation. Since in this setting, FD technology is used in multi-
small cell networks, DL and UL transmission coexist, and
we have to consider SI and inter-cell interference. Moreover,
unlike [23] which considers different frequency spectrum
for each BS, we consider frequency reuse in cells in order to
increase the network capacity and data rate, hence, we have
to consider intra-cell interference. Here, we investigate three
different scenarios; at first, we aim to maximize DL sum-rate
whilst prescribing a certain minimum requirement for the
UL transmission rate by optimizing FD-UAV transmission
power. In the second scenario, we aim to maximize UL
sum-rate whilst prescribing a certain minimum requirement
for the DL transmission rate by optimizing the transmission
power of users. Finally, we aim to maximize the sum of DL
and UL sum-rates by jointly optimizing the transmission
power of FD-UAV and users. These optimization problems
are non-convex, therefore, a successive convex approxima-
tion algorithm is developed by leveraging the D.C. (Differ-
ence of Convex functions) programming to find sub-optimal
solutions. In each scenario, we compare the performance of
FD-UAV with ground BS, in both FD and HD modes, to
show the effectiveness of using FD-UAVs as aerial BSs. The
main contributions of this paper are as follows:

• Employing FD-UAV with imperfect SIC as an aerial
BS in multi-small cell networks, assuming frequency

reuse and intra-cell interference.
• Analyzing network sum-rate in three different objec-

tive functions.
• Finding suboptimal solutions for resource allocation

problem by leveraging D.C. programming, consider-
ing SI, inter-cell and intra-cell interferences.

• Evaluating and comparing the performance of aerial
BSs with ground BSs, in both FD and HD modes.

The rest of the paper is organized as follows: In Section
2 we describe the system model and problem formulation.
In Section 3 we investigate three different scenarios, DL
sum-rate analysis, UL sum-rate analysis and sum of UL and
DL sum-rate analysis. Simulation results are presented and
discussed in Section 4 to evaluate the performance of the
proposed system model and radio resource management
method and finally, the paper is concluded in Section 5.

The parameters commonly used throughout the paper
are presented in Table 2.

2 SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cellular network with a central unit and several
small cells which are covered by UAVs as aerial BSs. It is
assumed that UAVs are armed with FD capability to send
and receive data in the same frequency band, simultane-
ously, while users operate in traditional HD transmission.
Each FD-UAV has T frequency channels and can support
T UL and T DL users, simultaneously. The main problem
in FD systems is SIC. To model this, we assume that SIC
is performed on FD-UAV imperfectly with residual SI to
power ratio of β [19, p. 2]. This means that if the mth

FD-UAV transmits in the nth channel with the power of
PUAVmn , the residual SI is βPUAVmn and parameter β quan-
tifies the amount of SIC; when β = 0, there is perfect
SIC while for β = 1 there is no SIC. The mth FD-UAV
is located at ym = (ym (1) , ym (2) , Hm) ,m = 1, 2, ...,M
in three-dimensional space where M is the total number
of cells. In addition, in order to consider the worst-case
interference scenario, we assume that there are N = MT
UL and N = MT DL users where the nth UL and
nth DL users are located at xn = (xn (1) , xn (2) , 0) and
zn = (zn (1) , zn (2) , 0) , n = 1, 2, ..., N , respectively. This
system model is represented in Fig. 1. Moreover, we assume
that users are located outdoors in rural areas and channel
links are assumed to be block fading and remain unchanged
in the scheduling process. The communication channel be-
tween FD-UAV and each user is dominated by a LOS path,
hence, the channel between the mth FD-UAV and the nth

UL user and the channel between the nth UL and DL users
are h0

D
α1
ym−xn

and h0g
D
α2
zn−xn

respectively, where h0 is the power
gain at the reference distance 1m, g is the small scale fading
coefficient and Dym−xn =

∥∥ym − xn∥∥. Moreover, α1 and α2

are the path-loss exponents for air to ground and ground to
ground communication, respectively.

Without loss of generality, we assume that the FD-UAV
is equipped with a directional antenna with adjustable
beamwidth and each user is equipped with an omnidirec-
tional antenna with unit gain. The half-power beamwidth
of the FD-UAV is denoted by 2Θ ∈ (0, π), therefore, the
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TABLE 1: Summary of Scenarios of the Literature Review

Reference # BS Type Transmission
Mode Cell Type Objective Function Optimization Variable

[11] Ground FD Single Total sum-rate User pairing and power allocation
[19] Ground FD Multiple Total sum-rate Radio resource management
[20] Aerial HD Single Sum achievable rate Resource allocation and UAV trajectory control

[21] Aerial HD Single UL sum power Altitude, beamwidth, location and bandwidth
optimization

[22] Ground
& Aerial HD Multiple User satisfaction with provided

data rate UAV positioning and user association

[23] Aerial FD Multiple Network throughput UAV placement and resource allocation without
frequency reuse assumption

Proposed Aerial FD Multiple DL sum-rate, UL sum-rate and total
sum-rate Resource allocation assuming frequency reuse

antenna gains for the mth UAV which is connected to the
nth user (or the nth UAV) can be modeled as [24]:

Gtmn =

{
G0

Θ2 if 0 6 θmn 6 Θ
g0 ≈ 0 otherwise,

(1)

where t ∈ {UL,DL,D} indicates communication between
FD-UAV and UL user, FD-UAV and DL user and FD-UAV
with another FD-UAV, respectively, and θmn is the azimuth
angle between the mth FD-UAV and nth user (or nth FD-
UAV). In addition, G0 ≈ 2.2846 and g0 means the channel

