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Abstract 
 

This thesis summarises novel approaches and methods in the wavelet domain 

employed and published in the literature by the author for the correction and 

processing of time-series data from recorded seismic events, obtained from strong 

motion accelerographs. Historically, the research developed to first de-convolve the 

instrument response from legacy analogue strong-motion instruments, of which there 

are a large number. This was to make available better estimates of the acceleration 

ground motion before the more problematic part of the research that of obtaining 

ground velocities and displacements. The characteristics of legacy analogue strong-

motion instruments are unfortunately in most cases not available, making it difficult 

to de-couple the instrument response. Essentially this is a system identification 

problem presented and summarised therein with solutions that are transparent to this 

lack of instrument data. This was followed by the more fundamental and problematic 

part of the research that of recovering the velocity and displacement from the 

recorded data. In all cases the instruments are tri-axial, i.e. translation only. This is a 

limiting factor and leads to distortions manifest by dc shifts in the recorded data as a 

consequence of the instrument pitching, rolling and yawing during seismic events. 

These distortions are embedded in the translation acceleration time–series, their 

contributions having been recorded by the same tri-axial sensors. In the literature this 

is termed ‘baseline error’ and it effectively prevents meaningful integration to 

velocity and displacement. Sophisticated methods do exist, which recover estimates of 

velocity and displacement, but these require a good measure of expertise and do not 

recover all the possible information from the recorded data. A novel, automated 

wavelet transform method developed by the author and published in the earthquake 

engineering literature is presented. This surmounts the problem of obtaining the 

velocity and displacement and in addition recovers both a low-frequency pulse called 

the ‘fling’, the displacement ‘fling-step’ and the form of the baseline error, both 

inferred in the literature, but hitherto never recovered. Once the acceleration fling 

pulse is recovered meaningful integration becomes a reality. However, the necessity 

of developing novel algorithms in order to recover important information emphasises 

the weakness of modern digital instruments in that they are all tri- rather than sext-

axial instruments. 
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Preface 
 

This thesis is based on a summary of the papers published below in international 

scientific journals or in the proceedings of international conferences. The list is not 

exhaustive, but contains the papers as summarised in this thesis. 

 

The structure of the thesis is in three chapters and its approach follows a historical 

description. Chapter 1 begins with the first part of the research, which was to obtain 

better estimates of ground motion from recorded seismic data by de-coupling the 

instrument response, where unfortunately and in most cases, the instrument 

characteristics were not available to facilitate the de-coupling. The approach was to 

treat the problem as one of system identification applying adaptive algorithms which 

iterated to an optimal description of the inverse instrument response.  

 

Chapter 2 then continues on to the main part of the research with a summary of the 

wavelet transform method developed to recover the low-frequency acceleration fling 

pulse such that integration can proceed to the velocity pulse and the displacement 

fling-step. The novel method uses the undecimated wavelet transform with de-noising 

which is effective in removing low-frequency noise, but without removing the low-

frequency signal. This is one of the key issues that render the method a success. 

 

Chapter 3 is a collection of some of the important papers published by the author. 

There are two key journal papers (papers 1 and 2) which support Chapter 1 and 

present the methods implemented in order to obtain an optimal estimate of the 

recorded acceleration after de-convolution. Chapter 1 is also supported by 

publications from proceedings (papers 3 and 4), where these methods and 

implementations were first presented.  Furthermore there are two key journal papers 

(papers 5 and 6) in support of Chapter 2 which present the novel wavelet transform 

algorithm with de-noising and which demonstrate the recovery of velocity and 

displacement and additionally the acceleration and velocity fling pulses and the 

displacement fling-step and the form of the baseline error. These too are supported by 

conference proceedings where these ideas, methods and implementations were 

presented.  
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The link between the chapters and papers is broadly the limitation of the various 

instruments used with which to record the seismic data. These limitations therefore 

have required the development of novel algorithms with which to overcome some of 

the problems associated with instrument inadequacy in order to extract useful data. 

This thesis addresses some of the problems and summarises the formulated novel 

solutions.  

 

The author of this thesis is the principal author of the papers listed below.  

  

1. Chanerley, A. A., Alexander, N. A. “Using a Total Least Squares approach for 

Seismic Correction of Accelerometer Data”, Advances in Engineering Software. 

Volume 39, Issue 10, pp 849-860, ISSN: 0965-9978, 2008 

 

2. Chanerley, A. A., Alexander, N.A. “Correcting Data from an unknown 

Accelerometer using Recursive Least Squares and Wavelet De-noising”, Computers 

and Structures, Issue 21-22, 85 1679-1692, Nov 2007 

 

3. Chanerley, A. A., Alexander, N. A. “Novel Seismic Correction approaches 

without instrument data, using adaptive methods and de-noising”, 13th World 

Conference on Earthquake Engineering, Vancouver, Canada, paper 2664, August 1st-

6th, 2004.   

 

4. Chanerley, A. A., Alexander, N.A. “An Approach to Seismic Correction which 

includes Wavelet De-noising”, Proc of The Sixth International Conference on 

Computational Structures Technology ISBN 0-948749-81-4, Prague, Czech Republic, 

paper 44, 4-6th September, 2002 doi:10.4203/ccp.75.44   

 

5. Chanerley, A. A., Alexander, N.A., Berrill, J., Avery, H., Halldorsson, B., and  

Sigbjornsson, R. “Concerning baseline errors in the form of acceleration transients 

when recovering displacements from strong motion records using the undecimated 

wavelet transform”, Bulletin of the Seismological Society of America, vol. 103, pp. 

283-295, February, 2013, doi: 10.1785/0120110352 

 

 10 

http://dx.doi.org/10.4203/ccp.75.44


6. Chanerley, A. A., Alexander, N.A., ”Obtaining estimates of the low-frequency 

‘fling’, instrument tilts and displacement time series using wavelet decomposition”, 

Bulletin of European Earthquake Engineering, vol. 8, pp231-255, 2010   

http://dx.doi.org/10.1007/s10518-009-9150-5 

 

7. Chanerley A. A., Alexander, N A, Halldorsson, B,  'On fling and baseline 

correction using quadrature mirror filters', 12th International Conference on Civil, 

Structural and Environmental Engineering Computing, paper 177, Madeira, Portugal, 

1-4 September, 2009 " doi:10.4203/ccp.91.177 
 

8. Chanerley A. A., Alexander, N A., ‘Automated Baseline Correction, Fling and 

Displacement Estimates from the Chi-Chi Earthquake using the Wavelet 

Transform’9th International Conference on Computational Structures Technology 

Athens, Greece, 2-5th Sept., 2008   http://dx.doi.org/10.4203/ccp.88.197  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 11 

https://uel-mail1.uel.ac.uk/exchweb/bin/redir.asp?URL=http://dx.doi.org/10.1007/s10518-009-9150-5
http://dx.doi.org/10.4203/ccp.91.177
https://uel-mail1.uel.ac.uk/exchweb/bin/redir.asp?URL=http://dx.doi.org/10.4203/ccp.88.197


Chapter 1    De-coupling of the Instrument Response from Legacy 
Records 
 

1 Introduction 
 

The structural/geotechnical engineering analyst/designer needs a complete set of 

boundary conditions (i.e. ground accelerations, velocities and displacements) at every 

location a structural artefact makes contact with the ground. A full spatiotemporal 

ground motion description is required rather than just ground accelerations at a single 

point. For this however a statistically significant sample of strong motion records is 

needed so that behaviour can be confidently predicted for unknown and critical future 

seismic events.  However a statistically significant sample is the first problem we face 

i.e. the dearth of data, we do not have all the ground motion data we need. That is to 

say we do not have enough recordings for every location type and magnitude 

combination. There is insufficient good quality data so as not to neglect some of the 

older time histories recorded with analogue instruments. There are now arrays of 

instruments in the USA and Japan, but of course the problem is still with us because 

clearly the earthquake still has to occur within range of the instruments provided.  

 

Data of ground motion acceleration recorded during seismic events is important to the 

process of developing models of system behaviour. Reliable, error free, experimental 

data is a major factor in the scientific method of developing and validating theoretical 

models. In the case of earthquake engineering ground motion times-series are used to 

predict the performance of structural systems to seismic events. As computational 

power increases the employment of non-linear time-history analysis of structural 

artefacts, e.g. buildings, bridges, etc. has become more feasible and widespread. 

These very challenging numerical models are subject to many unknowns; such as 

non-linear material behaviours. However, the greatest of these unknowns come from 

the loading, i.e. the ground motion, acceleration time-series, velocity pulses in the 

near and far field and displacement fling steps.    

 

The second problem is that both legacy (analogue) and modern (digital) strong motion 

accelerographs, to date, only measure ground motion acceleration and then only the 3 

translational component accelerations; i.e. they do not measure the rotational degrees 
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of freedom nor do they record velocities or displacements. The advent of satellite 

global positioning means that if accelerographs are coupled with GPS then it is 

possible to obtain some information about ground displacements. However, the 

sampling rate and dynamic range associated with GPS is generally low so this limits 

the frequency bandwidth of information that can be obtained. Nevertheless, more 

information is always required and a bonus.       

  

Classically, structural engineers have avoided the problem of ground motion 

displacements by formulating their analyses in terms of a moving coordinate frame. 

That is we consider structural accelerations, velocities and displacements relative to 

the moving ground [17]. In this formulation the resulting equations of motion can be 

written in terms of ground motion acceleration alone. Nevertheless, for the most part, 

we still neglect the unrecorded ground rotational accelerations. This approach is 

reasonable for the case where the structure is small, i.e. less that 25m in length 

horizontally, [18]. Observed wavelengths of ground motion displacement may not 

impose any significant differential displacement on small structures. For longer, larger 

structures, i.e. very large buildings, bridges, tunnels, pipelines and dams, differential 

seismic displacements are more credible.  

 

However, as has been already stated, we do not directly record ground motion 

displacement time-series. At first glance it appears that acceleration can be simply 

integrated twice to obtain displacement. While this is true in principle, in practice 

noise in the recording is the problem. Low frequency noise caused by the unrecorded 

ground rotations destroys any reasonable estimate of the true ground motion 

displacement time-series obtained by double integration. This is in part due to modern 

digital instruments not being 6-axis instruments, so a complete picture of ground 

motion acceleration, velocity and displacement at a point is not possible.  

 

This issue has to some extent been neglected in databases of strong motion records, 

such as [19] where low frequency filtering of accelerograms effectively removes 

much of the ground motion displacement. Standard filtering processes will eliminate a 

key feature of a seismic event, namely the acceleration pulse known as the ‘fling’ and 

the displacement known as the ‘fling-step’. This arises as a very low-frequency 

acceleration pulse, which can give rise to residual ground displacement. This very low 
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frequency (i.e. less than 0.1Hz) fling pulse is buried in low-frequency noise. Thus, it 

is difficult to remove the low frequency noise without removing the low-frequency 

‘fling’ when applying standard filtering methods. In [3, 20] the reported permanent 

displacement of the ground during the Chi-Chi, Taiwan (1999) event was some 10m 

(reported by GPS). Compare this with an estimated (imposed) zero value in 

permanent displacement obtained by using a low-cut filter “correction”. Clearly low-

cut filtering can produce very large errors in estimated ground displacements.  

 

In this thesis we review published procedures for processing and correcting 

accelerograph data. The generic theoretical background to both analogue and digital 

instruments is considered as are the sources of noise/error along with the effect of 

ground rotations on accelerograph performance. The thesis reviews various 

techniques for noise/error reduction. The thesis also discusses the vexed problem of 

obtaining estimates of ground motion displacement time-series from accelerograph 

data.  

 

2 Some Theoretical Background to Seismic Instruments 

 
2.1 A simple accelerometer model 
 

A strong motion instrument, commonly termed an accelerograph, is one that can be 

viewed as a generic process ( )h t  that transforms an input signal (e.g. the actual 

ground motion) ( )u t  into some output signal (e.g. the recorded ground motion) ( )v t , 

thus  

 

 ( ) ( ) ( ) ( )dv t h u t tτ τ τ ε
∞

−∞
= − +∫  (1) 

 

where ( )tε is some “error” or noise added to the convolution integral. This noise can 

be thought of as resulting from either instrument behaviour, processing of recorded 

data and/or background vibrations from non-seismic sources. Some of this noise may 

have been convoluted through the instrument. However, we separate it in equation (1) 
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for mathematical simplicity. This equation (1) can be re-expressed in the frequency 

domain as following linear equation 
 

 ( ) ( ) ( ) ( )V H Uω ω ω ω= +Ε  (2) 

 

where ( )U ω , ( )V ω  and ( )ωΕ  are the Fourier transforms of ( )u t , ( )v t  and 

( )tε respectively and ( )H ω  is the Fourier transform of ( )h t . Any instrument should 

record the signal ( )v t , which should be a very good estimate of ( )u t  i.e. ideally ( )H ω  

would equal one and ( )ωΕ  zero.   

 

2.2 Some Instrument Parameters   
 

The first Strong motion recordings were obtained in Long Beach in 1933, [21]. The 

first accelerographs were optical-mechanical instruments that produced traces of 

ground acceleration on paper or film. These were analogue instruments, for example 

such as  Kinemetric’s SMA-1 used in USA, SMA-C and DC-2 accelerographs used in 

Japan, these were widespread until the mid 1980s when digital instruments began to 

be used. In fact these instruments were still in situ in the late 1990s because they were 

considered relatively maintenance free and up front purchase costs had already been 

met. The problems with these analogue instruments and their subsequent legacy 

recordings were: 

 

(i) The dynamic range of analogue accelerographs was relatively low. The 

dynamic range DR where: 

 

DR = 20log(max | ( ) | / min | ( ) |)v t v t ,    (3) 

 

Where min | ( ) |v t  and max | ( ) |v t are the smallest and largest amplitudes that 

can be recorded.  Usually the dynamic range is usually expressed in decibels 

(dB):  

     ( ))(min/)(maxlog20 tvtvDRdB =   (4) 
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For analogue instruments this dynamic range was limited by the breadth of the 

recording paper/film and the width of the trace line, for example recordings 

made on recording paper have a maximum amplitude of about 10cm and a 

minimum resolution of 0.1mm, i.e. a dBDR  =  60dB, or 3 orders of magnitude. 

Thus, these instruments are subject to large quantization errors [23] and this 

was particularly a problem for very small events where little of the dynamic 

range was employed. Full scale on analogue accelerographs, max | ( ) |v t , was 

typically 1g and this is a problem in the case of very large seismic events as it 

resulted in clipping of peaks (similar to arithmetic saturation in digital 

instruments) of the signal.  

 

(ii) The frequency bandwidth of analogue accelerographs was low. The bandwidth 

was limited by the instruments natural frequency. The optical-mechanical 

instruments behaved like a low-pass filter, attenuating all components of the 

recorded signal a little above the instruments natural frequency. In the 1930-

40’s the operation frequency bandwidth was ~ 0-20Hz  that improved over 

time to ~ 0-80Hz [24].   The bandwidth was in practice never down to DC as 

low frequency, so called baseline, errors where difficult to eliminate. This was 

because digitization of analogue paper/film records resulted in low frequency 

noise that was difficult to eliminate, though often attempted [6].   
 

(iii) The analogue accelerographs characteristic was not completely flat in the 

operational range. The optical-mechanical system could be theoretically 

modelled like a simple pendulum with natural frequency and damping. Large 

ratios of critical damping were incorporated (using electro-mechanical, air or 

oil pistons) into the instrument to flatten out the pass-band frequency 

characteristics of the accelerographs. However, it was difficult to have both a 

large and a completely flat frequency operational range thus some compromise 

in design of such devices was required [5]. These analogue accelerographs 

characteristics, namely the critical damping and natural frequency, where not 

necessarily known precisely after many years in situ.  
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(iv) The threshold acceleration (the trigger) used to start the recording meant that 

all data ‘pre-trigger’ was normally lost. This sometimes resulted in the P wave 

arrival time being lost by this time delay. 

 

(v) Digitization of analogue paper/film records resulted in much lower signal to 

noise ratio (SNR) than that of modern digital instruments. The so called 

baseline errors caused by low frequencies resulted in very large problems in 

the accurate determination of low frequency ground displacements time-series. 

In some legacy recordings erroneous spikes are found caused by errors in the 

automated digitization process. This was highlighted in [11] and shown to 

have a significant effect of derived acceleration response spectra.  
 

It is clear therefore that there are number of problems surrounding legacy recording. 

Correction of these records is discussed in later sections of the paper but it worth 

noting that some care should be taken when employing these recording in engineering 

analysis. 

