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Abstract—Clustering stocks with similar increasing and de-
creasing trends has always been a challenging problem. Despite
the extensive research on stock forecasting, the balance between
effective clustering and speed remains challenging. Traditional
multivariate time series clustering methods are difficult to guar-
antee high speed with high accuracy. This study proposes the
Voformer-EC model as a new approach to solve this issue, en-
hancing the analysis of stock-related multivariate time series data.
The Voformer-EC model takes both time features and volatility
and utilises the Voformer neural network to extract time features
and implement clustering. The data recorded every 60 minutes
of the Nifty 50 Index from February 2nd to February 28th in
2015 was applied to the traditional model and compared with
the Voformer-EC model. The results showed that the Voformer-
EC model was significantly better than the traditional model.
Follow-up studies consider applying the Voformer-EC model to
temperature and precipitation to identify drought-prone areas
and implement specific risk mitigation strategies in a targeted
manner.

Index Terms—Voformer-EC Neural Network, Multivariate
Time Series Clustering, Volatility Activation Function

I. INTRODUCTION

Significant advancements in deep learning and machine
learning have catalyzed growing research interest in time
series analysis among scholars and experts. Additionally, the
field of time series clustering has undergone extensive devel-
opments [1]- [3], and its applications have been employed
across various domains, including life expectancy prediction
in insurance [4], carbon neutrality tracking [5], media data
analysis, seasonal analysis [2], and financial data modelling
[6]. Time series data exhibit inherent properties such as trends,
seasonal effects, cyclical fluctuations, and residuals. However,
traditional statistical models like Error Trend Seasonality [7]
and Auto-Regressive Integrated Moving Average (ARIMA) [8]
have well-documented limitations in time series analysis [9]-
[10]. This renders the development of efficient and accurate
clustering algorithms for high-dimensional, multivariate time
series problems an ongoing challenge.

Time series clustering approaches can be categorized based
on the clustering object into whole time series, subsequence,
and time point clustering [3]. Typically, clustering methods
comprise two key stages: distance measures and cluster algo-
rithm [1]. For spatial time series, clustering techniques can be
grouped into hierarchical, partitioning-based, and overlapping

methods according to the treatment of the spatial dimen-
sion [11]. Traditional clustering algorithms include partition-
based, density-based, and hierarchical categories [12]. Various
techniques can be derived by combining different clustering
algorithms with distance measures. However, the choice of
distance metric tends to be more impactful than the clustering
method itself, as distance measures will greatly affect the
clustering results. Commonly used distance measures include
Euclidean Distance (ED) [13], shape-based distances [14],
and Dynamic Time Warping (DTW) [15]. ED is the most
widespread among these, while DTW has garnered substantial
research focus in recent years [15]- [16]. DTW employs time
warping to determine the optimal alignment between two time
series, enabling shape-based similarity assessment. However,
DTW has high time complexity and, similar to ED, is sensitive
to outliers and noise as it considers all time points [16].

Neural networks for time series generate a feature similarity
matrix as a distance measure is a core idea of this research.
The core innovation lies in the distance measure and clustering
method compared to traditional approaches. Specifically, this
study employs the variant Informer model to extract time series
features. The model’s specificity for time series data is further
enhanced by implementing the Volatility Activation Function
(VAF). By considering both time and shape features of time
series, the proposed approach substantially improves compu-
tational efficiency, reducing time complexity to O(L · logL)
[17] compared to traditional distance measures. After feature
extraction, a clustering algorithm is applied to group the
time series data based on the learned feature distances. By
combining specialized neural networks with clustering, this
approach achieves state-of-the-art performance for time series
clustering.

This study utilizes the proposed Voformer-EC model to
analyze the Nifty 50 stock index over the period of February
2nd to 28th, 2015. The model generates a feature similarity
distance matrix and performs clustering on the multivariate
time series data. Comparative benchmarking is conducted
against traditional time series clustering algorithms.

The critical contributions of this work are as follows:

1. A novel multivariate time series clustering neural net-
work, Voformer-EC, is proposed. It performs better than



traditional clustering methods while greatly reducing time
consumption.

2. The model can rapidly cluster stocks with similar price
trends. This enables more informed decision-making by
investors and financial managers.

3. The work advances interdisciplinary research at the in-
tersection of machine learning and finance. The proposed
techniques readily apply to fields such as agriculture and
climate analytics.

II. METHODOLOGY

A. Basic models

1) Informer: The Informer model is a deep learning ar-
chitecture for time series forecasting proposed recently [18].
Unlike Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs), Informer utilizes a ProbSparse self-
attention mechanism instead of standard self-attention. This is
designed to capture temporal patterns and dependencies in the
input time series data.