TABLE 2: Frequent Parameters

Parameter Description
N Number of DL/UL users
M Number of FD-UAVs (small cells)
T Number of frequency channels
Hm Height of the mth FD-UAV

ym
Location of the mth FD-UAV in three-dimensional
space

xn
Location of the nth UL user in three-dimensional
space

zn
Location of the nth DL user in three-dimensional
space

β The ratio of residual SI to power

PUAV
mn

Transmitting power of the mth FD-UAV in the nth

channel
PUAV
max Maximum power of FD-UAV

PUE
mn

Transmitting power of the nth UL user which is
connected to the mth FD-UAV

PUE
max Maximum power of UL users
h0 Power gain at the reference distance 1m
g Fading coefficient

Dym−xn Distance between ym and xn

α1
Path-loss exponent for air to ground channel and vice
versa

α2 Path-loss exponent for the ground to ground channel
2Θ Half-power beamwidth

θmn
Azimuth angle between the mth FD-UAV and the
nth user

Gmn
Antenna gain for the mth FD-UAV which is con-
nected to the nth user

Gmm′
Antenna gain for the mth FD-UAV which is con-
nected to the mth FD-UAV

g0 Channel gain outside of the antenna beamwidth

bmn
Indicates the connectivity between the mth FD-UAV
and the nth user

w The bandwidth of each frequency channel
σ2
N Noise power
σ2
I Intra-cell interference power

RUL
min Minimum of UL rate demand

RDL
min Minimum of DL rate demand

gain outside the beamwidth of the antenna. We should
notice that the parameter Gtmn is a function of user and FD-
UAV locations, if users are in the coverage area of FD-UAV,
Gtmn is nonzero, while if users are not in the coverage area,
Gtmn is zero and FD-UAV cannot communicate with the
user. Besides, if two FD-UAVs want to communicate with
each other, they should be in the coverage area of each other.
For example, in Fig. 1 the 2nd FD-UAV does not receive any
interference signal from two other FD-UAVs. Moreover, the
DL user which is connected to the 2nd FD-UAV does not
receive any interference from the 3rd FD-UAV while receives
interference from the 1st FD-UAV.

2.1 FD-UAV Altitude
In order to determine the altitude of the mth FD-UAV, we
consider a predetermined value for half-power beamwidth
of FD-UAV, i.e., Θ = Θ0, then calculate the altitude of
the mth FD-UAV. The altitude of the mth FD-UAV can be
calculated as:

Hm0 = max
{

max(bmnDym−xn )
tan Θ0

,
max(bmnDym−zn )

tan Θ0

}
HL 6 Hm0 6 HU ,

(2)

where bmn ∈ {0, 1} indicates that the nth user is connected
to the mth FD-UAV or not. By considering practical aspects,
the FD-UAV altitude should be bounded between HL and
HU . If Hm0 becomes lower than its lower bound, we set its
value equal to its lower bound, and if it becomes more than
its upper bound, we set its value equal to its upper bound.

Fig. 1: UL, DL and interference signals in the system model
including UL and DL users with three FD-UAVs.
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2.2 Problem Formulation

We assume that FD-UAVs work in the same frequency
bands using frequency reuse. In addition, we assume that
each FD-UAV has T frequency channels and the channel
allocation is predetermined. In each channel, one DL user
and one UL user communicate with FD-UAV, simultane-
ously. We divide the users into M groups and for each
group, we put a FD-UAV as aerial BS. The received signal
to interference plus noise ratio (SINR) at the mth FD-UAV
for the nth user and SINR at the nth DL user which is
connected to the mth FD-UAV can be expressed as (3) and
(4), respectively.

ΓULmn =
PUEmnD

−α1
ym−xnh0G

UL
mn

σ2
N + βPUAVmn + IULUAV + IULUE

, (3)

ΓDLmn =
PUAVmn D−α1

ym−znh0G
DL
mn

σ2
N + IDLUAV + IDLUE

, (4)

where

IULUAV =
M∑

m′=1,m′ 6=m
PUAVm′n D−α1

ym−ym′h0

(
GDmm′

)2
,

IULUE =
M∑

m′=1,m′ 6=m
PUEm′nD

−α1
ym′−xnh0G

UL
m′n,

IDLUAV =
M∑

m′=1,m′ 6=m
PUAVm′n D−α1

ym′−znh0G
DL
m′n,

IDLUE =
M∑

m′=1

PUEm′nD
−α2
xn−znh0g.

PUEmn is transmitting power of the nth UL user which
is connected to the mth FD-UAV, PUAVmn is transmitting
power of the mth FD-UAV for the nth user, β models
SIC at FD-UAV and σ2

N is the noise power. In addition,
we should mention that the channel between UAV and
ground users depends on channel power gain at reference
distance (h0), fading coefficient (g) antenna gain and half-
power beamwidth (Gtmn and Θ), path-loss exponent (α1),
location of users (xn or zn), and finally the location and
altitude of UAV (Dym−xn ) where Dym−xn =

∥∥ym − xn∥∥ =√
(ym(1)− xn (1))

2
+ (ym(2)− xn (2))

2
+Hm

2. Without
loss of generality and for the sake of simplicity, we model
interference signals from other cells by σ2

I which determines
interference power. Hence, (3) and (4) can be rewritten as
(5) and (6), respectively.

ΓULmn =
PUEmnD

−α1
ym−xnh0G

UL
mn

σ2
N + βPUAVmn + σ2

I

, (5)

ΓDLmn =
PUAVmn D−α1

ym−znh0G
DL
mn

σ2
N + PUEmnD

−α2
xn−znh0g + σ2

I

. (6)

Now, the UL and DL rates are given, respectively, by (7)
and (8):

RULmn = bmnwlog2

(
1 + ΓULmn

)
, (7)

RDLmn = bmnwlog2

(
1 + ΓDLmn

)
, (8)

where w is the bandwidth of each frequency channel and
bmn ∈ {0, 1} indicates that the nth user is connected to the
mth FD-UAV or not.