Table 1: Some typical analogue and digital instrument characteristics 

 

 

2.3 Digital accelerometers  
 

Digital instruments are superior to the older analogue instruments in terms of 

performance.  For example the digital recording system at each ICEARRAY station in 

Name Dynamic Range Full 

Scale 

Range 

Signal to 

Noise 

Ratio 

Operational 

Bandwidth 

Ref. 

CUSP 3B          80 dB  4g 91 dB DC to 80Hz [25] 

CUSP 3E         120dB 3g 130dB DC to 80Hz [25] 

130-SMA 113dB 4g ~166dB DC to 100Hz [26] 

ETNA 108 dB 4g ~114dB DC to 200Hz [27] 

SMA-1 40-55dB  1g - ~0 to 25Hz  
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Iceland (Figure 1) and the stations in CanNet, New Zealand, comprises a low-cost, 

single unit, CUSP-3Clp strong-motion accelerographs manufactured by Canterbury 

University Seismic Project in New Zealand, for the Canterbury Seismic Network in 

New Zealand. The units are equipped with 24-bit, tri-axial, low-noise (~70 µg rms) 

Micro-Electro-Mechanical (MEM) accelerometers with a high maximum range (± 2.5 

g) and a wide-frequency pass-band (0-80 Hz at a 200 Hz sampling frequency) [63, 

64]. These instruments have an amplifier, an anti-alias filter, a 24-bit A/D convertor 

and memory. Table 1 gives typical examples of dynamic range, full scale range, 

SNR’s and operational bandwidths of some modern digital accelerometers with a 

SMA-1 analogue accelerometer as a comparison. The dynamic range of the 24-bit 

digitizer is 6.02*23 ≈139dB, each additional bit increasing the dynamic range 

by ( )2log20 10 . 

 

 

     
 

 Figure 1: CUSP 3B Digital Accelerograph, Canterbury Seismic Instruments Ltd 

 

The clipping limit of such digital instruments can be up to ±4g (39.24m/sec2) up to 

their corner frequencies, as shown in Table 1. They have a flat instrument response in 

the frequency bandwidth of operation, problems of instrument calibration, triggering, 

and digitization are all much reduced. The signal-to-noise ratios are well above the 

dynamic range suggesting that noise is unlikely to affect anything other than the least 

significant bit. In addition these instruments can be synchronized to a common time 
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base (for the case where a large array of instruments are deployed  [28]) and are 

coupled with GPS sensors that are able to determine position before and after a 

seismic event.   

 

While digital accelerometers are superior to their analogue counterparts they are still 

only 3 axis instruments. Moreover some of the earlier digital instruments had internal 

filters, which removed the low frequency noise, but also removed any low-frequency, 

pulse-like accelerations, which cause the displacement fling-steps. That is to say they 

only record translational accelerations and not rotational accelerations. The 

assumption being that ground rotations (the commonly referred to tilts – pitch, roll 

and yaw) are small enough to be neglected. These are small in most cases, but in fact 

their effects can be considerable when velocity and displacement need to be 

recovered. 

 

The effects of tilting are discussed in [2, 4, 13, 44, and 45] in particular in the long 

period which leads to dc shifts in velocity and offsets in the final displacement. 

Moreover [1] has demonstrated displacement offsets by using numerical simulations, 

a tilt of 0.1o (1.75mrad) is added to the Hector Mine seismic data. This gave 

displacement offsets similar to those obtained in the seismic data analysed and 

published and shown in this thesis for the TCU068NS station of the Chi-Chi (1999) 

event. The simulations in [1] showed a similar permanent displacement when Hector 

Mine was contaminated by a simulated tilt as that for the actual data from the 

recorded TCU068 station. It is shown in [3, 4] above that after operating on the 

seismic data using the wavelet transform method, the angle of tilt can be estimated. 

 

The approximate equations [1, 3] which describe small tilt angles are as follows: 
 

Longitudinal   111
2

11111 2 ψωγω gaxxx g +−=++    (5)  

Transverse  222
2

22222 2 ψωγω gaxxx g +−=++    (6) 

Vertical  33
2

33333 2 gaxxx −=++ ωγω     (7) 

 

where x = recorded response of instrument,  

ω = natural frequency,  
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γ = critical damping,  

g = acceleration due to gravity,  

ψ = rotation of the ground surface about x axis    

ag  = ground acceleration.  

 

The conclusions from the above equations are that the two horizontal sensors are 

responding to horizontal acceleration and tilts and that the vertical sensor is 

responding to vertical acceleration only. Clearly there is an “error” in the recorded 

horizontal ground motion that is present even for the case of digital instruments. This 

error is an unknown, time varying, function igψ , where { }1,2i = are the horizontal 

translational components and 3i =  is the vertical component. [3] suggested that this 

error produces a signal to noise ratio, for the 1999 Chi-Chi TCU068 record, of around 

31dB. This value is clearly far lower than the instrument signal to noise ratio as in 

Table 1. As an example of the effect tilts can have on the double time integration of 

the acceleration record then a displacement offset of 100cm over 100sec, requires a 

tilt angle of 20.4 x 10-6radians. Chapter 2 of the thesis dealing with recovery of 

displacements shows the considerable offsets created by small and abrupt changes in 

acceleration.        

 

3 Instrument de-convolution with standard methods 

 
In many of the corrected data records available, instrument correction is not applied 

because the header of the original data does not provide any information on useful 

instrument parameters or indeed the type of instrument used. In a lot of cases the 

seismic data analysed did not, after processing without instrument de-convolution, 

produce marked differences in outputs when processed with instrument de-

convolution. However, with some data analysed the differences in outputs, in 

particular for the acceleration response spectra were clear and not insignificant. In 

most of the older records the accelerograms recorded the characteristics of strong-

motion earthquakes with single-degree-of-freedom, stiff and highly damped 

transducers whose relative displacement ( )tx is approximately proportional to the 

ground acceleration ( )tag  To obtain estimates of the ground acceleration from the 
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recorded relative displacement response, an instrument correction can be applied as 

follows: 

 ( ) ( ) ( ) ( )txtxtxtag
22 ωωγ −−−=                               (8) 

 

where γ is the viscous damping ratio, ω is the transducer's natural frequency and     

( )tag  is the ground acceleration. The above expression (8) can be used to de-

convolve the recorded motion from the ground acceleration in either the time [6,9,29] 

or frequency domain [7,61].  

 

3.1 Time domain de-convolution of instrument response 
 

Analogue instruments such as the SMA-1 have their own dynamic response 

characteristics that affect their recording. This instrument response is classically 

modelled by a single degree of freedom system [7] (i.e. a simple small oscillation 

pendulum) as shown in equation (1). One wave to de-convolve the instrument 

response is to do so in the time domain as follows below. 

 

Applying the central difference [6, 9] to equation (8) and using the approximation [9] 

that the values of the acceleration of the uncorrected accelerograms are )(2 txnω−  

gives a 3-tap FIR convolver for )()( 22 taT gω− , where T is the sampling rate of the 

digitised accelerograms, as:  
 

42
2222 )42()441(4 −− ++−++=−= iiig aaTaTTaTy γωωγωω       (9) 

 

where now nini xa −− −= 2ω are the discrete values of the instrument acceleration 

output of the uncorrected accelerograms. For values of 6.0=γ , Hzf 25= and 

600/1=T  the expression becomes:  

 

  42 38046.072386.010432.0 −− +−=−= iiig aaaay                         (10) 

 

The backward difference approximation gives a similar expression:  
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21
2222 )1(2)21( −− ++−++=−= iiig aaTaTTaTy γωωγωω          (11) 

 

 For values of 6.0=γ , Hzf 25= and 600/1=T  the expression becomes: 

 

21 43211.05975.02962.0 −− +−=−= iiig aaaay                          

(12) 

 

 
Figure 2: Frequency response curves for Instrument correction methods 

 

The frequency response using [9] central and backward difference is shown in Figure 

2. It vindicates the conclusions in [6, 9] in respect of the central difference correction, 

at sampling rates greater than 4 times the instrument response frequency. The 

frequency response at a lower sampling rate in this case at sec02.0=T , using central 

difference doesn’t however exhibit suppression at higher frequencies, nor does it 

exhibit the same degree of linearity up to 6Hz as reported in [6, 60]. The frequency 

responses at 600/1=T  in Figure 2 also indicate that the backward difference is 

approximately linear up to 12Hz, compared to 6Hz for the central difference. The 

strong-motion, unevenly spaced data has an average sampling rate of approximately 

600Hz, which is then interpolated to give an evenly spaced data at 600Hz or a Nyquist 

rate of 300Hz. 
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3.2   Frequency domain de-convolution of instrument response  
 

Equation (8) can also be transformed into the frequency domain [7, 29] by applying 

the Fourier transformation   

 

)()( fAfHgX −=  where   
















+







−=

ii f
fi

f
ffH γ21)(     (13) 

 

where the approximate acceleration output of the instrument is )()( 2 fXfA ω= . The 

ground acceleration in time can therefore be recovered from the inverse Fourier 

transform of the ground acceleration )( fX g
 , obtained from the Fourier transform of 

the relative displacement )( fX . Figure 2 compares these most popular three methods 

used in correcting for the instrument response. It shows that over a limited range the 

responses are almost the same with the backward difference demonstrating a flat 

response up to approximately 12Hz, therefore over this range it can be inferred that 

the acceleration is approximately equal to the ground acceleration. At higher 

frequencies further corrections must be applied. However Figure 2 also demonstrates 

that using frequency domain de-convolution the response is approximately flat up to 

20Hz; therefore results presented in [59] have been processed using this method. 
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Figure 3 Classical Single Degree of Freedon System (SDOF) instrument characteristics. 

The bold line is a typical value for the instrument SMA-1, with an instrument damping 

ratio γ = 0.6 

 

This instrument characteristic (nonlinear frequency response function) is displayed in 

the above Figure 3. As the instrument’s ratio of critical damping increases the effect 

of the instrument resonance attenuates, so producing a flatter instrument response. 

Consider the bold line highlighted in the figure that corresponds to 60% percent of 

critical damping. This instrument’s characteristic is relatively flat for frequencies 

below the instruments natural frequency ω0. The phase of ( )iH ω  is also displayed 

and appears almost linear for frequencies below the instruments natural frequency ω0 

at this value of damping. A linear phase change results in a constant time-shift in the 

time-domain was considered fairly neutral. Thus, is easy to understand the choice of 

ratio of critical damping of 0.6 that was used for SMA-1. However, by modern 

standards this response is far from flat and the phase distortion (though almost linear) 

does require some correction. This correction can be achieved in the time-domain as 

suggested by [7] or simply by using the FFT, IFFT and equations (13) and as 

suggested by [10].   

 

It should be noted that the instrument response is effectively a low-pass filter i.e. it 

attenuates the high-frequency components (i.e. those higher than the instrument’s 
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natural frequency). Recovering the true ground acceleration requires de-convolution 

therefore in correcting for the instrument characteristic we end up amplifying the 

higher frequency terms (as shown in the frequency responses of Figure 2) that have 

been attenuated by the instrument. Therefore high frequency noise and alias errors, 

together with higher frequency signal components, will be amplified. Instrument 

correction in this case should be followed by a high cut filter to attenuate again the 

high frequency noise/signal.  

 

3.3 Pre-filtering the Convolved Data  
 

Any process that converts an analogue signal into a digital one runs the risk of 

introducing aliasing errors. Discrete sampling of a continuous signal at a sampling 

rate f results in a digital signal is unable to distinguish components above the Nyquist 

frequency f/2 [23]. Furthermore, frequency components above this Nyquist limit may 

produce errors in the sampled signal cause by high frequency components folding 

back power below the Nyquist frequency. So aliasing error is an issue whether an A/D 

converter is used (for digital seismographs) or some optical-mechanical digitization 

(for analogue seismographs). To mitigate this error, an anti-alias filter is employed in 

the case of digital seismographs and this filter is a simple high-cut filter that seeks to 

remove frequency components above the Nyquist frequency, this filter precedes the 

A/D converter. Unfortunately for the case of an analogue seismograph the aliasing 

errors have already been introduced through the optical-mechanical digitization 

device. Therefore, a high-cut filter appears unnecessary as it cannot remove the 

aliasing errors after they have been folded back into the low frequency bandwidth. 

Nevertheless, this high-cut filter may still have utility. If it is employed after the 

instrument correction (as in [8, 10]) it can mitigate the amplification of instrument 

noise at frequencies above the natural frequency of the instrument. This effectively 

removes the least reliable part of the signal.  

 
On the other hand digitization of paper/film records from analogue instruments is 

thought to introduce low frequency errors due to small misalignments of these 

analogue paper/film records in the optical-mechanical digitizers. These errors were 

termed ‘baseline errors’ by  [8, 10]. The suggested solution was either (i) linear or 
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quadratic de-trending of the data (i.e. finding the least square linear or quadratic fit 

and then subtracting this from the recording) or (ii) to use of some low-cut filter. 

These two processes are qualitatively similar as both are, in effect, low-cut filters. If a 

low-cut filter is to be employed we would favour one that has known and designed 

filter characteristics i.e. one with a known corner frequency, flat pass-band and 

zero/linear phase characteristic and so method (ii) rather than (i) is preferable. 
 

Many digital accelerometer transducers are reliable down to DC so technically there 

should not be any baseline error.  Once the true ground motion acceleration time-

series is obtained it is typical to try and obtain both the ground velocity and 

displacement time-series.  

 

However, the very low frequency components are amplified exponentially and this 

produces a resulting displacement time-series that are often swapped by error. This is 

demonstrated in Figure 4 where the ground motion acceleration time-series is double 

integrated to obtain an estimated permanent final displacement of the ground (in the 

northerly direction) of -16.22m. This compares with a value of +5.56m from the 

wavelet based method proposed in [3] that is very near to the recorded GPS value. In 

this case the error in displacement, caused by low frequency noise, is nearly 22m.  
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Figure 4: Comparison of estimate displacement timeseries (for 1999 chi-chi event, 

station TCU068N) using various correction schemes 

 

This problem of amplification of low frequency noise (by a double-time integration 

filter) was well known and tackled almost universally by some low-cut filter with a 

cut-off frequency 0.25< Hz, e.g. the Ormsby filter [30], which is a Finite Impulse 

response filter (FIR) [31, 32], was a popular filter to use in the early days of 

correction procedures. The corrected records in the PEER strong motion database [19] 

filters it’s data. The trouble with this approach is that it eliminates signal components 

with the noise at the very low frequency. Figure  demonstrates how sensitive this low-

cut filtering can be. There are clear differences in the estimated ground displacement 

obtained by a Butterworth zero-phase (IIR) [31, 32] filter at 0.02Hz, 0.05Hz and 

0.1Hz (cut-off frequency).  

 

In addition to removing the low-frequency noise, these low-cut filters remove from 

the record the low-frequency ‘fling’ or permanent DC (shift that results in a residual 
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displacement) that is present after the strong ground motion. That is to say that often 

the estimated residual displacement from a low-cut filter record is often near to zero. 

Thus, it implies that there is never any residual ground deformation after an 

earthquake and GPS readings have shown this to be clearly incorrect.  

 

Obtaining reliable ground displacement estimates from older analogue data is very 

problematic because of the presence of large noise (caused by misalignments in 

paper/film processing) so low-cut filtering here is only to stabilise the acceleration 

time-series. For these cases, the displacement time-series thus obtained are highly 

questionable. For modern recordings (from digital instruments) the removal of the 

very low frequency of the time-series is also questionable as it removes important 

parts of the signal. This problem is considered in Chapter 2 of the thesis.  

                          

4.0   De-convolution of unknown instrument characteristics using  
adaptive algorithms    [12, 13, 55, 57, 58, 59] 

 
The de-convolution of legacy instrument response (i.e. its non-flat frequency 

response) discussed in the beginning of section 3 makes a number of assumptions. 

Firstly, we assume to form of the instrument response (filter), in this it is defined by a 

single degree of freedom system (for these optical-mechanical instruments). 

Secondly, we need to know the instrument parameters, namely its natural frequency 

and ratio of critical damping. Some legacy recordings have been obtained from 

accelerographs that may no longer exist and so it is not possible to validate either of 

these two assumptions exactly. Thus, we are left with a system identification problem 

i.e. the determination of the characteristic or footprint that the instrument leaves 

imposed on the time-series. Once obtained the resulting inverse filter can be applied 

to the data in order to de-convolve the instrument response. The actual ground 

acceleration ga and the accelerometer system g  are unknown, and the adaptive 

algorithm estimates an optimal system to improve the ground motion estimate, see 

Figure 6.  

. 
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Figure 6   Adaptive RLS diagram 

 

In the time domain, the actual ground acceleration ga  is convolved “*” with the filter 

function of the accelerometer g  to give the recorded signal a .  