Specifically, ProbSparse self-attention employs a query spar-
sity measurement M(qi,K) to identify and focus on the most
relevant key-query interactions. This measurement comprises
two terms: 1) the Log-Sum-Exp (LSE) of query qi over all
keys, representing the aggregated attention weights, and 2)
the arithmetic mean over all keys, acting as a normalization
factor. A higher sparsity score M(qi,K) indicates the query
has a more ”informative” attention distribution over the keys.
This allows ProbSparse self-attention to concentrate modeling
capacity on the dominant long-range dependencies in lengthy
time series.

ProbSparse self-attention improves Informer’s computa-
tional efficiency compared to the standard Transformer through
selective attention [19]. Specifically, it restricts each key
to attend to only the top-µ dominant queries, where µ is
proportional to the logarithm of the query sequence length
LQ. This is implemented via:

A(Q,K, V ) = Softmax(
Q̄KT

√
d
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Where Q̄ is a sparse matrix containing just the Top-µ queries
from Q. The softmax weighted attention is thus focused on
the most relevant key-query interactions. By adjusting the
sparsity hyperparameter µ, ProbSparse self-attention achieves
much greater efficiency than Transformer and LSTM models
for multivariate time series. Moreover, Informer provides
flexibility to customize various hyperparameters, optimizing
performance for different applications.

2) Volatility Activation Function (VAF): The Volatility
Activation Function (VAF) captures input data volatility to
improve model accuracy, especially for time series analysis
[20]. The VAF is defined as:

V olatilite =

√∑
(Pmean − Pi)
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n
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Where Pmean is the mean input, Pi are the individual input
values, and n is the number of inputs. With Pi = xi and
Pmean = x̄, this reduces to:

f(x1, . . . , xn) =

√∑
(x− xi)
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n
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By simplifying the notation and deriving the equation, we get:

f(x1, . . . , xn) =
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The volatility slope indicates changes in variance, allowing
VAF to capture time series dynamics adaptively. This improves
modelling of temporal structure compared to static activation
functions.

3) Density Clustering Model: The Extreme Clustering (EC)
[21]algorithm is a variant of Density Peaks Clustering (DPC)
[22] that also utilizes density-based clustering. EC enhances
DPC with several key improvements to facilitate the identifi-
cation and separation of clusters and noise points:
• An extreme-searching procedure to locate cluster centers,

rather than just density peaks. This captures more repre-
sentative cluster cores.

• A saddle point detection method to identify cluster edges.
This enables more defined cluster boundaries.

• An efficient nearest-neighbor graph construction algo-
rithm. This improves cluster connectivity modeling.

• Explicit categorization of points as cores, edges, and
noise. This benefits cluster interpretation.

EC improves the clustering quality compared to standard
Density Peaks Clustering. EC demonstrates strong empirical
performance on complex data distributions.

B. Voformer-EC

The proposed Voformer-EC model integrates Informer net-
works, Volatility Activation Function, and Extreme Clustering
to create a specialized multivariate time series clustering
framework. Compared to traditional algorithms, Voformer-
EC strengthens long-range sequence modelling and feature
extraction for time series data. This significantly improves
efficiency and accuracy. Fig 6a is a schematic diagram of the
model.

Additionally, Voformer-EC inherits strengths from both its
components. The Voformer backbone enables robust time se-
ries feature capture and noise resilience. Meanwhile, Extreme
Clustering provides flexibility to identify arbitrary cluster
shapes.

Moreover, Voformer-EC offers adaptability to different ap-
plications through modular components and tunable param-
eters. Overall, this integrated model provides state-of-the-art
performance on the challenging task of multivariate time series
clustering.

Voformer-EC focuses on effectively capturing time series
volatility and shape features for clustering. The main process
is that the encoder takes multivariate time series data as
input and generates a high-dimensional feature representation.



Fig. 1: Voformer-EC Model Schematic Diagram

The Decoder role is to reconstruct the original input from
the encoded features. This reconstruction output is a high-
dimensional feature similarity matrix used for density-based
clustering. This encoding emphasizes time series feature ex-
traction using a modified Informer architecture. The encoded
representation is then clustered with the Extreme Clustering
algorithm.

III. DATA DISPLAY AND EXPERIMENTS

A. Data Display

This study utilizes time series data from the Nifty 50 index
recorded at 60-minute intervals from February 2nd to 28th,
2015. The aim is to cluster stocks exhibiting similar price
trends over this period. The overarching goal is developing
an effective solution for large-scale multivariate time series
clustering that can generalize across disciplines.

The raw dataset comprises the closing price of 50 Indian
stocks across February 2015, obtained from the Kaggle repos-
itory [23]. Given the scale of this data, the analysis focuses
on the contiguous period from February 2nd to 28th for 52
selected indexes. Extraneous features were removed during
preprocessing to derive a focused dataset for modelling. The
closing price time series for these 52 stocks is visualized in
Fig 6b, where each line represents a distinct stock index.