The problem of DL sum-rate maximization, by prescrib-
ing a certain minimum requirement for UL transmission
rate, can be defined as:

max
PUAVmn ,PUEmn ,ym,bmn

M∑
m=1

N∑
n=1

RDLmn

s.t. wlog2

(
1 +

PUEmnD
−α1
ym−xnh0G

UL
mn

σ2
N+βPUAVmn +σ2

I

)
> RULmin

N∑
n=1

PUAVmn 6 PUAVmax ,m ∈ {1, 2, ...,M}

PUAVmn > 0
0 6 PUEmn 6 PUEmax
M∑
m=1

bmn = 1, n ∈ {1, 2, ..., N}
N∑
n=1

bmn 6 T ,m ∈ {1, 2, ...,M},

(9)

where PUEmax is the maximum transmitting power of users,
PUAVmax is the maximum available power of FD-UAV and
RULmin is minimum UL rate demand. Similar to DL transmis-
sion, the problem of UL sum-rate maximization by prescrib-
ing a certain minimum requirement for DL transmission
rate, can be defined as:

max
PUAVmn ,PUEmn ,ym,bmn

M∑
m=1

N∑
n=1

RULmn

s.t. wlog2

(
1 +

PUAVmn D
−α1
ym−znh0G

DL
mn

σ2
N+PUEmnD

−α2
xn−znh0g+σ2

I

)
> RDLmin

N∑
n=1

PUAVmn 6 PUAVmax ,m ∈ {1, 2, ...,M}

PUAVmn > 0
0 6 PUEmn 6 PUEmax
M∑
m=1

bmn = 1, n ∈ {1, 2, ..., N}
N∑
n=1

bmn 6 T ,m ∈ {1, 2, ...,M},

(10)

where RDLmin is the minimum DL rate demand. In addition,
the sum of UL and DL sum-rates maximization can be
defined as:

max
PUAVmn ,PUEmn ,ym,bmn

M∑
m=1

N∑
n=1

RDLmn +
M∑
m=1

N∑
n=1

RULmn

s.t.
N∑
n=1

PUAVmn 6 PUAVmax ,m ∈ {1, 2, ...,M}

PUAVmn > 0
0 6 PUEmn 6 PUEmax

M∑
m=1

bmn = 1, n ∈ {1, 2, ..., N}
N∑
n=1

bmn 6 T ,m ∈ {1, 2, ...,M}.

(11)

In Section 3, at first, we investigate the problem clus-
tering and user association, then, we solve the problem (9),
problem (10) and problem (11), respectively.
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3 SUM-RATE ANALYSIS

In this section, we aim to maximize DL sum-rate, UL sum-
rate and sum of DL and UL sum-rates. We divide each
problem into two problems. At first, we divide users into M
small cells and put a FD-UAV for each cell, then we allocate
power to users and FD-UAVs.

3.1 Clustering and User Association
We assume that N DL and N UL users are scattered in
the considered area. We should put DL users in M clusters
and then bmn is determined. It should be noticed that each
cluster represents a small cell. Then, we consider the worst-
case scenario, i.e., the nearest UL user to the nth DL user
is set as its co-channel user. When users are assigned to the
clusters, for each cluster we put a FD-UAV as aerial BS to
cover all users which are connected to the mth FD-UAV.

By using fuzzy c-means clustering (FCM), the mem-
bership matrix U and their centers y are generated that
determine each user can belong to which cluster and cluster
centers, respectively. Each row of matrix y is the location of
FD-UAVs and each column of the matrix U is the member-
ship values of each user for clusters. FCM method cannot
satisfy our constraint, because there is not any constraint on
the number of cluster members and one user can belong to
more than one cluster. Hence, we should modify the FCM
method to reach our constraint that force small cells to have
the same number of users and each user belongs to one cell.

In the first step, we use FCM to determine matrix U
and y. Then, each user compares the value of U which
belongs to itself and maximum value determines that the
user belongs to which cluster. Then, we count the number of
cluster members, if all clusters have T users, the procedure
is done, but if the number of cluster members is not the
same, we change the location of cluster centers (y) and again
perform the FCM. In order to change cluster centers, we fix
the location of cluster centers which have more than T users,
and just change cluster centers which gave less than T users
as follows:

yi = δyi + (1− δ)yj , (12)

where indexes i and j belong to the cluster with the mini-
mum and the maximum number of users, respectively. By
these updated locations of cluster centers, again FCM is
performed and the number of cluster members is counted
until the constraint is satisfied or for a predefined number
of iterations. If again constraint is not satisfied by maximum
number of iterations, we force users to select clusters. The
user with the maximum value of membership, selects its
cluster and is removed from the list, then the next user with
maximum value selects its cluster. If cluster members are
less than T , it joins that cluster, but if the cluster reaches
T users, the user selects the next cluster. This procedure
continues until all users join one cluster. Finally, a FD-UAV
is assigned to each cluster and the location of the mth FD-
UAV can be calculated as (13) which is a function of the
locations of users and changes with the change of users’
locations.

ym =
N∑
n=1

bmnzn

/
N∑
n=1

bmn. (13)

This modified FCM method is represented in Algorithm 1.