 

gaa g *=                                                      (14) 

 

In this thesis, the implementation of the adaptive algorithm attempts to find a solution 

to the inverse problem, equation (2) where ideally the inverse filter h  is such that 
1−= gh  and then the desired signal d equals the actual ground motion ga . 

 

dha =*                                                            (15) 

 

Solution of this problem, in general, is not possible; however under certain limited 

condition it is possible to produce an estimate of h  from the recorded signal a . The 

conditions for the application of the recursive least squares method is that  a  and ga  

are similar and the amplitude of noise is low, i.e. the signal to noise ratio is high.  The 

Telecoms example, described previously, is an example of the implementation of this 

approach.  
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4.1   Summary of De-Convolution with the QR-RLS and the TLS 
algorithms  
 
There are many different, but related, least squares algorithm for obtaining a system 

identification. The Least Mean Square (LMS) algorithm [42] is the simplest and 

easiest adaptive algorithm to implement. However, its performance, in terms of 

computational cost and fidelity, is not as good as the Recursive Least Square (RLS) 

[43] and Square Root RLS algorithms (QR-RLS) [12, 43]. There also exists the total 

least square (TLS) [13]. The QR-RLS and TLS successfully obtained estimates of the 

instrument response from just the output of the accelerograph during earthquakes in 

Taiwan and Iceland. The basis for the QR-RLS algorithm and the TLS are 

summarised.  
 

Inverse QR-Recursive Least Squares (QR-RLS) algorithm 

 
QR-decomposition-based RLS algorithm is derived from the square-root Kalman 

filter counterpart Haykin [42], Sayed [43]. The ‘square-root’ is in fact a Cholesky 

factorization of the inverse correlation matrix. The derivation of this algorithm 

depends on the use of an orthogonal triangulation process known as QR 

decomposition. 

                                  







=

0
R

QA                                                                 (16)  

  

Where 0 is the null matrix, R is upper triangular and Q is a unitary matrix. The QR 

decomposition of a matrix requires that certain elements of a vector be reduced to 

zero. The unitary matrix used in the algorithm is based on a Givens rotation or a 

Householder reflection, which zero’s out the elements of the input data vector and 

modifies the square root of the inverse correlation matrix. The QR-RLS is as follows 

in equation (17) below. 

             

 







=









−
−

−

−

−

−

)()()(
0)()(

)1(0
)1(1

2/12/1

2/1

2/12/1

2/12/1

nPnnk
nnU

nP
nPu H

γ
γ

λ
λ

                            (17) 
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Where P = the inverse correlation matrix, λ = forgetting factor, γ = a scalar and the 

gain vector is determined from the 1st column of the post-array. U(n) is a unitary 

transformation which operates on the elements of  λ-1/2uH(n)P1/2(n-1) in the pre-array 

zeroing out each one to give a zero-block entry in the post-array. The filter 

coefficients are then updated commencing with equation (18), which is the gain 

vector. This is followed by equation (19) the a priori estimation error. 

 

[ ])(/)()()( 2/12/1 nnnknk −−= γγ                                                (18) 

                                   )()1()()( nunhndn H −−=ε                                                    (19) 

             )()()1()( nnknhnh ε+−=                                                     (20) 

 

This is turn, leads to the updating of the least-squares weight vector, h(n), in equation 

(9). These inverse-filter weights are an estimate of the inverse transfer function of the 

instrument and these are then convoluted with the original seismic data in order to 

obtain an estimate of the true ground motion.  

 

 The Total Least Squares (TLS)  
 

The Total Least Squares [13, 62] has a history of applications in de-convolution in 

medicine and spectroscopy. It was applied to the de-convolution [13] of seismic data 

in order to obtain an estimate of the instrument response. This method of de-

convolution has the advantage that it includes the error in the sensitivity matrix as 

well as the data vector. Essentially the problem is given by equation (21): 

 

    ( )2Aminimise bx −         (21) 

 

In some practical engineering situations the matrix A is in fact a function of the 

measured data, as is the case here. Therefore we need to take into account that noise 

measurements occur on both sides of the matrix equation. This is essentially a total 

least squares problem, where we have the matrix A plus noise and the matrix b plus 

noise, [A +E] and [b + r]. 
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The Total Least Squares (TLS) problem is formulated as follows: 

 

  r][bxE][A +=+ ˆ                    (22) 

 

Equation (22) can be re-written as: 

 

     [ ] [ ] 01],x)[r|Eb|A( TT =−+ ˆ              (23) 

    

The solution is obtained by first finding the SVD of pmRIb]|[A ×∈  as in (26); where 
nmRIA ×∈ , 1+= np  

 
TVΣUb]|[A =              (24)  

                   

 ]......[],......[ 2121 pm vvvuuu == VU , )],........,,([ 21 rdiag σσσ=Σ    (25) 

 

where mmRI ×∈U  and ppRIV ×∈  are square orthogonal matrices, diagonal 

matrix pmRI ×∈Σ with non-negative number on the diagonal; it is the same size as 

]b|[A .  One way to obtain a solution is to find a Householder matrix Q such that 

 





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


=

αT

y
0
W

QV              (26)  

                      

then the minimum norm solution is given by 

 

α/ˆ yx −=               (27)  

The solution x̂ are the filter coefficients. In general then the TLS algorithm 

demonstrates that it can be used effectively to de-convolute the instrument response 

from the seismic data. The TLS provides a reasonable tool for de-convoluting the 

instrument response providing an inverse filter, with which to de-couple the 

instrument to obtain an estimate of the ground motion. 
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4.2    Some Results for the QR-RLS and the TLS 
 

Figure 7 demonstrates the performance of the QR-RLS in recovering the frequency 

response of an “unknown filter” embedded in a simulation of an earthquake using the 

Kanai-Tajimi model. The simulation shows a reasonable estimate, in particular over 

the key flat region of the frequency response.   

 

The plots of Figure 8 show that at low frequencies to approximately 40Hz for the El-

Centro Eastern component the QR-RLS inverse filter show an approximately flat 

response (0dB) in the region of interest. The El-Centro Northern component is 

approximately flat to about 75Hz and the phase plots are approximately linear. 
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Figure 7   Comparison of QR-RLS recovered filters and original "unknown" FIR test 

filter (Kanai-Tajimi accelerogram) 
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Figure 8  Comparison of extracted instrument characteristic from El-Centro 

(1940) event using (i) QR-RLS adaptive filter and   wavelet pre-denoising (ii) 

SDOF instrument response  ( 10=f Hz , 552.0=ξ ) 

 

 

There is of course an element of uncertainty in both models, in particular given the 

instruments’ years in situ, whether the calibration parameters were in fact correct. The 

QR-RLS approach does perform quite well in the pass band region, which is, for the 

engineering, the region of interest. The RLS therefore provides a reasonable 

indication of instrument performance. These results demonstrate the usefulness of 

using the QR-RLS in order to de-convolve the instrument response without any prior 

knowledge of the instrument parameters.  

 

A useful test of the performance of the TLS algorithm comes from the results for the 

Taiwan earthquake recorded by the SMART-1 array. Two examples are shown in 
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Figure 9 and Figure 10 with 7- and 9-coefficients respectively, from station 

TAI03.150N (SA-3000 instrument) with a 25Hz anti-alias filter. Figure 9 and Figure 10 

demonstrate that the TLS algorithm performs well and recovers the inverse response 

of the 5th order Butterworth, anti-alias filter, with a cut-off at 25Hz. The TLS 

algorithm secured the same cut-off frequency at 25Hz as shown in the frequency 

response plots for station TAI03.150N and also stations TAI03.149, TAI03.161 and the 

TAI03.170, all of which have the same anti-alias filter and showed similar 

performance and results. The phase plots are linear, which means that all the 

frequencies are impressed with a constant phase difference or the same time shift for 

all the data points in the time history. Once the inverse filter coefficients are 

recovered the data is then filtered through the same coefficients in order to obtain an 

estimate of the de-convoluted data. Results from events in Iceland using the SMA-1, 

A-700, DCA-333 and SSA-1 instruments with cut-off frequencies at 15Hz, 45Hz, 

30Hz and 53Hz respectively as in [13] show that the performance of the TLS 

algorithm is provides good estimates of the cut-off frequencies in particular for the z-

component, which is less sensitive to tilts than the x- and y- components.    

 

The novel application [12, 13, 57, 58, 59] of these adaptive filters to de-couple the 

instrument response from seismic events has shown that the method of correcting 

seismic acceleration time-series obtains reasonable estimates of the inverse frequency 

response. Applying the filters to instruments where the natural frequency and 

damping ratio are unknown but some of the cut-off frequencies of anti-alias filters are 

known provides a good measure of the performance of the algorithm. Where standard 

instrument characteristics such as some of those described in section 2.2 and 2.3 are 

not available, in particular the instrument natural frequency and critical damping, 

which is the case for many legacy instruments, then the QR-RLS and the TLS 

adaptive algorithms, provide a means of obtaining estimates of a corrected 

acceleration time-series.  
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Figure 9 Frequency and phase response plots for a 7-coefficient TLS inverse filter. 

The event is TAI03.150N from the SMART-1 Array in Taiwan. 
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Figure 10   Frequency and phase response plots for a 9-coefficient TLS inverse filter. 

The event is TAI03.150N from the SMART-1 Array in Taiwan. 
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Chapter 2 The Recovery of Velocity and Displacement from the 
Acceleration Time-Series and the Localisation in Time and Removal 
of the Baseline Error  
 

5.0    Introduction  

 
Unfortunately recovering displacements from acceleration time-histories is not 

straight forward. Direct double integration does not yield a stable displacement time 

history as is shown in Figure 3. The displacement time histories in Figure 3 

demonstrate the sort of linear and quadratic trends obtained from double integrating 

after filtering with standard low-cut filters with differing cut-off frequencies.  

 

Sophisticated methods exist for correcting baseline errors and obtaining stable double 

time integration. Grazier [1,2,44,45] was the first to advocate a baseline correction 

procedure by obtaining and fitting a straight line to a segment of the velocity. Chiu in 

[46] high-pass filtered before integration, Iwan et al in  [47] removed pulses and steps 

by locating the time points which exceeded a pre-defined acceleration, later 

generalized by Boore et al in [11,15,48,49]. Boore and Akkar [50] by added further 

time points and made the time point’s t1 and t2 free of any acceleration thresholds, the 

accumulated effects of these baseline changes represented by average offsets in the 

baseline. Wu in [51] also used a modified a method due to [47] on the Chi-Chi event 

and defined t1 at the beginning of the ground motion, and defined t2 on the basis of a 

flatness coefficient and defined a further parameter t3, the time at which the 

displacement had reached a final value. Wang, et al [52] removed pulses and steps 

fitted with amplitudes which gave the same areas as the slope of the displacement to 

achieve stable double integration.  Pillet and Vireaux in [53] on the other hand, using 

data from station TCU068 from the 1999 Chi-Chi earthquake, recovered a baseline 

error as an average acceleration from a linear trend in the velocity and removed it at 

the time points where the velocity crossed the zero axes.  Chen and Loh in [54] also 

used a wavelet transform method, which applied the decimating discrete wavelet 

transform, using an FIR filter approximation to the Meyer wavelet. Their method 

however does not use a de-noising scheme, nor does their method or that of other 

schemes recover the fling time history. Indeed the recovery of the low-frequency 
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‘fling’ pulse in time by the wavelet transform algorithm, is novel, never before having 

been recovered, though always inferred from some strong-motion time-series and 

modelled as a sinusoidal pulse.    

 

The undecimated wavelet algorithm, described in detail in papers [3, 4, 20 and 56] 

uses the undecimated wavelet transform, with a de-noising scheme, which is the key 

to its success. The advantage of using the un-decimated transform with de-noising is 

that it is automated and it recovers the low-frequency ‘fling’ time history, locates an 

acceleration transient i.e. the baseline error and permits stable integration to 

displacement.   
 

Generally the ‘fling’ contains an acceleration transient (‘spike’), which on integration 

shifts the DC level of the velocity and causes linear trends in displacement. It has 

been shown that the vertical component is insensitive to tilts, therefore any ‘spikes’ in 

the vertical direction in the acceleration time history are usually attributed to 

instrument noise and indeed are usually small when compared with the ‘spikes’ of the 

horizontal components, which are attributed to ground rotation. This use of the 

undecimated wavelet transform recovers the residual displacement and extracts and 

then removes ground rotation acceleration transients that are a cause of double-time 

integration problems. This shows its usefulness and flexibility in being able to provide 

not only displacements, but in addition information on the rotational acceleration 

transients, hitherto always inferred, but never located.  We begin this chapter with de-

noising 

 

5.1   De-noising overlapping spectra using a threshold  
 

De-noising is a non-linear method of removing unwanted signals, it’s advantageous 

because spectra (of signal and noise) can overlap, whereas when filtering they should 

not. It’s the amplitude to which a threshold is applied, it has been applied together 

with the undecimated wavelet transform in Chanerley et al [3, 4 12, 13] to seismic 

events when de-convolving records. De-noising is superior to filtering in the sense 

that filtering will remove or attenuate those frequencies which we want to retain. In 
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particular filtering low-frequency noise will also filter the low-frequency signal (i.e. 

the fling) so is to be avoided.  

  

The application of a de-noising scheme initially applies a soft threshold [16, 35, 38, 

39 and 40] to both the low-frequency and higher frequency sub-bands signals after 

applying the wavelet filters. However, it was subsequently found that for some 

earthquakes applying a threshold to the higher frequency sub-bands removed too 

much detail in the de-noising process (Haldorsson 2009, private communication). 

Therefore the soft threshold initially applied to the higher frequency sub-bands was 

removed from the algorithm. This retained the detail without affecting the overall 

displacement result and when overlaying the original time history on the corrected 

time history, didn’t demonstrate any significant differences.  
 

A soft threshold time-series ia , where { }1,2, ,i N∈  , is given by equation(3), where 

τ is a threshold value. Hence, the low power components of ix are de-noised 

(removed).  

 
( ) ( )sgn

0

i i i

i

i

a a a
a

a

τ τ

τ

 − >= 
≤

  (3) 

Typically the threshold τ  is estimated from the standard deviation of the data σ , 

multiplied by Donoho’s “root two log N” [16, 38] 

 

 2 log Nτ σ= ,    
6745.0

MAD
=σ  (4) 

Though there are many other options for selection of a threshold value the critical 

component is the standard deviation σ of the noise in the data, which is unknown in a 

general case. Ideally we would have recordings from the accelerographs for in-situ 

cases where there is no earthquake to characterise the background noise levels and its 

statistics. However, this is not often available in practice. Furthermore, as we have 

indicated above, the presence of ground tilts introduces noise that is only present 

during the earthquake. Thus, we have an uncertain estimate of the statistics of the 

noise. In the case of accelerograms we use the highest frequency sub-band as an 

estimate of the noise for the purposes of computing the threshold. From this we 

compute the Median Absolute Deviation (MAD) that is a robust estimator and more 
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resilient to outliers in a data set than the sample standard deviation. In order to use 

MAD as consistent estimator for the standard deviation, it is divided by a scale factor 

that depends on the probability distribution of the noise (which is again unknown). 

For a normal distribution this scale factor is Φ−1(3/4) = 0.6745, where Φ−1 is the 

inverse of the cumulative distribution function for the standard normal distribution, 

and hence equation (4) 

 

5.2   A note on the un-decimated wavelet transform 

 
From an engineering and seismological perspective, the easiest way to envisage the 

wavelet transform is in terms of octave filters. These are quite common in digital 

audio. Octave filters form the basis of the wavelet transform, whether the transform is 

decimated or un-decimated.  The wavelet transform comprises in this case well 

designed filter banks [33, 34, 35, 36, 37]. The decimated, discrete wavelet transform 

(DWT) is applied in an octave-band filter bank, implementing successive low-pass 

and high-pass filtering and down sampling by a factor of 2, so that every second 

sample is discarded. As an example, a 4-channel filter bank scheme is shown in 

Figure (11). The filters used in wavelet filter banks are digital finite impulse response 

filters (FIR), also called non-recursive filters because the outputs depend only on the 

inputs and not on previous outputs. 
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Figure 11: A 4- channel, analysis (decomposition) wavelet filter bank showing sub-band 
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However, there is a problem with the DWT in that due to down-sampling the DWT it 

is not shift-invariant. Aliasing can occur between the sub-bands, which is undesirable 

if the application needs de-noising as in this case. Therefore the easiest way to 

overcome this is not to down-sample so that the length of the signal remains constant 

and not as in the decimated DWT and so we use a generalization of the DWT, which 

is the un-decimated wavelet transform or stationary wavelet transform (SWT), which 

is shift-invariant. Since we don’t decimate then instead we have to interpolate by 

pushing zeros into each level of the transform (i.e. between the filter coefficients) i.e. 

dyadically up-sampling, this is the á trous algorithm [37, 41] (trous = holes). It was 

also shown in [38 and 39] that the SWT de-noises with a lower root-mean-square 

error than that with the standard DWT and de-noising is a key requirement for this 

application. Furthermore, the inverse SWT (iSWT) averages the estimates at each 

level again minimizing the noise, so overall the SWT is a better transform to apply. 