Fig. 2: Nifty 50 Index 60 Minute data

Fig 6b visualizes the multivariate time series dataset, where
the x-axis represents time, the y-axis indexes each stock, and
the z-axis shows the current price. Qualitatively, the data
exhibit some key properties. First, it presents a bipolarity,
with stock prices constrained within two extreme value ranges
overall. Second, all indexes demonstrate volatility over the
month, with some stocks showing strong fluctuations. Quanti-
tatively analyzing this multivariate dataset’s temporal patterns,
correlations, and volatility will enable effective clustering of
similarly-behaving assets.

B. Clustering Methods

Clustering techniques comprise two key components, the
clustering algorithm and distance measure, significantly in-
fluencing performance. This study benchmarks three widely
adopted distance metrics: Euclidean, Dynamic Time Warping
(DTW), and K-Shape. We focus comparative analysis on es-
tablished traditional methods for clustering algorithms, includ-
ing partition-based, density-based, and hierarchical categories
[1]. While numerous novel algorithms exist, these foundational
approaches are chosen due to their proven robustness across
diverse datasets and time series tasks [24]. The proposed
Voformer-EC model will compare with the combinations of
traditional time series clustering techniques by evaluation
indexes.

TABLE I: Composition overview of contrastive clustering
methods

Clustering Method Distance Measure Category

K-means Euclidean, DTW, Shape-based Partitional
DBSCAN Euclidean, DTW Density-based
Agglomerative Euclidean, DTW Hierarchical

To evaluate the performance of Voformer-EC, compara-
tive benchmarking is undertaken against traditional clustering
algorithms paired with established distance measures. As
summarized in Table I, the combinations analyzed include k-
means, DBSCAN, agglomerative clustering, and their variants
incorporating Euclidean distance, Dynamic Time Warping,
and K-Shape distances. After completing this comparative
benchmarking, internal clustering validation metrics are sys-
tematically applied to quantify the quality of the resulting
clusters. This analysis aims to situate Voformer-EC within
the landscape of classical clustering techniques for time series
data.

C. Evaluation Methods

In the absence of ground truth labels, internal clustering
validation metrics provide practical quantitative estimates of
result quality. This study employs five common metrics:
• Within-cluster Sum of Squares (inertia): Quantifies

within-cluster dispersion around centroids. Lower values
indicate tighter clusters.

• Silhouette Score: Evaluates cohesion of points within
their cluster versus the nearest neighbouring cluster.



Ranges -1 to 1, with higher values corresponding to
superior clustering.

• Davies-Bouldin Index: Measures the ratio of within-
cluster scatter to between-cluster separation. Lower val-
ues suggest improved clustering.

• Calinski-Harabasz Index: Assesses the ratio of between-
cluster to within-cluster dispersion. Higher values imply
better-defined clusters.

• Dunn Index: Computes the ratio of minimum inter-
cluster to maximum intra-cluster distance. Higher values
correspond to dense, well-separated clusters. However,
sensitive to outliers.

These metrics aim to quantify cluster cohesion, separation,
and validity to evaluate relative clustering performance.

D. Clustering Experiments

The cluster analysis process for test data is divided into
two main stages: the various combinations load data to cluster,
followed by comparative data clustering effects under various
methods.

As a foundational clustering technique, k-means is bench-
marked in combination with different distance measures.
Despite its popularity, k-means has limitations in handling
multivariate data due to sensitivity to outliers and difficulty
modelling complex cluster shapes. This study combines k-
means with three established distance metrics with Euclidean,
Dynamic Time Warping (FastDTW), and K-Shape to cluster
the Nifty 50 Index dataset. The efficacy of each k-means
variant is quantified through the five internal validation met-
rics. This analysis provides baseline clustering performance to
compare with other models.

Considering the substantial data volume, GPU acceleration
is employed for the k-means algorithm. Subsequently, Fast-
DTW replaces the default Euclidean distance metric, chosen
for its linear time complexity. Finally, based on the shape-
based concept, the K-shape is employed, and Clustering is
performed with k ranging from 2 to 20. The results are
visualized in Fig. 3, with Fig. 3a illustrating the cluster centres
and Fig. reffig4 showing the evaluation metric scores.

Fig. 3 reveals similarities in cluster centre locations, despite
differences in cluster shapes. Fig. 3b mirrors the fluctuations
across metrics, with GPU k-means and K-Shape exhibiting
relatively superior performance on this dataset according to
the index values. The Dunn index is excluded from Fig. 3b
due to consistently zero values.

DBSCAN is another seminal density-based clustering algo-
rithm that weakens in high-dimensional multivariate data, and
factors like non-uniform density and varying cluster spacing
can degrade performance. Analogous to k-means, DBSCAN is
paired with Euclidean and FastDTW distances for clustering
the stock dataset.