Algorithm 1: Clustering and User Association

1 Determine matrices U and y using FCM and set k = 1.
2 Count the number of cluster members
3 while (there is a cluster with more than T users) and k < kmax

4 Update cluster center with minimum user using (12).
5 Perform FCM and determine new U and y
6 Count the number of cluster members
7 k = k + 1
8 end
9 while there is a cluster with less than T users

10 Find the user with maximum value of membership and
determine candidate cluster for this user.

11 if determined cluster has less than T users
12 Assign this user to the candidate cluster
13 Remove the column of this user from U
14 end
15 end
16 bmn is determined

17 Assign one FD-UAV for each cluster and determine their
location using (13)

18 Find the nearest UL and DL user and set them as
co-channel users.

3.2 Scenario 1: DL Sum-Rate Analysis

By substituting bmn and ym which are calculated by Algo-
rithm 1 into (9) and some manipulations, problem (9) can be
rewritten as (14).

max
PUAVmn ,PUEmn

M∑
m=1

N∑
n=1

RDLmn (14a)

s.t.

(
2
RULmin
w − 1

)(
σ2
N + βPUAVmn + σ2

I

)
D−α1
ym−xnh0GULmn

6 PUEmn 6 PUEmax

(14b)
N∑
n=1

PUAVmn 6 PUAVmax ,m ∈ {1, 2, ...,M} (14c)

PUAVmn > 0. (14d)

In order to maximize the DL sum-rate, it is optimal for all
UL users to transmit with the minimum power to satisfy its
minimum rate demand, hence, the constraint changes to the
equality. In addition, the upper bound of the transmitting
power of users is applied to the transmitting power of FD-
UAV as follows:

max
PUAVmn ,PUEmn

M∑
m=1

N∑
n=1

RDLmn

s.t. PUEmn =

(
2
RULmin
w −1

)
(σ2
N+βPUAVmn +σ2

I)

D
−α1
ym−xnh0GULmn

N∑
n=1

PUAVmn 6 PUAVmax ,m ∈ {1, 2, ...,M}

0 6 PUAVmn 6 1
β

(
PUEmaxD

−α1
ym−xnh0G

UL
mn

2
RUL

min
w −1

− σ2
N − σ2

I

)
.

(15)
By substituting PUEmn in the optimization problem, the

first constraint is satisfied and the optimization problem can
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be rewritten as:

min
PUAVmn

−
M∑
m=1

N∑
n=1

bmnwlog2

(
1 +ADL

)
s.t. 0 6 PUAVmn 6 1

β

(
PUEmaxD

−α1
ym−xnh0G

UL
mn

R∗UL
− σ2

)
N∑
n=1

PUAVmn 6 PUAVmax ,m ∈ {1, 2, ...,M},

(16)

where ADL =
PUAVmn D

−α1
ym−znD

−α1
ym−xnh0G

DL
mnG

UL
mn

σ2D
−α1
ym−xnG

UL
mn+R∗UL(σ2+βPUAVmn )D

−α2
xn−zng

,

R∗UL = 2
RULmin
w − 1 and σ2 = σ2

N + σ2
I .

In (16) the objective function is non-convex, therefore,
a closed-form solution is not known for it. In order to
solve (16), we rewrite sum-rate as the difference of two con-
cave functions by using properties of logarithmic functions.
Therefore, a successive convex algorithm is developed by
leveraging the D.C programming [25]. Hence, the problem
(16) can be written as a D.C. function, i.e., f = g − h. The
D.C. programming approximates f by f̃ = g− h̃, where h̃ is
the first-order Taylor’s series approximation of h [26]. Low
complexity, guaranteeing suboptimal solution and obtaining
closed-form solutions are some advantages of using D.C.
programming.

We consider PUAV (0)
mn as an initial value and set i = 0. In

addition, we define an auxiliary function f̃1

(
P
UAV (i)
mn

)
as

follows:

f̃1

(
PUAV (i)
mn

)
, g1

(
PUAVmn

)
− h̃1

(
PUAV (i)
mn

)
= g1

(
PUAVmn

)
− h1

(
PUAV (i)
mn

)
− e1

(
PUAV (i)
mn

)
,

(17)

where g1

(
PUAVmn

)
, h1

(
P
UAV (i)
mn

)
, and e1

(
P
UAV (i)
mn

)
are de-

fined in (18), (19) and (20), respectively:

g1

(
PUAVmn

)
= −

M∑
m=1

N∑
n=1

bmnw

log2

(
PUAVmn D−α1

ym−znD
−α1
ym−xnh0G

DL
mnG

UL
mn

+σ2D−α1
ym−xnG

UL
mn +R∗UL

(
σ2 + βPUAVmn

)
D−α2
xn−zng

)
,

(18)

h1

(
PUAVmn

(i)
)

= −
M∑
m=1

N∑
n=1

bmnw

log2

(
σ2D−α1

ym−xnG
UL
mn +R∗UL

(
σ2 + βPUAVmn

(i)
)
D−α2
xn−zng

)
,

(19)

e1

(
PUAVmn

(i)
)

= −
M∑
m=1

N∑
n=1

bmnw

ln 2 (
R∗ULβD

−α2
xn−zng

) (
PUAVmn − PUAVmn

(i)
)

σ2D−α1
ym−xnG

UL
mn +R∗UL

(
σ2 + βPUAVmn

(i)
)
D−α2
xn−zng

 .
(20)

Then, we solve the optimization problem (21).