Time domain filter banks in Figure (11) show the SWT, there are also the iSWT 

synthesis filter banks for reconstruction. In the analysis filter banks the easiest thing to 

do is to push zeros (á trous) in between the filter coefficients and keep filtering even 

and odd samples from every band. In the synthesis filter banks they are averaged at 

each level. The data of course is also de-noised between the analysis phase using the 

SWT and the synthesis phase using the iSWT.  The appendix presents some pseudo 

code in order to illustrate how the undecimated wavelet transform with de-noising is 

constructed.  

 

6    Results   

6.1   Some results from Chi-Chi Event, Taiwan (1999), stations 
TCU052, TCU068 and TCU129  
 
The TCU052NS station from the 1999 Chi-Chi event shows the low-frequency, fling 

profile time-history of Figure 12, which hides an acceleration tilt transient of 

3.015cm/s/s peak, at 48.45s. The acceleration transient is recovered by subtracting the 

corrected and uncorrected ‘fling’ time history. The recovered tilt acceleration 

transient leads to a velocity offset and displacement trend after double-time 
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integration of the transient. These are precisely the error offsets observed in the 

velocity and displacement time histories after double-time integrating the (almost) 

sinusoidal acceleration time history of Figure 12. It is inferred that acceleration 

transient of 3.015cm/s/s is in fact a gθ tilt transient. The area of the acceleration tilt 

profile is 7.21cm/s, which is the velocity offset. Similarly the area under the velocity 

step is 294.7cm, the maximum displacement offset as shown in Figure 12. The 

corrected displacement is 641cm, which compares with those of other researchers, the 

GPS reading is 845cm. The point to note is that the area of the acceleration transient 

is exactly equal to the constant velocity offset after integrating the acceleration 

transient and observed in the velocity sub-band. Then after integrating the constant 

velocity offset, then the result matches exactly the linear trend in the displacement 

before correction.  The TCU052EW low frequency, fling time-histories are shown in 

Figure 13. In this case the acceleration tilt transient occurs at 40.06s, approximately 8s 

earlier than the NS component. The displacement is -352cm (GPS -342cm) the 

instantaneous tilt acceleration gθ, shown in Figure 14, is 12.96cm/s/s and θ the 

instantaneous tilt angle is 13.2mrads. The area of the acceleration tilt profile is 

2.98cm/s, the velocity offset.   
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Figure 12: TCU052NS LFS, fling, which shows results before (red, green) and after 

(blue) baseline correction, wavelet used is the bior1.3  
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Figure 13: TCU052EW low-frequency sub-band, fling, which shows results before (red) 

and after baseline correction (blue). The wavelet used is the bior1.3 
 

Similarly the area of the velocity step is 180.7cm, which is also the maximum 

displacement offset as shown in Figure 14 and Figure 15 shows the resulting, 

corrected time-histories. Moreover, as for the NS component, then on integrating the 

extracted acceleration transient, it yields the velocity dc shift and displacement offset 

of the velocity and displacement profile after integrating the acceleration time history 

as shown in Figure 15. 
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      Figure 14 Recovered tilt gθ acceleration, velocity and displacement response of 

      instrument A900 for the TCU052EW component  
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Figure 15 The resultant plots for TCU052EW after the corrected low frequency sub-

band (LFS) are added to the high frequency sub-band (HFS)      

 

Similar results are obtained for TCU068NS in Figure 16 and Figure 17, using the 

undecimated wavelet transform method, the peak instantaneous tilt angles calculated 

from the peak acceleration transient are calculated as -6.9mrad (-6.75cm/s2) (EW) and 

9.8mrad (9.57cm/s2) (NS) and the resulting dynamic tilt amplitude obtained is 
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12.09mrad (11.86cm/s2). It is these peak acceleration transients, which are inferred as 

due to instantaneous tilt/rotation angles, that cause the dc shift in velocity in the latter 

portion of the time history and prevent stable double-time integration. These results 

are similar to those in [53] using a different method, with which to estimate the tilt 

angles. The estimates of displacement are shown in Table 5. 
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Figure 16 TCU068NS low-frequency sub-band, fling, which shows results before (light 

gray) and after (black) baseline correction. The triangular area in the acceleration is the 

results of an acceleration transient gθ at 45.65s. The resulting constant velocity dc shift 

of 11.61cm/s is shown in light gray as a post shaking, flat velocity time history  
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Figure 17 Acceleration Tilt transient for TCU068NS at 45.65s. The resulting constant 

velocity dc shift of 11.61cm/s is a clear example of a post shaking, flat velocity time 

history  

 

6.2   Station TCU129 Chi-Chi Event (1999)  

Figure 18 shows the low-frequency fling for record TCU129EW after the application 

of the undecimated wavelet transform, before and after baseline correction. There is 

clear post-fling distortion in the acceleration. At 30s Figure 19 there is a δ pulse-like 

jump in the acceleration of gθ = -4.8 cm/s/s and so an instantaneous tilt angle θ = 

4.9mrads, similar to that discussed for stations TCU052 and TCU068. 
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Figure 18 TCU129EW, low-frequency sub-band fling before (red) and after (blue) 

baseline correction showing tilt/rotation in acceleration and baseline dc shift in velocity  
 

0 10 20 30 40 50 60 70 80 90

-5

0

5

cm
/s/

s

Tilt Acceleration, velocity dc offset, displacement trend

0 10 20 30 40 50 60 70 80 90
-10

0

10

cm
/s

X: 90
Y: -8.815

0 10 20 30 40 50 60 70 80 90
-500

0

500

time /sec

cm X: 90
Y: -392

Area = 8.82cm/s

Area = 392 cm

 

Figure 19 Recovered tilt gθ acceleration, velocity and displacement response of 

instrument (A900) for TCU129EW component 
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Figure 20 low frequency sub-bands (red), high frequency sub-bands (black), Corrected 

(blue) using bior1.3 for TCU129EW component obtained at level 9 
 

However, in addition there is another set of distortions at 40s to 55s. This has led to a 

series of downward steps in velocity giving rise to a velocity shift of -7.5cm/s/s from 

zero. The profile of these changes in the acceleration, in particular at 40t > s, with a 

spike at 30s shown in Figure 19 giving a step in velocity, followed by further velocity 

steps at 40t > s. Of course there isn’t any certitude that these distortions are due to 

tilts/rotations, there are other effects that could have caused these. However, there is 

some justification for proposing that these distortions may be due to tilts/rotation. The 

net permanent displacement is shown in Figure 18 and Figure 20 as 78.48cm. The 

GPS station AF11 at 2.3km away measured a permanent displacement of 

approximately 100cm. The time history profiles for TCU129NS are shown in Figure 

21 below and in this case the bior2.6 wavelet was used at a level 9 of decomposition. 

At 28.1s the low-frequency fling showed an acceleration transient of magnitude gθ = 

9.93cm/s/s, giving a DC shift to the latter part of the velocity time history of 

7.65cm/s. The velocity offset after integration then gave a linear trend with a DC 

offset of 435cm at 90s. These sorts of baseline errors make double-time integration 

impossible without removing the error. Therefore the undecimated wavelet algorithm 
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then zeroes-out the acceleration from 28.1s and re-integrates to give the corrected 

time histories shown below in Figure 21. The GPS displacement for the NS 

component was -32.1cm that obtained using the presented wavelet transform method 

is -26.8cm. The TCU129V component is interesting because it suggests either at least 

9 more tilts, or just a very noisy instrument. However, in [15] there is a suggestion 

that the location of the instrument (A900) on a concrete pier may have been the cause 

of  the oscillatory ringing. Certainly there are significant oscillatory effects as can be 

seen from the time history in Figure 22. 
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Figure 21   low frequency sub-bands (red), high frequency sub-bands (black), corrected 

(blue) using bior 2.6 for TCU129NS component obtained at level 9 
 

Nevertheless the fling pulse in TCU129V is clearly visible both in the acceleration 

and velocity time history and we take the zero velocity cross-over point at 33.97s 

immediately after the fling pulse in velocity, zero the acceleration from that point and 

re-integrate. The first acceleration transient occurs at 33.97s, with a magnitude of 

2.12cm/s/s. The displacement is shown in the Figure 22 at -12.26cm that given by 

GPS is -17.7cm. 
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Figure 22: low frequency sub-band  (red-before correction), LFS (blue-after correction) 

of the vertical component TCU129V  
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            Figure 23: LFS (red), HFS (black), and Corrected (blue) for TCU129V  
 

At the time point where the velocity fling pulse crosses the zero-axis the acceleration 

is zeroed to the end of the record and re-integrated, giving a displacement of -

12.26cm, the GPS reading for that component is -17.7cm. The acceleration transient, 
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though not explicitly shown is small in magnitude (2.12cm/s/s) compared with that of 

other components, suggesting its origin may be from instrument noise. 

 

6.3   Some Permanent Displacement and tilt estimate summaries 
The results show some consistency in the occurrence of the acceleration transients in 

TCU129 and the other events displayed in Table 2. Generally the horizontal 

components ‘tilt’ acceleration transients are larger than that of the vertical component, 

in particular that for TCU129NS, TCU068NS and TCU102N are very much larger 

suggesting strong ground rotation.  

 

Table 2: Summary of zero velocity points employed and estimated peak tilt acc 
 

Chi-Chi 

Station N-S Components E-W Components 

Vertical 

Components 

  Tilt Acc Time Tilt Acc  Time Tilt Acc Time  

  cm/s/s sec cm/s/s Sec cm/s/s sec 

TCU129 9.93 28.1 -4.8 30 2.12 33.97 

TCU052 3.015 48.45 12.96 40.06 3.15 44.23 

TCU068 9.565 45.65 -6.75 45.83 n/a n/a 

TCU102 10.63 38.39 4.04 41.2 2.174 42.93 

 

However it could also be argued that the component TCU129EW is too close in 

magnitude to that of the vertical and therefore could be attributed to noise. The results 

for TCU052 exhibit a large acceleration transient or ‘spike’ for the TCU052EW 

component (suggesting ground rotation), but demonstrate small acceleration transients 

for the TCU052NS and TCU052V, suggesting these are just noise. The disparity in 

the times of occurrence of the acceleration transients, for each component, also 

suggests instrument noise plays a part. The results in Table 2 for TCU068 and 

TCU102 are consistent with predicted behaviour, where the vertical components are 

either not responding to tilts or responding to small amounts of noise. Whilst the 

horizontal components are responding to ground rotations, given their large 

magnitudes.  In all cases for the above events the estimates of residual displacements 

show good correlation with those from GPS. 
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       Table 3: Comparison of residual displacement (wavelet method) vs GPS 

Level TCU052NS TCU052EW TCU052V 

  [cm] [cm] [cm] 

10 671 -352 369 

GPS 845.1 -342.3 397 

         

      Table 4 Comparison of residual displacement (wavelet method) vs GPS 
    

 

 

 

 

 

               Table 5 Displacements for station TCU068, Chi-Chi event 1999 

Wavelet 

bior1.3 

 Baseline 

point 

Residual 

disp. 

i
 

iT  ( )i endx t  

 [s] [cm] 

TCU068EW 1 45.7 -731 

TCU068NS 2  45.67 555 

TCU068V  3 56.84  300 

 

he collated results in Table 3, Table 4 and Table 5, show that the wavelet transform 

method, [3, 4] produces a good estimate of residual ground displacements and 

estimates of the baseline error in the form of δ-like acceleration transients (‘spikes’) 

caused by ground rotations. There are many more results from events in New Zealand 

[64], Iceland and Taiwan in the literature published by the author and listed in the 

references. 

 

 

Level TCU129EW TCU129NS TCU129V 

  [cm] [cm] [cm] 

9 78.46 -26.8 -12.26 

GPS 88.2 -32.1 -17.7 
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7   Conclusions  
 

In this thesis some of the techniques for mitigating noise/error in accelerogram times-

series have been reviewed from the work performed by the author and already 

published in the literature.  Older analogue accelerographs clearly present a greater 

challenge due to their design. Nevertheless these legacy recording are still an 

important source for structural and geotechnical earthquake engineering 

designer/analysts. Modern, digital accelerographs are a great improvement in many 

ways as they correct design problems of earlier instruments such as, higher dynamic 

range, higher sampling rate, automatic digitization and triggering, flat instrument 

response down to DC etc. However, the problem of ground rotation (tilt) noise 

corruption of low frequency components of accelerograms is still present. This is 

because all strong motion instruments are still only 3 (translational) axes instruments 

rather than full 6 axes instruments. This may be partially due to cost of designing and 

building a 6 axis instrument but it is also the case that rotation accelerometers (such as 

gyroscopic transducers) currently may have far low performance specifications than 

translational ones.  

 

One solution may be to use multiple 3 axis instruments spaced on a rigid structure 

such that differences in translational accelerometers (in different instruments) can be 

used to obtain rotational acceleration estimates. This is often done on bridges for 

evaluating torsional (rotation) deck modes and could also be applied to ground 

motion. In this case the classical 3 axis instrument is not re-designed however it 

would have to be strategically positioned in-situ very close to other 3 axis 

instruments. Nevertheless modern, state-of-the-art signal processing techniques such 

as the undecimated wavelet transform with a de-noising algorithm demonstrate the 

usefulness of tri-axial data in order to facilitate meaningful double-time integration, to 

recover the fling-pulse, the displacement fling-step and to some extent the rotational 

(tilt) acceleration transients that are generated by ground rotations. This work go some 

way towards the recovery of credible ground motion velocity and displacement time-

series and therefore better quality boundary conditions in the design of structural 

artefacts.    
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APPENDIX I 

The algorithm in pseudo-code is as follows: 

Load data and enter subroutine: 

function ( ) 

1. Zero-pad data to next power of 2 

2. At a high level, decompose data to low and high frequency acceleration subbands 

using un-decimated wavelet transform. 

3. Find maximum decomposition level 

4. Fix high-frequency threshold: Thr1  % This is optional* (see 2010 and 2013 

papers) 

5. Fix low-frequency threshold:  Thr2  % This is mandatory  

6. Threshold the low period sub-bands (Thresholding the high-frequency sub-band is 

optional) 

11. Reconstruct low-frequency acceleration sub-band  

12. Reconstruct high-frequency acceleration sub-band  

13. Remove zero padding 

14. Exit subroutine 

Enter new subroutine: 

15. Integrate low and high frequency acceleration sub-bands 

15. Find time-point for 1st zero crossing in low-frequency, velocity sub-band, this 

should be at the fling 

16.  Zero-out acceleration at the located time-point  

17.  Re-integrate sub-bands down to displacement  

18. Add the resulting sub-bands for corrected acceleration, velocity, displacement  

19. Activate loop for another zero-crossing if necessary and re-run    

20. Plot Results 

 

 

*The point to note here is that to threshold the high frequency sub-band risks 

   removal of the P-wave and other detail 
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Abstract

This paper describes the correction or recovery of the original ground motion acceleration time histories from accelerometer digital
records. It deals specifically with the situation where the recording accelerometer instrument is unknown. This is the case with some older
(legacy) records. The term instrument implies all processes that have modified the time history in some way, such as the accelerometer
response transfer function, anti-alias filters used in A/D conversion, digital quantisation, etc. The total least squares (TLS) method is
used to identify the unknown system (instrument) that must be used to de-convolute the recorded time histories. This approach is com-
pared and contrasted with the recursive least squares method (QR-RLS) and a standard second order, single-degree-of-freedom, idea-
lised instrument de-convolution. A range of seismic events from Iceland and Taiwan (SMART-1 array) are considered. These data sets
include a number of different strong motion accelerometers, from Iceland: the SMA-1, DCA-333, A-700, SSA-1 instruments and the SA-
3000 used in the SMART-1 array. Without any assumed information about the instrument the TLS is shown to provide a reasonable
estimate of its characteristics from just the recorded time history data.
� 2007 Elsevier Ltd. and Civil-Comp Ltd. All rights reserved.