Given the large data volume, GPU acceleration and paral-
lelization are implemented for efficiency. Four internal vali-
dation metrics are utilized for evaluation - Silhouette Score,
Calinski-Harabasz Index, Davies-Bouldin Index, and Mean
Distance to Nearest Cluster Member. Inertia is excluded as

(a) K-means with GPU Acceleration, K-means with FastDTW, and K-
shape Clustering Results

(b) K-means with GPU Acceleration, K-means with FastDTW Evalu-
ation Metrics Result

Fig. 3: K-means with GPU Acceleration, K-means with Fast-
DTW, and K-shape

DBSCAN does not explicitly minimize squared within-cluster
distances.

(a) DBSCAN and DBSCAN with FastDTW Clustering Results

(b) DBSCAN and DBSCAN with FastDTW Evaluation Metrics Result

Fig. 4: DBSCAN and DBSCAN with FastDTW

Fig. 4 shows that DBSCAN with FastDTW significantly
outperforms the Euclidean. This highlights the benefits of
time-shaped distances for temporal data.

Agglomerative Clustering, a classic hierarchical model,
faces limitations due to high computational complexity and
singular value influence. As with DBSCAN, it combines
with Euclidean and FastDTW to analyze the data, employing
corresponding evaluation indices and reports.

A precomputed FastDTW distance matrix is integrated into
Agglomerative Clustering to mitigate computational complex-



ity. Results for both models are presented in Figure 5a, while
evaluation metrics appear in Figure 5b. Figure 5 suggests that
the FastDTW is better for this dataset when combined with
Agglomerative Clustering.

(a) Agglomerative Clustering and Agglomerative Clustering with Fast-
DTW Clustering Results

(b) Agglomerative Clustering and Agglomerative Clustering with Fast-
DTW Evaluation Metrics Result

Fig. 5: Agglomerative Clustering and Agglomerative Cluster-
ing with FastDTW

The proposed Voformer-EC neural network model proposes
to achieve superior multivariant time series clustering perfor-
mance while maintaining efficiency. Voformer-EC is evaluated
using the same internal validation metrics applied to the
traditional clustering benchmarks.

The evaluation index results are shown in Fig. 6. Voformer-
EC demonstrates faster convergence and more stable clustering
performance compared to traditional methods. Notably, the
non-zero Dunn index indicates Voformer-EC identifies more
clearly separated, compact clusters by effectively capturing
complex relationships in time series data.

Benchmarking verifies Voformer-EC’s state-of-the-art clus-
tering quality and efficiency for multivariate stock index
data. The specialized neural architecture provides significant
enhancements over traditional clustering techniques on key
indicators of clustering performance. Leveraging the strengths
of both neural networks and Extreme Clustering, Voformer-EC
demonstrates rapid convergence and stable clustering perfor-
mance on the time series feature matrix after model training.

IV. RESULTS AND EVALUATION

This research aimed to propose an effective solution for
multivariate time series clustering with application to stock
market data. The proposed Voformer-EC framework integrates
Informer-based neural networks, a volatility-aware activation
function, and the Extreme Clustering algorithm.

Rigorous benchmarking was undertaken against traditional
clustering techniques, including k-means, DBSCAN, hierar-
chical clustering, and variants incorporating Euclidean, DTW,
and K-Shape distances. Multiple internal validation metrics
quantified clustering performance.

(a) Voformer-EC Clustering Result

(b) Voformer-EC Evaluation Metrics Result

Fig. 6: Voformer-EC Clustering Result and Indexes Display

Experiments on a multivariate stock index dataset demon-
strated Voformer-EC’s superior convergence, stability, and
cluster separation compared to the baselines. Since Voformer-
EC has the characteristics of both neural network and Extreme
Clustering, it has fast convergence and very stable charac-
teristics after convergence when performing cluster analysis
on the extracted time feature matrix after training. Qualita-
tive analysis of the clustered price trends also highlighted
interpretable groupings of similarly behaving assets over the
one-month period. This demonstrates Voformer-EC’s practical
applicability for financial data analytics.

Limitations of the study include the lack of ground truth
labels and a comparatively small single dataset for evalua-
tion. Additional real-world datasets could help strengthen the
empirical results. Hyperparameter tuning and ablation studies
would also be beneficial. Next, we will test on more data sets
to test more suitable datasets and customize more functions



for the Voformer-EC model on different specific datasets so
that we can observe the results more intuitively and evaluate
performance.

This research makes notable contributions through the novel
Voformer-EC framework, rigorous benchmarking, and demon-
strative experiments. It provides a robust, efficient multivari-
ate time series clustering solution outperforms established
techniques. The model shows promise for diverse temporal
applications across climate, healthcare, finance, and more.
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