PUAVmn
(i+1)

= arg min
PUAVmn

f̃1

(
PUAVmn

(i)
)

s.t. 0 6 PUAVmn 6 1
β

(
PUEmaxD

−α1
ym−xnh0G

UL
mn

R∗UL
− σ2

)
N∑
n=1

PUAVmn 6 PUAVmax ,m ∈ {1, 2, ...,M}.
(21)

Then, we set i = i + 1 and repeat this procedure until
the convergence or for a predefined number of iterations.
This procedure is represented in Algorithm 2. In this algo-
rithm, the major complexity lies in solving the optimization
problem (21). The complexity of solving the problem (21) by
using the standard interior point method is O

(
IitM

3N3
)

whereM ,N and Iit denote the number of UAVs (or number
of small cells), number of users in each cell and the total
number of iterations, respectively. As mentioned before, the
proposed algorithm is suboptimal, hence, we will show the
gap between the proposed algorithm and optimal solution
in simulations of Section 4. In addition, the optimality
and feasibility of the proposed algorithm are presented in
Section 3.5.

3.3 Scenario 2: UL Sum-Rate Analysis

By substituting bmn and ym which are calculated by Algo-
rithm 1 into (10) and some manipulations, problem (10) can
be rewritten as (22).

max
PUAVmn ,PUEmn

M∑
m=1

N∑
n=1

RULmn

s.t.
R∗DL(σ2+PUEmnD

−α2
xn−znh0g)

D
−α1
ym−znh0GDLmn

6 PUAVmn

N∑
n=1

PUAVmn 6 PUAVmax ,m ∈ {1, 2, ...,M}

0 6 PUEmn 6 PUEmax,

(22)

where R∗DL = 2
RDLmin
w − 1. In order to maximize the UL sum-

rate, it is optimal for FD-UAV to transmit with the minimum
power to satisfy its minimum rate demand, therefore, the
optimization problem changes as follows:

max
PUAVmn ,PUEmn

M∑
m=1

N∑
n=1

RULmn

s.t. PUAVmn =
R∗DL(σ2+PUEmnD

−α2
xn−znh0g)

D
−α1
ym−znh0GDLmn

N∑
n=1

R∗DL(σ2+PUEmnD
−α2
xn−znh0g)

D
−α1
ym−znh0GDLmn

6 PUAVmax ,m ∈ {1, 2, ...,M}

0 6 PUEmn 6 PUEmax.
(23)

Algorithm 2: Optimizing power of FD-UAV using D.C. programming

1 Initialize PUAV (0)
mn and set i = 0 (iteration number).

2 Repeat
3 Define an auxiliary function f̃1

(
P

UAV (i)
mn

)
as (17).

4 Solve the optimization problem (21).
5 i← i+ 1

6 Until the sequence
{
P

UAV (i)
mn

}
converges.
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By substituting PUAVmn in the optimization problem (23),
the first constraint is satisfied and the optimization problem
can be rewritten as:

min
PUEmn

−
M∑
m=1

N∑
n=1

bmnwlog2

(
1 +AUL

)
s.t.

N∑
n=1

R∗DL(σ2+PUEmnD
−α2
xn−znh0g)

D
−α1
ym−znh0GDLmn

6 PUAVmax ,m ∈ {1, 2, ...,M}

0 6 PUEmn 6 PUEmax,
(24)

where AUL =
PUEmnD

−α1
ym−xnD

−α1
ym−znh

2
0G

UL
mnG

DL
mn

σ2D
−α1
ym−znh0GDLmn+βR∗DL(σ2+PUEmnD

−α2
xn−znh0g)

.

We consider PUE(0)
mn as an initial value and set j = 0. In

addition, we define an auxiliary function f̃2

(
P
UE(j)
mn

)
as

follows:

f̃2

(
PUEmn

(j)
)
, g2

(
PUEmn

)
− h̃2

(
PUEmn

(j)
)

= g2

(
PUEmn

)
− h2

(
PUEmn

(j)
)
− e2

(
PUEmn

(j)
)
,

(25)

where g2

(
PUEmn

)
, h2

(
P
UE(j)
mn

)
and e2

(
P
UE(j)
mn

)
are defined

in (26), (27) and (28), respectively:

g2

(
PUEmn

)
= −

M∑
m=1

N∑
n=1

bmnw

log2

(
PUEmnD

−α1
ym−xnD

−α1
ym−znh

2
0G

UL
mnG

DL
mn

+σ2D−α1
ym−znh0G

DL
mn + βR∗DL

(
σ2 + PUEmnD

−α2
xn−znh0g

))
,

(26)

h2

(
PUE(j)
mn

)
= −

M∑
m=1

N∑
n=1

bmnw

log2

(
σ2D−α1

ym−znh0G
DL
mn + βR∗DL

(
σ2 + PUE(j)

mn D−α2
xn−znh0g

))
,

(27)

e2

(
PUE(j)
mn

)
= −

M∑
m=1

N∑
n=1

bmnw

ln 2 (
βR∗DLD

−α2
xn−znh0g

) (
PUEmn − P

UE(j)
mn

)
σ2D−α1

ym−znh0GDLmn + βR∗DL

(
σ2 + P

UE(j)
mn D−α2

xn−znh0g
)
 .

(28)
Then, we solve the optimization problem (29).

PUEmn
(j+1)

=arg min
PUEmn

f̃2

(
PUEmn

(j)
)

s.t.
N∑
n=1

R∗DL(σ2+PUEmnD
−α2
xn−znh0g)

D
−α1
ym−znh0GDLmn

6 PUAVmax ,m ∈ {1, 2, ...,M}

0 6 PUEmn 6 PUEmax.
(29)

Then, we set j = j + 1 and repeat this procedure until
the convergence or for a predefined number of iterations.
This procedure is the same as Algorithm 2. Similar to the
previous part, the major complexity of this algorithm lies
in solving the optimization problem (29). The complexity
of solving the problem (29) by using the standard interior
point method is O

(
IitM

3N3
)

where M , N and Iit denote
the number of UAVs, number of users in each cell and the
total number of iterations, respectively.