Keywords: Correction; Filter; Seismic; Wavelet; De-noising; Recursive; Least squares; Band-pass; Filtering; Filter; Inverse filter; Convolute; De-convo-
lution; Butterworth
1. Introduction

In earthquake engineering the analysis of complex struc-
tural systems often requires a time history analysis based
on the FE method. These types of analyses require in some
cases real ground motion acceleration, velocity and dis-
placement time histories. The databases of records held
by various agencies [1,2], etc. contain a large quantity of
data from historic events that are very important to the
structural engineering analyst. However, these records
often require processing and correction to recover the best
estimate of the true ground motion.

Typical correction techniques [3] used are necessary to
(i) digitise, i.e., equi- and up-sample the data; (ii) de-trend;
(iii) de-noise using the wavelet transform or band-pass filter
[4], using digital Butterworth, Chebyshev filters or digital
0965-9978/$ - see front matter � 2007 Elsevier Ltd. and Civil-Comp Ltd. All
doi:10.1016/j.advengsoft.2007.05.007

* Corresponding author.
Finite Impulse Response (FIR) filters [5–8]; (iv) correct
for instrument characteristics; (v) down-sample to an
appropriate sampling rate. The sequence of the component
(ii)–(v) and exact algorithms used in these correction tech-
niques may vary significantly, as can the resulting recap-
tured original ground motion itself.

Recent methods, which describe the de-convolution of
an instrument response from seismic data, apply a least
squares based, inverse, system identification method
[4,9,10] with which to de-convolute the instrument
response from the ground motion. Previous methods
assume a second order, single-degree-of-freedom (SDOF)
[5,7] instrument function and apply an inverse filter in the
time or frequency domain. This de-convolves the instru-
ment response from the recorded time history. Whereas
in other cases, corrected seismic data [1] are not explicitly
de-convoluted, as a consequence of insufficient instrument
parameter data in particular with older records.
rights reserved.
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The advantage of the least squares based method is that
it does not require any information regarding the instru-
ment; it only requires the data, which the instrument has
provided, from which to determine an estimate of the
inverse of the instrument response. However, the least
squares solution which minimises kAx � bk2 has been
sought with the assumption that the data matrix A is ‘cor-
rect’ and that any errors in the problem are in the vector b.
This paper applies the method of total least squares (TLS),
[11–16] which allows for the fact that both A and b may be
in error.

A range of instruments and their performance are com-
pared using Icelandic and Taiwanese (SMART-1 array
[2,17]) seismic data, digitally recorded and with some
instrument parameters included. These parameters are the
viscous damping ratio and the natural frequency, which
are usually the transducer specification, therefore may
not be ‘instrument’ in the global sense, since usually they
do not include any pre- or post-filtering details. The instru-
ment types compared include SMA-1, DCA-333, A-700,
SSA-1 [1,18] and the SA-3000 for the SMART-1 array
[2,17]. Each seismic record had some details of the instru-
ment parameters, assumed here to be for the transducer
only, but not all had details of filtering used in the instru-
ment. The SA-3000 SMART-1 data however gave explicit
details of the anti-alias filter used with a cut-off of 25 Hz,
the transducer natural frequency as 140 Hz and damping
of 0.7 ± 2%.

Instrument performance was based on a comparison of
time histories and frequency responses obtained by de-con-
voluting using the method of total least squares (TLS) and
the QR-RLS [9,10,19,20]. Correlation was good up to and
at the cut-off frequencies, thereafter the roll-off between the
methods differed in gradient, with the TLS and QR-RLS
showing steeper gradients than that for the second order,
SDOF response. This is consistent with the fact that digital
instruments would have an anti-alias filter whose impres-
sion would be embedded in the data.

A particular problem in seismic correction methods is
that quite often the transfer function of the recording
instruments is not known, in particular in some older (leg-
acy) records. Where instrument parameters are provided, a
second order SDOF transfer function is applied in either
the time or frequency domain [5–8] in order to de-couple
the instrument response. The time-domain expression is
given by

agðtÞ ¼ �€xðtÞ � 2cx _xðtÞ � x2xðtÞ ð1Þ

where c is the viscous damping ratio, x is the transducer’s
natural frequency and ag(t) is the ground acceleration.

The above expression (1) can be used to de-convolve the
recorded motion from the ground acceleration in either the
time or frequency domain. However, it should be noted
that those instrument parameters given usually apply to
the transducer only and not to the instrument as a whole.
The transducer is certainly an important element, but
included should be the responses due to any signal condi-
tioning such as amplification and filtering. In any seismo-
graph there is a cascade of transfer functions due to
different elements which make up the instrument.

However, where instrument parameters are not avail-
able, then unless some assumptions are made regarding
instrument parameters, it is not possible to de-convolve
(de-couple) the instrument response from the seismic data
using a second order SDOF expression. Therefore,
researchers either do not de-convolute the data or just
apply a SDOF correction for the transducer only.

A least squares approach was proposed [10] embedded
in an inverse system identification problem, with which to
de-convolve the instrument response. This provides an esti-
mate of the instruments inverse frequency response with
which to de-convolve the data to obtain an estimate of
the ground motion. The problem is formulated below:

minimise ðkAx� bk2Þ ð2Þ
x ¼ ðATAÞ�1

ATb ¼ PATb ð3Þ

The approach involves a least squares minimisation, Eq.
(2), of the norm squared errors for a given choice of filter
coefficients x. This problem (2) has the well-known solu-
tion given by Eq. (3) where P is the inverse correlation ma-
trix and the coefficients.

Efficient methods used to find an estimate of the inverse
filter coefficients are the recursive least squares algorithm
(RLS) and its more stable variant, the square-root recur-
sive least squares algorithm (QR-RLS) [19,20].

However, in all of these methods it is assumed that
errors present are all in the observation matrix, in this case
the matrix b in (2). This assumption is not always realistic
since errors are also present in the convolution matrix A,
given that it is derived from the recorded seismic data.
Therefore, a better more general fitting method, the total
least squares (TLS), is examined which compensates for
errors both in the matrix b and the matrix A, and the prob-
lem is re-formulated.
2. The total least squares algorithm

The TLS solution is the minimum norm solution x̂ such
that

Âx̂ ¼ b̂ ð4Þ

where Â; b̂ is the best rank r approximation to A, b, x̂ is the
TLS solution of (4), Â ¼ Aþ DA, b̂ ¼ bþ Db and A and b
are the exact but unobservable data matrices and DA and D
b are the perturbation errors

so that kDÂjDb̂kF ¼ k½Ajb� � ½Âjb̂�kF is minimal ð5Þ
and Rðb̂Þ � RðÂÞ ð6Þ

where R(a) is the range (column space) of a and cjd means
that c and d are arranged side-by-side (augmented). kakF

signifies the Frobenius norm of matrix a. To find a solution
to the TLS problem we write (4) as follows:
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½Aþ DA�x̂ ¼ ½bþ Db� ð7Þ
or ½Ajb� þ ½DAjDb�Þ½x̂T;�1�T ¼ 0 ð8Þ

We can use the singular value decomposition (SVD) in or-
der to find the TLS solution to (8). The augmented vector
½x̂T;�1� must lie on the null-space of ([Ajb] + [DAjDb]) and
the perturbation [DAjDb] must be such that ([Ajb] +
[DAjDb]) is rank deficient.

The generic solution of the TLS problem is developed in
[11,12] and uses the SVD. Denote the SVD of ½Ajb� 2 Rm�p

as (9); where A 2 Rm�n, p = n + 1

½Ajb� ¼ URVT ð9Þ
U ¼ ½u1u2 . . . um�; V ¼ ½v1v2 . . . vp�;
R ¼ ½diagðr1; r2; . . . ; rrÞ� ð10Þ

where U 2 Rm�m and V 2 Rp�p are square orthogonal
matrices, diagonal matrix R 2 Rm�p with non-negative
number on the diagonal; it is the same size as [Ajb]. The
number r is the rank of [Ajb]. If r = min(m,p) then matrix
[Ajb] full rank, i.e., all the columns (if m P p) or all the
rows (if m 6 p) are linearly independent. The singular val-
ues are usually ordered such that r1 P r2 P r3 � � �P
rr P 0.

However, this solution requires the reduced rank matrix
closest to [Ajb], which in this case is ([Ajb] + [DAjDb]).
Therefore, to obtain a minimum deviation [DAjDb] such
that (5) and (6) are satisfied we replace rn+1 with zero.
Therefore,

ð½Ajb�þ ½DAjDb�Þ½x̂T;�1�T ¼ 0 ð11Þ
with ð½Ajb�þ ½DAjDb�Þ ¼UR̂VT and R̂¼ diagðr1; . . .rn;0Þ

ð12Þ

and so the desired TLS solution can be found from the last
row in VT of the SVD of [Ajb] in (9) and is given by

x̂ ¼ �vð1 : nÞ=vnþ1;nþ1 ð13Þ

Next the TLS solution is generalised by assuming that the
smallest singular value is repeated:

r1 P r2 P r3 P � � � rk P rkþ1 ¼ rkþ2 ¼ � � � rnþ1

An approach to obtain a solution is to find a Householder
matrix Q such that

VQ ¼
W y

0T a

" #
ð14Þ

then the minimum norm solution is given by

x̂ ¼ �y=a ð15Þ

A procedure for computing the solution to the TLS prob-
lem is listed in the appendix.

3. Numerical results for seismic events in Iceland

The results confirm the usefulness of using this method
of de-convoluting the instrument response. These are
shown for four types of instrument, the SMA-1, the A-
700, the DCA-333 and the SSA-1, which were used in sev-
eral Icelandic seismic events [1,18]. In all cases the data was
de-noised using the stationary wavelet transform prior de-
convolution, with the db8, Daubechies (8) wavelet [21–23]
of order N = 8 as basis. In all cases for the Icelandic data
the number of filter coefficients used is 51 for the TLS
and 11 for the RLS. There is no any particular reason
for this, except to demonstrate different filter features,
because more coefficients with the RLS yield more ripples
whereas a smaller number of coefficients give a smoother
response and less ripples. However, there is a point to be
made with the SMART-1 data from Taiwan, where instru-
ment parameters are more detailed and the number of coef-
ficients become a determining factor when comparing the
TLS algorithm against the inverse of the fifth order, anti-
alias Butterworth filter details provided.
3.1. SMA-1 instrument

Fig. 1 shows a comparison of inverse frequency
responses using the theoretical second order SDOF at a fre-
quency of 13 Hz and damping of 0.6 of an SMA-1 instru-
ment which recorded the x-component of Icelandic seismic
event 005267 in 1987. The correlation between the theoret-
ical response, the response due to the QR-RLS and the
TLS is high up to 13 Hz. However, thereafter the roll-off
of both the QR-RLS and the TLS is much less steep that
the theoretical response. It should be understood that the
best-fit polynomial is drawn through the TLS solution,
which comprises the finite impulse response (FIR) inverse
filter side lobes (removed from Fig. 1). This is to give better
visualisation of the trend as compared with the QR-RLS
and the second order SDOF.

Fig. 2 compares the frequency responses in the y- and z-
components of the same seismic event when de-convolved
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using the TLS (FIR) solution, the QR-RLS and the theo-
retical response. The TLS shows the finite impulse response
(FIR) of the inverse filter generated by this method, with a
best-fit, seventh order polynomial superimposed for better
visual comparison with the QR-RLS and the theoretical
instrument response. In all cases after 13 Hz, the theoreti-
cal curve has a much steeper roll-off than the TLS or
QR-RLS. The two longitudinal components (005267x
and 005267y) show very similar frequency response there-
fore only 005267y is shown, however the vertical compo-
nent differs towards the higher frequency. Nevertheless,
all components for the SMA-1 instrument demonstrate
that the SMA-1 has a low-pass characteristic and certainly
show a flat frequency response up to approximately 15 Hz.
It should be noted that the response plots shown are for the
inverse filter with which to de-convolute the seismic data
obtained from the instrument. The instrument response is
the reverse of the response shown, i.e., the instrument has
a low-pass response. The 005267 records unfortunately
do not provide details of any anti-alias filter, but one
assumption would be that such a filter would have a cut-
off similar to the response of the instrument. The plots also
illustrate the use of many coefficients in order to estimate
the inverse filter. In this case 51 coefficients were used
which generate the side-lobe ripple for illustration purposes
only, in performing the de-convolution a smaller number
of coefficients suffice 7, 9, 11 or 15 which give a smoother
response as shown in Section 4 for the SMART-1 data.
3.2. A-700 instrument

The frequency response plots in Fig. 3 for Icelandic
event 005268y and z using instrument A-700 show similar
response trends to that of SMA-1. The instrument fre-
quency is 45 Hz and the damping factor is 0.7, correlation
up to about 50 Hz is good with the longitudinal compo-
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nents showing similar response trends (only 005268y

shown) and the z-component differing somewhat towards
the higher frequency end. Nevertheless, as for the SMA-1
the response of the A-700 instrument(s) is decidedly low-
pass. Again as for the SMA-1 data, anti-alias filter data
was not available, but again one assumes such a filter is
part of the instrument and would have a cut-off approxi-
mately 45 Hz. Both the x- and z-components do have con-
siderable ripple in the pass-band up to and beyond 45 Hz
and in taking the average through the TLS then the cut-
off at 45 Hz occurs at 5 dB. The average roll-off does vary
beyond 45 Hz, between theoretical and derived, but that is
to be expected with both the QR-RLS and the TLS provid-
ing a more realistic assessment of the instrument response
as they must also include the anti-alias filter whose specifi-
cation is not included in the record. The TLS best fit is
again a seventh order polynomial included for better visu-
alisation and comparison.
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Fig. 4. Inverse frequency responses for the instrument DCA-333 using
TLS and QR-RLS for accelerograms: (a) 005238x and (b) 005238z.
3.3. DCA-333 instrument

Again as for the other instruments the frequency
responses in Fig. 4 show the same general response trends,
in this case the instrument frequency is 30 Hz and the
damping parameter is 0.7. The correlation up to 30 Hz
between the QR-RLS, the TLS and theoretical plot is not
as good, with ripples in the pass-band, in this case the
QR-RLS gives a more robust response. As for the other
instruments details of the anti-alias filter are not available,
but again it is reasonable to assume it would have a cut-off
of about 30 Hz. In this case the x-component of the event
shows an almost flat band using the TLS with the response
rolling off after 30 Hz. However, the z-component shows a
lot of ripple in the pass-band up to 30 Hz, which does of
course smooth out, nevertheless the x-component does
show a better response. The QR-RLS with a smaller num-
ber of coefficients however does show a better response in
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both the z- and x-components, but especially so in the case
of the z-component beginning to roll-off at 30 Hz. In this
case the theoretical inverse filter displays a reasonable
response compared to both the TLS and the QR-RLS dem-
onstrating that it is better to use the SDOF correction than
not correcting at all.
3.4. SSA-1 instrument

The frequency response plots are shown in Fig. 5 for Ice-
landic event 005258y and z. The instrument frequency is
given as 53.3 Hz and the damping as 0.67. In this case
the anti-alias filter is specified as 2-pole and with a cut-off
at 50 Hz. The correlation to 50 Hz between the QR-RLS,
the TLS and the theoretical response is good for the z-com-
ponent, but not as good for the y-component. The best-fit
roll-off of the TLS plotted through the inverse FIR filter
response however, is approximately equivalent to a fourth
order Butterworth, it can be argued that this is consistent
with a cascade of the second order anti-alias filter and a
second order SDOF instrument transfer function. There-
fore, in this sense the TLS exhibits better performance than
the QR-RLS or the second order SDOF. Nevertheless the
y-component shows 5 dB of roll-off at 53 Hz and more rip-
ples in the pass-band up to 53 Hz, in fact the y-component
begins to roll-off much earlier than 53 Hz indeed at 30 Hz
and so does not identify the anti-alias filter as well as the
z-component. These are of course estimates in the least
squares sense, nevertheless the point to make is that it is
still better to de-convolute even with an estimate which
may fall short of absolute values but gives a general accept-
able trend in its estimated inverse response.
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4. Numerical results for the Taiwan SMART-1

seismic array

This SMART-1 [2,17] array has the sensors laid out in
concentric circles and is located in the Northeast corner
of Taiwan near the city of Lotung. The original array com-
prises 37 force-balanced, tri-axial accelerometers (SA-3000)
with a 25 Hz, high-cut anti-alias filter, configured in three
concentric circles of radii 200 m, 1000 m and 2000 m. The
three rings are labelled I (inner), M (middle) and O (outer),
respectively. There are 12 equally spaced stations on each
ring and a central station designated as C-00. Each acceler-
ometer in the SMART-1 array is connected to a digital
event recorder with 2 g full scale. The accelerometers trig-
ger on all three components (nominally 0.02 g). The
ground motions are digitised using a 12-bit Analogue to
Digital converter sampling at 100 Hz. In addition, the
instrument uses a 25 Hz, 5-pole, Butterworth, high-cut
anti-alias filter [2] and the transducers have a natural fre-
quency of 140 Hz. This means that the seismic data from
each station should have a footprint of the anti-alias filter
characteristics, therefore in this case the capability to de-
convolute is relatively trivial.
However, the more detailed information provided
affords a means by which it makes it possible to compare
the inverse frequency response obtained using the TLS,
with the fifth order Butterworth filter. The event used is
43 with ML = 6.5, which was the largest earthquake
located within 10 km of the array centre and was the first
to be recorded by all 39 stations. The sections below outline
procedures used on the Taiwan data with which to examine
the usefulness of using the TLS as a tool for de-convolu-
tion, in particular where instrument parameters are not
known as in a substantial amount of older seismic data
records.

4.1. Reverse engineering the SMART-1 with the TLS

The procedure for comparison is straightforward and
possible with the SMART-1 data sets because the details
of the instrument processing are included. In particular,
the transducer and anti-alias parameters are provided.
Firstly and just as for the Icelandic events, the SMART-1
seismic data from the SA-3000 instrument is de-noised
using a Debauchies (db8) wavelet as basis with decomposi-
tion to level 5.

The next step is to run the de-noised instrument data
through the TLS algorithm in order to obtain the inverse
FIR filter coefficients from the algorithm. The resulting
coefficients are an estimate of the inverse filter and are then
used to reverse engineer or de-convolute the time series in
order to obtain an estimate of the ground motion. The ori-
ginal time series and that derived from the TLS, are then
compared using their spectral density functions in order
to obtain the coherency spectrum:

clm ¼
Slmðf Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Slðf ÞSmðf Þ
p ð16Þ
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where Slm = cross-spectral density function and Sl and Sm

are the individual spectral densities of the two time series.
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Fig. 9. Frequency and phase response plots (top) for a 9-coefficient TLS
inverse filter. (Bottom) Coherency for time histories obtained using the
TLS and Butterworth inverse filters, mean = 0.9891. The event is
TAI03.150N.
4.2. SMART-1 results in applying the TLS to de-convolute

The first example uses 7 TLS coefficients and shows the
frequency response in Fig. 7. The response is in line with
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the inverse Butterworth filter response used, the response
begins to roll-off at 25 Hz, but not as steeply as the theoret-
ical fifth order shown in Fig. 6. In this case the number of
coefficients used is now much smaller and therefore the fre-
quency response is much smoother, it also accelerates com-
putation. Fig. 7 shows the response against a normalised
frequency axis where p is equivalent half the sampling fre-
quency of 100 Hz. Therefore, 0.5p is at 25 Hz, which is
where the inverse filter begins to roll-off. Given that the
Butterworth filter cut-off is at 25 Hz, then this is indeed
an excellent result, moreover it is the same result for all
the SMART-1 data so far de-convoluted.

The phase response of the inverse filter is linear and
indeed the phase response of the theoretical Butterworth
filter is linearish, although it has to be pointed out that
although the measured magnitude response is given [2]
the measured phase response of the Butterworth fifth order
filter used is not given. Butterworth filters in general have
non-linear phase responses, but the fifth order demon-
strates a good measure of approximate linearity. This is
an important aspect of de-convolution, in general the
‘instrument’ should either preserve the phase of the ground
motion or at most just impress a linear phase. This linear
phase change is the same as shift in time for all data points
in a time history. Whether the changes are positive or neg-
ative is immaterial as long as they are linear or approxi-
mately linear.

The two time series of Fig. 8 show one obtained from
the TLS inverse filter and the other is the original.
Although the two time series have a high coherency, the
TLS does show a transient at the end of the time record.
This transient can be smoothed out by using five coeffi-
cients, but then the inverse filter rolls off at much less than
25 Hz, which is not acceptable. A comparison is also shown
using the analysis plots of Figs. 11 and 12 in particular the
power spectral densities (PSDs) and the acceleration
response spectra, which in this case are similar for both
the TLS and the SDOF de-convoluted. There are differ-
ences in the acceleration response spectrum and PSDs
though the general trend of the power and acceleration
response plots is similar. These differences in the accelera-
tion response spectra are not insignificant and should be
taken into account when using the time series or the spectra
to excite models of structures. Moreover, it is clear that the
time series in Fig. 11 decays more slowly than that cor-
rected by using the standard SDOF in Fig. 12.

There is clearly good correlation between the time series
derived from the 7-coefficient TLS inverse filter and the ori-
ginal time series. This is borne out in the coherency plot of
Fig. 7 with a mean coherency of 0.99.

The next example in Fig. 9 uses 9 coefficients and again
as for the 7-coefficient TLS filter the response is similar
with a roll-off at about 25 Hz, the coherence between the
time series obtained with the TLS and the original time ser-
ies is also high with a mean coherence of 0.9891, clearly the
correlation between the two time series is good. However,
Fig. 10 shows that the transient at the end of the time
record is even more pronounced than with 7-coefficients.
Indeed as the number of coefficients increases to 11 coeffi-
cients then for this record the end transient remains with
more emphasis, but with negligible power.

However, such good correlation does not always lead to
identical or indeed similar response spectra and PSDs. The
time series after TLS (7-coefficient) correction when ana-
lysed can yield different PSDs and acceleration response
spectra. This is evident from Figs. 13 and 14 the analysis
plots for event TAI03.161N (the middle circle). Fig. 13
the TLS corrected time series shows a high resonant peak
at 43 Hz, which is not apparent in the analysis plot of
Fig. 14 the SDOF de-convoluted time series. Moreover,
the time series at the top-left of each of Figs. 13 and 14
show some marked differences. After 8 s the TLS corrected
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time series show a far slower rate of decay and stops
abruptly at zero, whereas that corrected using the standard
SDOF shows a gradual decay in the same amount of time.
This is not unexpected since the TLS has effectively
removed the influence of the 25 Hz, Butterworth anti-alias
filtering applied to the data. This has brought out other
features which illustrate the need to take care with sampled
systems, the 43 Hz could be a higher frequency alias given
that the resonant frequency of the transducer is 140 Hz, but
it could also have some geophysical explanation or indeed
the operation of the instrument itself.

4.3. Computational aspects

In general then the TLS algorithm demonstrates that it
can be used effectively to de-convolve the instrument
response from the seismic data, in particular where the
instrument parameters are either not known or not avail-
able. However, computationally the TLS algorithm
requires a large amount of memory when working with
large data sets and in double precision. The SVD generates
an m · m matrix when processing, therefore for a data set of
8000 points and double precision this is approximately
8000 · 8000 · 8 = 0.512 Gbytes of RAM. Allowing for the
operating system, then clearly memory limits on a standard
PC are easily exceeded. Single precision at 4 bytes alleviates
the problem but of course there is a trade-off. Nevertheless,
off-line the TLS provides a reasonable tool for de-convolut-
ing the instrument response providing an inverse filter as
good as if not better to that of the QR-RLS and the second
order SDOF, providing a means of de-coupling the instru-
ment to obtain an estimate of the ground motion.
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5. Summary and conclusion

The results demonstrate that the TLS algorithm is a very
useful tool for correcting seismic data when instrument
parameters are not known. The SMART-1 data in partic-
ular has produced some excellent results in securing an esti-
mate of the inverse filter with a cut-off at 25 Hz, which
mirrors the cut-off of the actual anti-alias filter used.
Although only some results are shown, the inverse filter
characteristics are similar for all the x-, y- and z-compo-
nents analysed from the inner, middle and outer rings of
the SMART-1 array namely the seismic events from the
TAI03.149xyz, TAI03.150xyz, TAI03.161xyz and the
TAI03.170xyz records. The inverse filter response plots of
Figs. 7 and 9 show good agreement with the Butterworth
theoretical response of Fig. 6. The Icelandic responses also
demonstrate estimates of responses in good agreement with
the instrument data where these are available as in Fig. 5,
with a cut-off at 53.3 Hz. Where only transducer data is
available then it is assumed that an anti-alias filter used
in the digital recording system would have a cut-off at least
at the natural frequency of the transducer. This seems to
have been borne out in the records from which the fre-
quency responses of Figs. 1–4 are derived with the TLS
and QR-RLS. Transducer details only are available for
those records and the cut-off frequencies derived by the
TLS and QR-RLS are in line with the transducer natural
frequencies. This suggests that the anti-alias filter had a
cut-off at similar frequencies, just as for Fig. 5 record
005258y- and z-components where the anti-alias filter has
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a cut-off at approximately the same point as the transducer
natural frequency.

The phase response for both the TLS and the QR-RLS
are both linear and one assumes that the phase response of
the actual Butterworth filter used for the SMART-1 data is
similar to that predicted in theory as shown in Fig. 6. This
is approximately linear which then impresses a time shift
on the record as a whole with minimal distortion. The
inverse filters will also impress their own linear time shift,
but both can be easily corrected by shifting the record by
the same amounts.

The time series of Fig. 10 demonstrate similarity
between the TLS derived time series and that obtained
from the SMART-1 record using the Butterworth filter.
Nevertheless there are transients visible in the record and
these become more pronounced as the number of coeffi-
cients increase. These transients do not have much power,
but nevertheless may well be a function of instrument per-
formance or ground motion. Figs. 11 and 12 also bring out
some more interesting features in that the TLS corrected
time series show a much slower decay down to zero indeed
extending for approximately 35 s as compared to the 20 s
of the SDOF corrected time series.

Finally, Figs. 13 and 14 again demonstrate more gradual
decay of the SDOF corrected time series compared to that
corrected using the TLS. The Butterworth filter would have
attenuated any higher frequencies which might be modu-
lated by the lower frequencies present in the recovered
data, but on the application of the TLS inverse filter these
higher frequencies would be amplified and approximately
reconstructed. The higher frequency peak at 43 Hz in the
acceleration response spectrum of Fig. 13 could be a fre-
quency alias or have some geophysical explanation.
Clearly, data recorded digitally and de-convoluted to
diminish the effects of any anti-alias filters may have to
contend with alias frequencies. Of course with some of
the old analogue data records digitised manually, this
may not be such a problem.

In conclusion, both the Icelandic and the SMART-1
data have given an opportunity to test the TLS algorithm
against the information provided regarding the transducer
and the anti-alias filter. The algorithm has been found to be
robust and works very well with a small number of coeffi-
cients, which reduces the computational requirements. Its
utility has been clearly and well demonstrated in de-cou-
pling the instrument response from the recorded seismic
data. This is of particular significance where quite often
the older data records simply do not have any instrument
parameters included.

Appendix. Summary of TLS procedure

The algorithm is as follows:

1. Compute the SVD of [Ajb] = URVT.
2. Compute the index p, rp P rn+1 + e P rp+1 P � � �

P rn+1. This approach regards all computed singular
values in the interval ½rnþ1; rnþ1 þ e� as identical; where
e > 0 is a machine dependent parameter.

3. Let V = [v1v2. . .vn] be a column partition of V; compute
a Householder matrix Q using Eq. (12).

4. If a = 0, then in the algorithm used here, the TLS solu-
tion does not have a solution. Otherwise the solution is
given by Eq. (13). There are more generalised algorithms
[24] (non-generic TLS solutions) which allow for a being
singular.
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Abstract

Non-linear finite element analyses of structures that are subject to seismic actions require high quality accelerogram data. Raw accel-
erogram data needs to be adjusted to remove the influence of the transfer function of the instrument itself. This process is known as
correction. Unfortunately, information about the recording instrument is often unknown or unreliable. This is most often the case
for older analogue recordings. This paper uses a recursive least squares (RLS) algorithm to identify the instrument characteristics even
when completely unknown. The results presented in the paper implement a modern approach to de-noising the accelerogram by employ-
ing the wavelet transform. This technique removes only those components of the signal whose amplitudes are below a certain threshold
and is not therefore frequency selective. It supersedes to some extent conventional band pass filtering which requires a careful selection of
cut-off frequencies, now unnecessary.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper is an extended and updated version of con-
ference paper [1]. Advances in finite element programs
and the increase in computational power are resulting in
an evolution of approach to the analysis of complex struc-
tural systems. This is particularly true in the case of the
design of structural systems that are subject to seismic
actions. The engineering analyst’s approach is changing
from a predominantly modal (eigenvalue) analysis that
uses a design spectrum to a non-linear timehistory analysis
that uses accelerogram timeseries, see [2].

Displacement based design and performance based
design approaches are becoming more fashionable and fea-
sible. The main components of these design philosophies
are damage limit states that are often taken to be functions
0045-7949/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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of structural displacement. This interest in damage and dis-
placement requires a full non-linear timehistory analysis of
the structural system. The importance of credible ground
motion timeseries cannot be underestimated here. These
approaches require reliable and extensive sets of ground
motion timeseries recorded from actual earthquakes.
Many agencies around the world are cataloguing and
collecting databases of recorded time series that are becom-
ing increasingly available to design engineers. However,
the instruments that record the ground acceleration are
not perfect, and usually record a timeseries that needs
to be corrected to recover the ‘‘original ground motion’’
itself. These databases contain, by definition, information
about various historic seismic events recorded on a variety
of accelerometers, some analogue, and some digital.
Most of these records, in the databases, were recorded on
older analogue instruments of unknown or questionable
characteristics. In fact, even today, many analogue
instruments are maintained because of their robustness
and low cost.

mailto:nick.alexander@bristol.ac.uk


Nomenclature

a accelerogram timeseries (known, uncorrected),
vector

ag accelerogram timeseries (unknown, corrected),
vector

d desired timeseries (unknown, estimated ag),
vector

g instrument system filter (unknown), vector
h instrument system inverse filter (unknown),

vector
A convolution of a, matrix
P inverse correlation matrix
uT

k kth row vector of A, vector
dk kth element of d, scalar

ek local error estimate, target of least square mini-
misation, scalar

Pk kth estimate of inverse correlation matrix
k forgetting factor, scalar
hk kth estimate of instrument filter
Q unitary matrix (QR-RLS algorithm)
R upper triangular matrix (QR-RLS algorithm)
Qk kth estimate of unitary matrix
kk kth estimate of gain vector
ck householder numerically assigned, scalar
Ak kth householder modification of A, matrix
vk first column of Ak, vector
H1, H2 quadrature mirror filters, functions.
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Thus, corrected accelerograms are required in order to
undertake a non-linear timehistory analysis of structures,
which are subject to seismic actions. A correction technique
needs to (i) digitise, that is equisample the data, (ii) correct
for instrument characteristics (iii) de-trend, (iv) de-noise
with wavelets, or band-pass filter (v) resample to an appro-
priate sampling rate. A review of various proposed schemes
is presented in [3,4]. The sequence of the component (ii) to
(v) and exact algorithms used in these correction tech-
niques vary significantly, as can the resulting recaptured
‘‘original ground motion’’ itself.

In this paper the role of removal and/or recovery of the
instrument characteristic are assessed. In particular, the
question is posed, whether instrument correction of seismic
data is possible where the frequency-response characteris-
tics of the instrument are unknown. Almost all correction
schemes, like [5], assume a second order, single-degree-of-
freedom (SDOF) instrument function with which to de-
convolve the instrument response from the ground motion.
For some databases [6] however, the whole issue of correct-
ing for an unknown instrument is too problematic hence
instrument de-convolution is not performed. The authors
did not want to present time series ground motion that
have imposed and incorrect processing, but they present
data without instrument correction which is not necessarily
useful. This paper builds on the work [1,4] to discuss an
implementation of the recursive least squares (RLS) algo-
rithm in the context of a system identification problem.
The RLS algorithm is used to determine, a posteriori, the
filter characteristic or fingerprint, if you like, that the
instrument leaves imposed on the time series. The resulting
inverse filter is then applied to the data in order to de-con-
volve the instrument response.
2. Inverse filtering using adaptive algorithms

The Least Mean Square (LMS) algorithm [7] is the sim-
plest and easiest adaptive algorithm to implement. How-
ever, its performance, in terms of computational cost and
fidelity, is not as good as the Recursive Least Square
(RLS) and Square Root RLS algorithms. The RLS algo-
rithm [4,8–10] was chosen for inverse system identification
in preference to the LMS adaptive algorithm. Another rea-
son is that the RLS algorithm is dependent on the incoming
data samples rather than the statistics of the ensemble aver-
age as in the case of the LMS algorithm. Therefore, the
coefficients will be optimal for the given data without mak-
ing any assumptions regarding the statistics of the process.