3.4 Scenario 3: Sum of UL and DL Sum-Rate Analysis

By substituting bmn and ym which are calculated by Algo-
rithm 1 in to (11), problem (11) can be rewritten as (30).

max
PUAVmn ,PUEmn

M∑
m=1

N∑
n=1

RDLmn +
M∑
m=1

N∑
n=1

RULmn

s.t.
N∑
n=1

PUAVmn 6 PUAVmax ,m ∈ {1, 2, ...,M}

PUAVmn > 0
0 6 PUEmn 6 PUEmax.

(30)

The problem (30) can be written as:

max
PUAVmn ,PUEmn

M∑
m=1

N∑
n=1

bmnw

(
log2

(
1 +

s1

s2

)
+ log2

(
1 +

s3

s4

))
s.t.

N∑
n=1

PUAVmn 6 PUAVmax ,m ∈ {1, 2, ...,M}

PUAVmn > 0
0 6 PUEmn 6 PUEmax,

(31)
where s1 = PUAVmn D−α1

ym−znh0G
DL
mn, s2 = σ2 +

PUEmnD
−α2
xn−znh0g, s3 = PUEmnD

−α1
ym−xnh0G

UL
mn and s4 = σ2 +

βPUAVmn . By using properties of logarithmic functions, prob-
lem (31) can be rewritten as:

min
PUAVmn ,PUEmn

−
M∑
m=1

N∑
n=1

bmnwlog2

(
(s1 + s2) (s3 + s4)

s2s4

)
s.t.

N∑
n=1

PUAVmn 6 PUAVmax ,m ∈ {1, 2, ...,M}

PUAVmn > 0
0 6 PUEmn 6 PUEmax.

(32)
For jointly optimizing the transmitting power of users

and transmitting power of FD-UAV using D.C. program-
ming, we consider PUAV (0)

mn and P
UE(0)
mn as initial values

and set i = 0. In addition, we define an auxiliary function
f̃3

(
P
UAV (i)
mn , P

UE(i)
mn

)
as follows:

f̃3

(
PUAV (i)
mn , PUE(i)

mn

)
=

−
M∑
m=1

N∑
n=1

bmnwlog2 ((s1 + s2) (s3 + s4))

+
M∑
m=1

N∑
n=1

bmnwlog2 (s5) +
M∑
m=1

N∑
n=1

bmnw(
PUAVmn − PUAV (i)

mn

ln 2
×
σ2β + βP

UE(i)
mn D−α2

xn−znh0g

s5

)

+
M∑
m=1

N∑
n=1

bmnw(
PUEmn − P

UE(i)
mn

ln 2
×
σ2D−α2

xn−znh0g + βP
UAV (i)
mn D−α2

xn−znh0g

s5

)
,

(33)
where s5 = σ4 + σ2βP

UAV (i)
mn + σ2P

UE(i)
mn D−α2

xn−znh0g +

βP
UAV (i)
mn P

UE(i)
mn D−α2

xn−znh0g. Then, we solve the optimiza-
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tion problem (34).[
PUAVmn

(i+1)
, PUEmn

(i+1)
]

=

arg min
PUAVmn ,PUEmn

f̃3

(
PUAV (i)
mn , PUE(i)

mn

)
s.t.

N∑
n=1

PUAVmn 6 PUAVmax ,m ∈ {1, 2, ...,M}

PUAVmn > 0
0 6 PUEmn 6 PUEmax.

(34)

Then, we set i = i+1 and repeat this procedure until the
convergence or for a predefined number of iterations. This
procedure is the same as Algorithm 2. In this algorithm, the
major complexity lies in solving the optimization problem
(34). The complexity of solving the problem (34) by using the
standard interior point method is O

(
Iit(2M)

3
N3
)

where
M , N and Iit denote the number of UAVs, number of users
in each cell and the total number of iterations.

3.5 Optimality and Feasibility
We should mention that the proposed algorithm obtains a
locally optimal solution. From Proposition 3 in [27], in order
to show the optimality of the proposed algorithm, Lemma 1
can be written as follows:

Lemma 1: Let F be a maximization problem with differen-
tiable objective function f0(x) and constraints fi(x) > 0, i =
0, 1, ..., I with a compact feasible set. Let G| be a maximiza-
tion problem with differentiable objective g0,j(x) and constraints
gi,j(x) > 0, i = 0, 1, ..., I with a compact feasible set and optimal
solution x∗j . Assume that for all values of i and j, gi,j(.) satisfies
the following properties:

• gi,j(x) 6 fi(x)∀x
• gi,j(x

∗
j−1) = fi(x

∗
j−1).

The sequence {f0(x∗j )} is monotonically increasing and converges
to a finite limit g. Now, assume that the following property is also
satisfied:

• ∇gi,j(x∗j−1) = ∇fi(x∗j−1).

Then, under suitable constraints qualifications, every limit point
of {x}j that achieves the objective value g, fulfills the Karush-
Kuhn-Tucker (KKT) conditions of the original problem F [27].

According to Lemma 1, by considering the first-order
Taylor’s series as a sequence of approximate problem, one
can generate a sequence of feasible points xj that mono-
tonically increases the value of the original objective f0 and
converges to a locally optimal solution.

To ensure the feasibility of the problem (14), we employ
the feasibility checking problem [28] by minimizing the
transmit power of FD-UAV subject to constraints (14b) and
(14d). If the minimal sum power of FD-UAV is larger than
PUAVmax , problem (14) is infeasible. Considering that PUAV ∗mn is
the minimal value of PUAVmn according to (14b), the feasibil-
ity checking problem is equivalent to obtain the minimum

value v∗ of
N∑
n=1

PUAVmn assuming PUEmn = 0, H0 = HL,

and constraints are satisfied. The sum power minimization
problem can be solved by an exhaustive search algorithm.
The optimal transmit power of users can be obtained via
the interior point method. Consequently, problem (14) is
feasible if and only if PUAVmax > v∗.