Telephone communication systems commonly use
inverse filtering with which to identify the inverse system
response to compensate for signal distortion as it propa-
gates through the transmission medium. Speech data trans-
mitted across telephone lines is distorted through the wires
that behave as a filter, whose frequency response is
unknown, but which rolls-off at higher frequencies. An
adaptive filter, executing in real-time, will produce a
response that is the inverse to that of the transmission med-
ium. This increases the available frequency range and data
rate for the telephone system. In this telecoms application
the original signal and the system that modifies the signal
are both unknown. In this paper, the actual ground accel-
eration ag and the accelerometer system g are unknown, see
Fig. 1.

In the time domain, the actual ground acceleration ag is
convolved ‘‘*’’ with the filter function of the accelerometer
g to give the recorded signal a.

a ¼ ag � g ð1Þ
In this paper, the implementation of the adaptive algo-
rithm attempts to find a solution to the inverse problem,
Eq. (2) where ideally the inverse filter h is such that
h ¼ g�1 and then the desired signal d equals the actual
ground motion ag.
a � h ¼ d ð2Þ
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Fig. 1. Adaptive RLS diagram.
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Solution of this problem, in general, is not possible;
however under certain limited condition it is possible to
produce an estimate of h from the recorded signal a that
is shown in this paper to be reasonable. The conditions
for the application of the recursive least squares method
is that a and ag are very similar and the amplitude of noise
is low, i.e. the signal to noise ratio is high. The telecoms
example, described previously, is an example of the imple-
mentation of this approach.
3. Using RLS algorithm on artificial accelerograms

The frequency response characteristics of accelerometer
instruments are typically a low pass filter designed to have
a nearly flat response up to approximately 10 Hz. The exact
frequency response characteristic of an accelerometer may
not be known for two reasons: (i) omissions in documenta-
tion (ii) due to the time the instrument has spent in situ

without calibration or testing.
Instruments can be modelled as a single degree of free-

dom system (SDOF) which describes the mechanical
dynamics of some accelerometers well. However, it does
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Fig. 2. Comparison of RLS recovered filters and or
fail to capture the convoluted anti-alias filter that almost
certainly precedes the Analogue to Digital conversion.
Thus, there may be more uncertainty about the ‘‘instru-
ment’’ system than is ideal.
3.1. Example, using white noise artificial accelerogram

Consider a test case of a random (white noise) signal ag

that is passed through a low-pass, finite impulse response,
FIR, filter g to give a filtered signal a. This low pass filter
is an idealisation of the accelerometer. The system identifi-
cation of this FIR filter is performed by using the square
root RLS algorithm, described in Section 5. Two
approaches are employed (i) the system ID with d and a

known; this is the classical system ID problem (ii) the case
where a is known but d is estimated (unknown); this is the
application of interest in this paper. The estimate of the
desired signal d is obtained by delaying a by the length of
the estimated adaptive filter. The role of this delay is dis-
cussed in Section 4.

Fig. 2 show the original 21-tap FIR low pass filter with
cut-off frequency at 0.55 of the Nyquist. Approach (i) is
2 2.5 3

uency ( × π  rad/sample) 

√ RLS filter estimate  
(input unknown)            

Original     
FIR filter   

√ RLS filter estimate  
(input known)              

iginal ‘‘unknown’’ FIR test filter (white noise).



1682 A.A. Chanerley, N.A. Alexander / Computers and Structures 85 (2007) 1679–1692
more accurate than (ii) as is expected. However, approach
(ii) produces an approximation to the ‘‘unknown’’ system
filter from a only.
3.2. Example using Kanai–Tajimi artificial accelerogram

Kanai–Tajimi proposed a smoothed power spectrum
estimate for accelerograms; this is described in [11]. It
was based on 367 recorded accelerograms. In this paper,
this model is used to generate an artificial accelerogram.
The Kanai–Tajimi power spectrum supplies the amplitude
information while the phase information is assumed ran-
dom. The time domain description of the artificial acceler-
ogram is generated using an inverse FFT. Note that a
Hanning windowing function is used to reduce the ampli-
tude of the accelerogram at the beginning and end of the
trace. This makes the envelope of the artificial accelero-
gram more like a real accelerogram. Fig. 3 displays the
Kanai–Tajimi target power spectrum, the actual spectrum
used and the time domain artificial accelerogram. The
Kanai–Tajimi parameters chosen were for horizontal
motion and rock near surface geology; ground intensity
parameter G0 = 0.07, ground frequency xg = 27 rad/s and
ground damping parameter ng ¼ 0:34.

This artificial accelerogram is filtered by the FIR filter
used in Section 3.1. Fig. 4 displays the two approaches used
in Section 3.1. Again having information about both d and
a provides the best system ID estimate. However in the case
where only a is known, i.e. the output of the accelerometer,
the square root QR-RLS algorithm is able to provides a
reasonable estimate of this unknown instrument. Compar-
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Fig. 3. Artificial accelerogram bas
ison of Figs. 2 and 4 suggests that the square-root QR-RLS
algorithm may work better for a real accelerogram than for
a purely white noise signal.
4. The recursive least squares algorithm

The notation used in this paper is bold, non-italicised,
capital letter to designate matrices; italicised, lower-case,
underscored letter for a column vector and italicised,
lower-case letter for a scalar. The RLS algorithm can be
considered in terms of a least squares solution [8] of the sys-
tem of linear equation (2). A is a convolution data matrix,
size (m · p), of the accelerogram data; where m = n + p � 1
and n is the length of the accelerogram time-series, h is a
vector ðp � 1Þ of the inverse system filter coefficients and
d is a (m · 1) vector which represents the signal convolved
by the instrument, often termed the desired signal

Ah ¼ d;

a1 0 0

a2 a1 0

a3 a2 a1

a4 a3 a2

0 a4 a3

0 0 a4

2
666666664

3
777777775

h1

h2

h3

2
64

3
75 ¼

d1

d2

d3

d4

d5

d6

2
666666664

3
777777775

ð3Þ

In order to clarify, an example is also displayed in (3) for
an accelerogram time-series a ¼ a1 a2 a3 a4½ �T and a
system filter h ¼ h1 h2 h3½ �T. A classical inverse system
identification problem is to find the vector h of filter coef-
ficients. Given that there are more equations than un-
knowns, there is no precise solution to (3) in general.
10
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However, one approach involves a least-square minimiza-
tion, Eq. (4), of the norm-squared errors in satisfying (3)
for a given choice of filter coefficients h, i.e. which h is near-
est to satisfying (3). This problem (4) has the well-known
solution [4,8,12] given by Eq. (5) where P is the inverse
correlation matrix

minimise ðkAh� dk2Þ ð4Þ
h ¼ ðATAÞ�1

ATd ¼ PATd ð5Þ

However, in order to obviate the need of evaluating
explicitly the inverse autocorrelation matrix P, the RLS
algorithm provides an efficient method of updating the
least squares estimate of the inverse filter coefficients as
new data arrive. This is shown in the expression (6) where
hk is the current estimated vector of filter coefficients; hk�1 is
the previous estimated vector filter coefficients; Pk is the
current (p · p) inverse correlation matrix; dk is the kth ele-
ment in d; uT

k is a row vector of data taken from the convo-
lution data matrix A

hk ¼ hk�1 þ Pkukðdk � hT
k�1ukÞ ð6Þ

The updated value of the filter coefficient hk is obtained
by adding to the previous value, the second term on the
right of Eq. (6), which can be considered as a ‘‘correction
term’’. The term in brackets is the a priori estimation local
error defined by (7)

ek ¼ dk � hT
k�1uk ð7Þ

The second term on the right of Eq. (7) represents an
estimate of the desired signal, based on the previous least
squares estimate of the filter coefficient.

The inverse auto-correlation matrix Pk is initially esti-
mated, its initial value does not have to be explicitly evalu-
ated. However further updates can be evaluated using
Woodbury’s identity, which provides an efficient method
of updating the matrix, once initialised with an arbitrary
value. The update is given in (8) where the forgetting factor
is k; this is the Riccati equation for the RLS algorithm. It
can be shown that (9) is valid hence (6) becomes (10).

Pk ¼ k�1Pk�1 � k�1kkuT
k Pk�1; kk ¼

k�1Pk�1uk

1þ k�1uT
k Pk�1uk

ð8Þ

Pkuk ¼ kk ð9Þ
hk ¼ hk�1 þ kkðdk � hT

k�1ukÞ ð10Þ

Eqs. (6)–(10) form the basis of the RLS algorithm used
in order to obtain the inverse filter coefficients with which
to de-convolve the instrument response.

The algorithm requires d, an estimate of this is derived
from actual seismic data a, as described in Section 2, with
reference to Fig. 1. The approach used is to delay the accel-
erogram data a by the estimated filter order and use this
new vector as the desired training data, d, in the algorithm,
see Appendix 1.

Ultimately, only the forgetting factor needs to be
adjusted. Typically this is between 0.9 and 0.99 and in this
case was assigned a value of 0.9, this attenuates an error
from 10 samples in the past for example by (0.9)10. The
beauty of the algorithm lies in the fact that the initial
inverse correlation matrix is estimated and not evaluated,
as shown in Appendix 1. Prior knowledge of the
Pkðp � pÞ matrix is not required, i.e. the algorithm is inde-
pendent of the statistics of the ensemble and depends only
on the data. This algorithm was initial designed for the case
of real-time data processing where it is not possible to
determine Pk as future data is not known. In this case,
all the accelerogram data is known however explicitly eval-
uating Pk is inefficient and not recommended.

In essence, the delay in the data allows the Riccati equa-
tion (8) to provide an estimate of Pk before the non-zero
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desired data arrives in the algorithm. This prevents the
adaptive filter from trying to adapt to a signal that it has
not yet seen or, in this case, prevents the adaptive filter
from trying to adapt to a signal for which it has no infor-
mation. Without this delay, the whole algorithm fails to
converge to any useful result.
5. The square root, inverse QR-RLS algorithm

The RLS algorithm can become numerically unstable in
this application. Therefore, a variant of the RLS algorithm
is used here reduces the dynamic range and guarantees sta-
ble solutions. This is the QR decomposition-based RLS
algorithm derived from the square-root Kalman filter
counterpart [5,6]. The ‘square-root’ is in fact a Cholesky
factorisation of the inverse correlation matrix. The deriva-
tion of this algorithm depends on the use of an orthogonal
triangulation process known as QR decomposition

Q � A ¼ R ¼

r r r r

0 r r r

0 0 r r

0 0 0 r

2
6664

3
7775 ð11Þ

where R is an upper triangular matrix and Q is a unitary
matrix and A is a data matrix. The QR decomposition of
a matrix requires that certain elements of a vector be re-
duced to zero. The unitary matrices usually used are those
due to Givens or Householder [10,13,14]. The Givens
matrix is a rotation, which zeros out the matrix elements
one-by-one and leaves an upper triangular matrix. The
Householder matrix on the other hand zeros out the ele-
ments on a column-by-column basis. The matrix used in
the algorithm in this implementation is the Householder
transformation that zero’s out the necessary elements of
the input data matrix elements and updates the (square
root) inverse correlation matrix. The QR-RLS is as follows
in Eq. (12); where ck is a scalar.

Qk

1 k�1=2uTP
1=2
k�1

0 k�1=2P
1=2
k�1

" #
¼ c�1=2

k 0T

kkc
�1=2
k P

1=2
k

" #
¼ r11 rT

12

r21 R22

� �

ð12Þ

The gain vector kk is determined from the first column of
the post-array. Qk in the above expression is a unitary
(Householder) transformation which operates on the ele-
ments of k�1=2uTP

1=2
k�1 and the rows of k�1=2P

1=2
k�1 in the

pre-array zeroing out each one to give a zero-block entry
in the post-array. The least-squares weight vector hk is
updated in Eq. (13), but through Eq. (15) the gain vector,
from the post-array Eq. (13), and Eq. (14) the a priori esti-
mation error

kk ¼ r21r�1
11 ð13Þ

ek ¼ dk � hT
k�1uk ð14Þ

hk ¼ hk�1 þ kkek ð15Þ
These inverse-filter weights are then convolved with the
original seismic data in order to obtain an estimate of the
true ground motion. As in the standard RLS, the inverse
correlation matrix is estimated, prior knowledge is not
required, i.e. the algorithm is independent of the statistics
of the ensemble. More detail regarding the algorithm used
and matrix dimensions is shown in Appendix 2.

QR decomposition is a well-known procedure for matrix
triangulation, [10–12] which works as follows. The House-
holder matrix is defined in Eq. (16)

Qk ¼ I� 2vkvT
k

kvkk2
ð16Þ

where the vector vk is formed from the first column of a
matrix A, in this case the matrix pre-array in Eq. (12).
The matrix Q1 then operates on the matrix A and zeros
out all elements of the first column, but the first. The
matrix A is shown below as a 4 · 3 matrix in (17),

Q1A ¼

b1 n n

0 n n

0 n n

0 n n

2
6664

3
7775 ¼ A1 ð17Þ

it can be seen that but for the first element, the first column
elements have been annihilated. The procedure then re-
peats for A1 with a Householder matrix Q2 being formed
from the elements of the next column. The new matrix is
now as shown below,

Q2

b1 n n

0 n n

0 n n

0 n n

2
6664

3
7775 ¼ Q2Q1A ¼

b1 n n

0 b2 n

0 0 n

0 0 n

2
6664

3
7775 ¼ A2 ð18Þ

The procedure repeats with a new Householder matrix
formed from the last column of A2, were the new Q3 matrix
operates on A2, giving the final triangular matrix below in
Eq. (19)

QA ¼ Q3Q2Q1A ¼

b1 n n

0 b2 n

0 0 b3

0 0 0

2
6664

3
7775 ¼ A3 ¼ R ð19Þ

Since the Householder matrices are unitary then so are
the Qk matrices and so the matrix A reduces to the product
of an upper-triangular matrix and a unitary matrix, that is,

A ¼ QTR ¼ ðQ1Q2Q3ÞTR ð20Þ

This scheme can annihilate on a row-wise basis or as in
this implementation by just transposing to secure the trian-
gular matrix format in Eq. (19) for further computation.
There are several computational schemes [10,12] available
which pay due regard to computational efficiency, round
off errors and other numerical issues [11], but once the fully
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annihilated matrix is obtained then the relevant parameters
can be extracted from the post-array and applied to Eqs.
(13)–(15).
6. Wavelet de-noising seismic data

The point to make here is that de-noising is a better
alternative to noise reduction than using the standard com-
monly used low-pass filtering methods [3,15–20]. Wavelet
de-noising [21–26] is based on taking the discrete wavelet
transform (DWT) [20,23,27] of a signal, passing the trans-
form through a threshold which removes the resulting coef-
ficients below a certain value and then taking the inverse
DWT in order to reconstruct a de-noised time signal. The
DWT is able to concentrate most of the energy of the signal
into a small number of wavelet coefficients, after low-pass
filtering with the appropriate filter weights depending on
the selection of a wavelet basis.

The forward wavelet transform of a set of data com-
prises low and high-pass filtering of the data then down-
sampling by a factor of 2. The filters used for this purpose
are FIR filters of order N, called quadrature mirror filters
(QMF). These have mirror image symmetry in both magni-
tude and phase about the frequency p/2. The transfer func-
tions relating such filters are given by

H 1ðzÞ ¼ H 2ð�zÞ ð21Þ

For example, H 1ðzÞ ¼ 1þ z�1 and H 1ðzÞ ¼ 1þ z�1 form
a QMF pair, with coefficients [1, 1] and [1,�1]. The Daube-
chies filters of order N = 2 will filter in the forward direc-
tion and then down sample by 2. The forward FIR,
decomposition, QMF filter-pair coefficients, are given by
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Fig. 5. db8 Wavelet an
Low-pass ¼ ½�0:1294 0:2241 0:8365 0:4830 � ð22Þ

and the high-pass

High-pass ¼ ½�0:4830 0:8365 �0:2241 �0:1294 �
ð23Þ

Similarly, for the reverse direction when after threshold-
ing the transform reconstructs the remaining waveform, by
up-sampling by 2 and applying an inverse QMF filter-pair,
the reconstruction filters, whose coefficients are given by

Low-pass¼ ½0:4830 0:8365 0:2241 �0:1294 � ð24Þ
High-pass¼ ½�0:1294 �0:2241 0:8365 �0:4830 � ð25Þ

These filter coefficients are derived from the Daubechies
(2) scaling filter

db2 ¼ ½ 0:3415 0:5915 0:1585 �0:0915 � ð26Þ

these coefficients have a norm of 0.7071 used to obtain the
above decomposition and reconstruction filters. These can
be described as

Recon-Low ¼ c0 c1 c2 c3½ � ð27Þ
Recon-High ¼ c3 �c2 c1 �c0½ � ð28Þ
Dec-Low ¼ c3 c2 c1 c0½ � ð29Þ
Dec-High ¼ �c0 c1 �c2 c3½ � ð30Þ

This can be generalised to any length of decomposition
and reconstruction filter. In this implementation the
Daubechies (8) wavelet [28] of order N = 8 was used (see
Fig. 5), with decomposition and reconstruction to five
levels of down and up sampling.