4 SIMULATION RESULTS

In this section, the presented system and resource allocation
algorithms in FD-UAV enabled small cell networks will
be validated by computational simulation. We consider a
square area with the dimension of 300× 300(m2) in which,
there is a network consisting N = 45 UL users and N = 45
DL users which are uniformly distributed in the square area.
In the first step, we perform Algorithm 1 and put users
in M = 3 small cells, then, we investigate the problem of
resource allocation for the scenario of 3.2 (labeled ‘SCN1’),
the scenario of 3.3 (labeled ‘SCN2’) and the scenario of 3.4
(labeled ‘SCN3’). In this section, the total sum-rate means
the sum of UL and DL sum-rates. We compare the results
of our proposed scenario (labeled as ‘FDUAV’) with the
following scenarios: UAV with HD transmission used in
[21] (labeled as ‘HDUAV’), ground BS with FD transmission
used in [19] (labeled as ‘FDGBS’) and ground BS with
HD transmission (labeled as ‘HDGBS’). The simulation re-
sults are averaged for 1000 different random realizations.
We assume that the FD-UAV altitude is bounded between
50m and 500m. We set Θ0 = π/4, α1 = 2, α2 = 4,
σ2
N = −50dB, σ2

I = 0.1σ2
N , β = −95dB, RULmin = 1kbits/s,

RDLmin = 1Mbits/s, PUAVmax = 42dBm, PUEmax = 24dBm,
G0 = 2.2846, h0 = 1.42 × 10−4 and the total bandwidth of
each cell is 15MHz,. In addition, we assume that the height
of ground BS is 30m and the path-loss exponent between
ground BS and users is more than α1 and less than α2.

The effect of minimum rate demand for FD-UAV is
investigated in Fig. 2. At first, we assume that the mini-
mum rate demand for UL and DL users is 1kbits/s (Fig.
2a). In this case, the total sum-rate of SCN 3 is about

(a) Sum-Rate Comparison when RUL
min = RDL

min = 1kbits/s

(b) Sum-Rate Comparison when RUL
min = RDL

min = 1Mbits/s

Fig. 2: Effect of minimum rate demand on sum-rate for FD-
UAV.
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688Mbits/s, while the total sum-rate of SCN 1 and SCN
2 are 687Mbits/s and 528Mbits/s, respectively. In SCN
1, the DL sum-rate is about 103 times more than the UL
sum-rate, while in SCN 2, the UL sum-rate is about 103

times more than the DL sum-rate, and in SCN 3, both UL
and DL sum-rates are almost the same. Now, we assume
that the minimum rate demand for UL and DL users is
1Mbits/s (Fig. 2b). In this case, the total sum-rates of all
three scenarios is almost the same (about 0.6Gbits/s). In
addition in all three scenarios of Fig. 2b, the difference
between UL and DL sum-rates is very low in comparison
with Fig. 2a, because we increase the minimum rate demand
and the amount of UL sum-rate and DL sum-rate become
closer together.

In Fig. 3 we compare the DL sum-rate of aerial and
ground BSs as a function of UL minimum rate demand.
As expected, HD-UAV and HD-GBS are not affected by
increasing minimum rate demand, while DL sum-rate of
FD-UAV and FD-GBS decrease. DL sum-rate of FD-UAV
is more than HD-UAV, if minimum rate demand is less
than 2Mbits/s, if minimum rate demand increases to more
than 2Mbits/s, HD mode outperforms FD ones in UAVs.
Moreover, Fig. 3 indicates that the DL sum-rate of FD-GBS
is highly affected by UL users and in this case, HD mode
performs better than FD mode.

In Fig. 4 we compare UL sum-rate of aerial and ground
BSs as a function of DL minimum rate demand. As expected,
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Fig. 3: DL sum-rate against rate in SCN 1.
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Fig. 4: UL sum-rate for different rates in SCN 2.

HD-UAV and HD-GBS are not affected by increasing mini-
mum rate demand, while UL sum-rate of FD-UAV and FD-
GBS are decreased. Fig. 4 indicates that the UL sum-rate of
FD-GBS is highly affected by DL users and in this case, HD
mode performs better than FD mode. In addition, DL sum-
rate of FD-UAV is more than HD-UAV, if the minimum rate
demand is less than 4Mbits/s, if minimum rate demand
increases more than 4Mbits/s, HD mode outperforms FD
ones in UAVs.

In Fig. 5 we show the outage probability of UL and DL
users in SCN 3. It can be seen that UL users are more
sensitive to rate threshold in comparison with DL users.
Moreover, FD-UAV outperforms FD-GBS and can prepare
a better experience for users. Moreover, by increasing the
rate threshold more than 10Mbits/s, the outage probability
tends to one for all users.

Due to the importance of the SIC factor in FD systems,
in Fig. 6, Fig. 7 and Fig. 8 we show how SIC factor affects
the sum-rate. Fig. 6 indicates that aerial BS outperforms
ground BS in terms of DL sum-rate. In addition, it can be
seen that when the SIC factor is less than −50dB, FD-UAV
outperforms HD-UAV, and after this point, it is better to use
HD mode, while for ground BSs, SIC factor should be less
than −90dB in order to use FD mode. Therefore, FD-UAVs
can achieve more DL sum-rate with less SIC factor and less
complexity.
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Fig. 5: Outage probability for different rate thresholds in
SCN 3.
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Fig. 7 shows that the performance of FD-GBS is not com-
parable with FD-UAV and in the UL sum-rate maximization
scenario (SCN2), FD-GBS is highly affected by interference
signals, because of minimum DL rate demand. In addition,
it can be seen that FD-UAV outperforms HD-UAV if the
SIC factor is less than −80dB, otherwise, HD-UAV achieves
more UL sum-rate. Moreover, when SIC factor is higher than
−60dB, both HD-UAV and HD-GBS outperform FD-UAV.

As can be seen in Fig. 8 in scenarios which it is needed to
maximize the total sum-rate, SIC factor should be less than
−100dB for a reasonable employing of FD-UAV, otherwise,
HD-UAV outperforms FD-UAV. Moreover, unlike SCN1 and
SCN2, FD-UAV in SCN3 needs a better SIC factor to out-
perform HD-UAV. In addition, Fig. 8 indicates that the SIC
factor does not affect the total sum-rate considerably.

In order to show the gap between the proposed and op-
timal solution, we compare our proposed iterative method
of Scenario 1 with the exhaustive search method in Table 3.
It can be seen that the sum-rate of exhaustive search method
is slightly higher than that of the proposed method, which
indicates that the proposed method approaches the globally
optimal solution and the gap between the proposed and
optimal solution is very small.

In Fig. 9 we investigate the effect of the maximum power
of each BS on the DL sum-rate in SCN1. By increasing
the maximum power, DL sum-rate increases; at first, the
increment is fast. After that, the increment is slow and the
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Fig. 7: UL sum-rate for different SIC factors in SCN 2.
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TABLE 3: Comparison of DL sum-rate (in Mbits/s) in the
proposed method of Scenario 1 and exhaustive search.

β FD-UAV (Proposed) Exhaustive Search
−90dB 661.5027 661.7064
−80dB 625.4408 625.5210
−70dB 536.9137 536.9957
−60dB 377.5836 377.6126
−50dB 177.8941 177.9344
−40dB 60.2434 60.2704
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Fig. 9: Effect of maximum power of each BS on the sum-rate
in SCN1.

amount of sum-rate is almost fixed. In almost all cases, FD
mode outperforms HD mode because of the appropriate SIC
factor.

The effect of the maximum power of each BS on the total
sum-rate in SCN3 is presented in Fig. 10. It can be seen
that by increasing the maximum power of FD BSs, the total
sum-rate increases rapidly until about 15w and after this
point, the total sum-rate is almost fixed and does not change
considerably. In addition, Fig. 10 shows that in SCN3, just
for special values of power, FD-UAV outperforms HD-UAV
and in almost all situations, HD mode outperforms FD
mode because of interference signals and SIC factor. As
mentioned before, we can see from Fig. 8 that if the SIC
factor can be less than −100dB, the total sum-rate of FD
mode becomes more than HD mode, otherwise, HD mode
outperforms FD one in term of total sum-rate.
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Fig. 10: Effect of maximum power of each BS on the sum-
rate in SCN3.
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Fig. 11 presents the effect of half-power beamwidth on
the total sum-rate. It can be seen that by increasing Θ, the
total sum-rate increases until Θ = 15o, because by increas-
ing half-power beamwidth, more users are covered by FD-
UAVs and total sum-rate increases. By increasing Θ more
than 15o, the total sum-rate does not change considerably
until Θ = 65o, at this point, the total sum-rate reaches its
maximum value. By increasing Θ more than 65o, total sum-
rate decreases, because FD-UAVs are in the coverage area of
each other and receive strong co-channel interferences from
each other. Moreover, SCN3 and SCN1 achieve more total
sum-rate in comparison with SCN2.

In the last simulation, we assume that M is the number
of small cells and there are 15M UL users and 15M DL
users scattered in a square area of 100M × 100M(m2). In
addition, we assume that for each cell w = 15MHz. For
a various numbers of cells, we calculate the total sum-rate
of the whole network and divide it to the number of cells
in order to calculate the average of total sum-rate per cell,
and the result is presented in Fig. 12. This figure shows the
effectiveness of FD-UAVs in comparison with FD-GBSs. It
can be seen that by increasing the number of cells in the
adjacency of each other, FD-UAV in SCN3 achieves more
average of total sum-rate per cell until M = 3, while by
increasing the number of cells more than 3 cells, FD-UAV
in SCN1 achieves more average of total sum-rate per cell
and in all cases, FD-UAV in SCN2 achieves less sum-rate in
comparison with SCN1 and SCN3.
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5 CONCLUSION

In this paper, we have investigated the problem of resource
allocation for FD-UAVs as aerial BSs and HD cellular users
in multi-small cell networks. We assumed that FD-UAVs
serve both UL and DL users simultaneously with imper-
fect SIC. Considering intra-cell and inter-cell interferences,
we have formulated the optimization problem of resource
allocation for three different scenarios. The optimization
problems are non-convex, therefore, we have developed
successive convex approximation algorithms by leverag-
ing D.C. programming to find sub-optimal solutions with
fairly acceptable computational complexity. Finally, through
extensive simulations under various system parameters,
and analysis of the optimality, feasibility and complexity
of our proposed system, we have shown effectiveness of
our proposed system. Simulation Results reveal that SI and
SIC factor are the dominant performance limiting factors.
In addition, simulation results showed that to employ FD-
UAVs or HD-UAVs, several factors such as SIC capability,
minimum rate demand, density of small cells and power
control should be considered. Besides, results reveal how
FD transmission enhances the network performance in com-
parison with HD one. To improve system performance,
other issues could be considered such as user pairing,
bandwidth optimization and mode selection between HD
and FD modes which are left for future works.
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