Up sampling and convolving the Daubechies (8) low-
pass and high-pass filter coefficients produces the wavelet
5 0.6 0.7 0.8 0.9 1

function 

5 0.6 0.7 0.8 0.9 1

velet 

d scaling function.
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and scaling functions shown above. These functions are not
explicitly used in this application, but their associated
QMF filters form the basis of the de-noising scheme. It
should be emphasised that although the scheme uses low
and high-pass filters, these are not used to eliminate pre-
scribed frequency bands, as is the normal case when using
filters. The QMF filters and down samplers are applied in
order to separate (decompose) the low and high frequency
content of a signal and then to apply a thresholding scheme
in order to eliminate unwanted amplitudes across the
frequency spectrum contained in the signal. Finally up
sampling and applying the reconstruction QMF filters
rebuilds the signal from the wavelet transform, but without
the unwanted noise. The QMF filter banks are in fact a set
of perfect reconstruction filters used in a de-noising scheme,
as shown in the block diagram of Fig. 6 for one level of
decomposition.

However the DWT is not translation invariant and so
this implementation uses the stationary or translation
invariant wavelet transform [29]. This essentially applies a
range of signal shifts to allow for misalignment of the sig-
nal and wavelet features, it then averages out the shifts in
order to obtain the de-noised signal.

The block diagram, Fig. 6, essentially shows one level of
decomposition with a low and high-pass filter and down
sampling by a factor of 2 (taking every second sample of
the original signal). Once the low pass and high-pass chan-
nels have been subject to a threshold, the resulting signal is
then up-sampled by the same factor and low and high-pass
filtered, then reconstructed to give the resulting de-noised
signal. The de-noising scheme is not as frequency selective
as in a scheme using standard digital filters, so it does not
remove as much energy before or after certain frequencies.
Rather it removes those coefficients below a certain value
that represent low-energy noise, the coefficients in this case
being just the filtered and down-sampled data at the low
and high frequency end of the original signal. The inverse
transform then re-constructs the signal from the data but
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Fig. 6. Block diagram of a 1-stage, 2
without the amplitudes below the threshold values
[2,23,24].

7. Frequency responses for the El-centro and the garvey

reservoir seismic events

The plots of Fig. 7, show frequency and phase profiles of
two inverse filters derived from the data from the El-Centro
18/5/1940 N and E component seismic events. The fre-
quency responses were obtained after the data was wavelet
de-noised. The x-axis is a log-plot to reveal details at the
low frequencies of interest and to emphasise the fact that
de-convolution filters perform in a manner consistent with
the single degree of freedom accelerometer model. Fig. 7
also shows the results of modelling the accelerometer by
a perfect single degree of freedom system with natural fre-
quency 10 Hz and ratio of critical damping 0.552. These
parameter value where recorded with the accelerogram
data in the header information [30]. The plots show that
at low frequencies to approximately 40 Hz for the El-Cen-
tro Eastern component the RLS inverse filter show an
approximately flat response (0 dB) in the region of interest.
The El-Centro Northern component is approximately flat
to about 75 Hz and the phase plots are approximately lin-
ear. However, there is an element of uncertainty in both of
the de-convolution methods. It is not known whether at the
time the instrument behaved as a perfect second order
SDOF system or that given its years in situ its calibration
parameters were still correct; nor indeed whether the
RLS characterises the instrument response to a better
degree. The characteristic of the anti-alias filter is also
unknown. However, both give similar response characteris-
tics and the RLS provides a means of estimating the instru-
ment response without any assumptions about the
instrument. The RLS approach does perform quite well
in the pass band region in Fig. 2, which is, for the engineer-
ing, the region of interest. The differences in magnitude
between the two approaches are small in this region. In
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-band wavelet de-noising scheme.
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addition, the RLS results suggest that the ‘‘actual unknown
instrument’’ performs better than is expected by SDOF
model, i.e. it may have a broader operational bandwidth.
The RLS therefore provides a reasonable indication of
instrument performance. These results demonstrate the
usefulness of using the QR-RLS in order to de-convolve
the instrument response without any prior knowledge of
the instrument parameters.

When considering the phase response of the two
approaches, differences are observed. The SDOF imposes
a non-linear phase character while the RLS induces a linear
phase character. It is worth pointing out that the adaptive
model of the inverse filter is FIR, which has a linear phase
property, i.e. it will always impress a linear phase. This lin-
ear phase is the same as a time shift in the time domain e.g.
shifting all the data points in the timeseries by a constant
amount in time. Since the beginning of the timeseries is
arbitrary, it can be argued that in most cases this will have
no effect on the dynamics of a structure subject to this
record. Thus, the RLS algorithm is fairly neutral with
respect to phase, this is it effectively makes no adjustment
to the phase content. This compares with the non-linear
SDOF phase response, which can be thought to shift differ-
ent frequency components by dissimilar amounts of phase.

One is then confronted with the issue as to whether there
is any advantage accrued in phase recovery by using the
RLS. In the situation of an unknown instrument, it is bet-
ter to use the RLS approach since it estimates the magni-
tude behaviour of the instrument well and does not
corrupt the phase further. In the case where the instrument
characteristics, in term of SDOF parameters, are known;
the engineer must decide which approach to employ. The
SDOF may induce an incorrect non-linear phase but the
RLS may do nothing to correct the phase.

In using the RLS for instrument de-convolution it is
necessary to review the order in the implementation of
noise removal and the application of the inverse filter. In
using Butterworth or Elliptic band-pass filters or wavelet
de-noising in conjunction with the standard second order
differential equation, it doesn’t make any difference to the
output as to whether the filtering/de-noising is pre-or post-
the instrument de-convolution. This is because the solution
to the differential equation is the same in both situations, it
is not an estimate based on corrupted or de-corrupted
input data, and therefore necessarily the inverse filter
response is always the same. This is changed with the appli-
cation of the RLS algorithm. The estimate of the inverse fil-
ter is dependent on the input data. Noise errors should, as
far as is possible, be removed before an RLS instrument
correction is applied. This is because the instrument
response matrix may be ill-conditioned or non-invertible
over a band of frequencies. Therefore, the inverse de-con-
volution matrix may amplify the noise inherent in a seismic
data set and distort the frequency response, in particular
towards the end of the seismic event when the signal is
comparable with the noise. To illustrate the point, below
in Figs. 8 and 9 are two sets of plots for the 1940 El Centro
N and E components, where the RLS de-convolutions were
performed without prior wavelet de-noising of the signal.
The inverse filter responses in magnitude are quite different,
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correlation between them would be expected given that the
recordings must have used similar instruments.

Fig. 8 shows the northern component of the seismic
event, the phase response is linear. On the other hand,
Fig. 9 shows a completely different magnitude response,
which does not bear any relation to that of Fig. 8 and with
instabilities at the higher frequencies. However, it does
exhibit a flat frequency response as in Fig. 7, but at much
lower frequencies. The discrepancy between the two sets
of inverse filter response plots is considerable, the frequency
responses should be similar, and having some resemblance
to theoretical predictions. However, the flat magnitude
response for the 1940-E component indicates that use of this
inverse filter would, in the low-frequency range, produce the
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similar amplitude results as a theoretical inverse filter,
though with different phases. The El-Centro 1940-N com-
ponent results produce a linear-phase response but quite
different amplitude output to that obtainable by using the-
oretical methods and that for the Eastern component.
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Further magnitude and phase plots are shown in Figs.
10 and 11 for the Garvey Reservoir event 01/10/87. In this
case, Fig. 10 shows good correlation between the two com-
ponents in the magnitude plots obtained using QR-RLS
de-convolution after wavelet de-noising. In particular, up
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to approximately 30–35 Hz the magnitude response is
almost flat and the phase responses are linear. The plots
of Fig. 10 are in fact a good indicator of instrument perfor-
mance during the seismic event. On the other hand, Fig. 11
applies instrument de-convolution to the Garvey compo-
nents before any de-noising, showing a frequency response
that is markedly different, but consistent with instabilities
resulting from small signal to noise ratios at higher fre-
quencies. It should be noted that a flat response is only
in the low frequency range between 5 and 15 Hz for the
two components and a linear phase response consistent
with the behaviour of FIR filters.

The plots of Fig. 11 would seem to be a good result,
since they are almost consistent with a requirement that
the instrument response in this range is equal to the true
ground motion up to 15 Hz. However, the general shape
of the frequency response militates against this. This dem-
onstrates that with some seismic data, performing a de-
convolution first and de-noising after may still yield good
results in the range of interest, but the implementation is
inherently applied incorrectly.

Fig. 12 shows plots of elastic response spectra, power
spectra, phase spectra and timehistories for the El-Centro
event. It compares the standard method of correcting seis-
mic data with that of wavelet de-noising and instrument
correction through recursive least squares. The standard
method uses a Butterworth filter to filter the noise and
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Fig. 12. Comparison of the El-Centro 1940 seismic event between using wave
standard instrument de-convolution from the second order expression.
follows this with a SDOF instrument correction in the fre-
quency domain using the fast Fourier transform [1,31]. The
differences are especially apparent in the response spectra.
The frequencies at which the differences are most notice-
able are essentially those that govern the response of low-
rise multi-storey buildings.

8. Summary

The paper demonstrates that inverse filtering using the
RLS adaptive algorithm can recover an unknown system.
In the case of an unknown accelerometer filtering the
ground motion to produce the response time-series, it
is possible to recover a good estimate of the original
unknown ground motion; this is without any knowledge
of the instrument and anti-alias filter response charac-
teristics.

Ordering of events is important; the data should be de-
noised prior to the RLS instrument correction. Thus, the
signal to noise ratio is maximised before utilising the adap-
tive algorithm. This is to prevent any amplification of noise
during the de-convolution process. It is clear from Figs. 8
and 9 that the instability in the RLS algorithm when pass-
ing un-denoised data through it occurs at the higher fre-
quencies where the noise energy is comparable to the
seismic signal, i.e. at the frequencies where the seismic sig-
nal produces little power. The results do show that over
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limited frequencies of interest it may be possible to obtain
approximately zero magnitude and linear phase response
when de-convolving prior to de-noising or filtering, how-
ever it is also clear that at higher frequencies distortion
became a lot more apparent. Therefore, de-noising should
precede the instrument de-convolution.

Comparisons of the effectiveness of the RLS approach
were made with a conventional second order ordinary dif-
ferential equation model, SDOF. It was observed that the
RLS adaptive algorithm produced magnitude responses
that where compatible with the SDOF results. In fact, as
the original unknown ground motion is always indetermi-
nate, it is difficult to say which approach is more accurate.
What is interesting is that for the time-series, processed in
this paper, the RLS algorithm concludes that the actual
accelerometers used were perhaps better, this is they had
a broader no gain frequency range, than expected by the
SDOF model. Thus, when considering magnitudes of the
time-series, the RLS seem to be more attractive than
the SDOF as it does not make any assumptions about
the instrument.
Appendix 1. The RLS algorithm

a ¼ a1 a2 . . . an½ �T Seismic data (n · 1)
h0 ¼ 0 Initialise vector of estimate
d ¼ ½zerosðpÞ; a� Estimate of desired data; i.
P0 ¼ dI First estimate of the (p · p)

small constant.
Aðnþ p � 1; pÞ ¼ convmtxðaÞ Convolution data matrix a
for k = 1 to n+p-1 Main loop

uT
k ¼ Aðk; :Þ take row k of convolution

kk ¼ k�1Pk�1uk

1þk�1uT
k Pk�1uk

update gain

ek ¼ dk � hT
k�1uk determine local error

hk ¼ hk�1 þ kT
k ek update filter coefficients

Pk ¼ k�1Pk�1 � k�1kkuT
k Pk�1 Use Riccati equation to up

end end main loop
ag ¼ convðh; aÞ; Inverse filter the data using

response.

Appendix 2. Square-root QR-RLS algorithm

a ¼ a1 a2 � � � am½ �T Seismic data
h0 ¼ 0 Initialise vector of estimated (p
d0 ¼ ½zerosðpÞ; a� First estimate of desired data; i.e

filter coefficient vector
P0 ¼ dI Initial estimate of (p · p) invers

small constant.
Aðnþ p � 1; pÞ ¼ convmtxðaÞ Convolution data matrix accele
P1=2 ¼ cholesky sqrtðP0Þ Square-root of the initial, (p · p

for k=1 to n+p-1 begin loop
uT

k ¼ Aðk; :Þ take row k of convolution matr
The influence of the RLS de-convolution method on the
phase content is not destructive, but the algorithm does not
explicitly recover the original phase, The RLS always pro-
duces a linear phase response because the adaptive model is
of the FIR type, while the SDOF model has its own non-
linear phase response. A linear phase response is equivalent
to a time shift of the time-series. Thus, for the case of most
dynamic structural analyses, the RLS algorithm can be
thought to be neutral with respect to phase. The SDOF
model phase response is almost linear for low frequencies
and thus can be thought to be fairly neutral for these fre-
quencies. If the SDOF model is used it may introduce more
uncertainty by adjusting phase content of the mid to high
frequency range in a non-linear manner. This could be
due to the instrument not actual being an SDOF and errors
in its parameters.

In the case where instrument information is unknown
and even when it is known, the RLS algorithm is a reason-
able approach; it recovers magnitude information well and
does not introduce greater uncertainty into the data
because it modifies phase content in a linear manner.
d (p · 1) filter coefficients
e. shifted seismic data
inverse auto-correlation matrix, I is the identity matrix, d is

ccelerogram a (see Eq. (1))

matrix

date auto-correlation matrix.

best estimate of filter coefficients to model instrument

· 1) filter coefficients
. shifted seismic data, where p is the length of the inverse

e auto-correlation matrix, I is the identity matrix, d is

rogram a

) inverse auto-correlation matrix
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Appendix 2 (continued)

B ¼ 1 k�1=2uTP
1=2
n�1

0 k�1=2P
1=2
n�1

" #
Set up pre-array as in [5]

R ¼ householderðB; pÞ ¼ r11 rT
12

r21 R22

� �
Annihilate pre-array forming post-array by calling a householder-matrix
subroutine. The post-array, R, formed by successive householder matrix
operations on the columns (or rows) of the pre-array.

kk ¼ r21r�1
11 The gain vector kk is extracted from the post-array as is the updated,

P1=2
n ¼ R22 Square root of the inverse correlation matrix.

ek ¼ dk � hT
k�1uk Update the local error with previous estimates of filter coefficients

hk ¼ hk�1 þ kkek now update filter coefficients from extract gain term to form coefficient
vector update hk

end end loop
ag ¼ convðh; aÞ; inverse filter the data using optimal estimate of filter coefficients to model

instrument response.
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Abstract 
 
This paper begins with a brief introduction to some methods used to correct seismic 
data [1,2,3]. It describes standard methods of de-convolving instrument and 
structural responses from seismic accelerograms. These are the convolution of 
ground motion with the transfer function of the recording instrument and structure 
on which the instrument is mounted. The instrument response can be deconvolved in 
the time or frequency domain to recover an estimate of the ground motion of the 
seismic event. This is usually followed by a band-pass filtering of the data, however 
this removes any ground motion outside the band and hence the accelerograms may 
not adequately represent an estimate of true ground motion. It is proposed therefore 
to use wavelet [12] de-noising [11] as an alternative to band-pass filtering. The de-
noising removes low and high frequency corrupting signals but retains relevant data 
giving a better estimate of true ground motion. Some sample seismic signals are 
threshold de-noised using the stationary wavelet transform (SWT) and compared 
with the more standard band-pass filtering techniques. The paper compares power 
spectral plots and the total acceleration response spectra of earthquakes using the 
band-pass filtering and wavelet de-noising methods.  
 
Keywords: Correction, filter, seismic, wavelet, de-noising, recursive. 
 
 
1  Introduction 
 
A good summary of seismic correction methods is found in [1] commencing with 
Trifunac (1973) [2], BAP (Converse, 1982) [3] and UEL (A) and (B) (2001) [1]. 
Trifunac interpolates to 100Hz, then uses an FIR filter (Ormsby filter) and decimates 
to 50Hz and finally applies a baseline correction. It is not clear whether Trifunac 
uses the Ormsby filter as a zero-phase filter. Converse (BAP) [3] interpolates to 
600Hz, then applies a baseline correction, segments and zero-pads the data and 
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applies a cosine taper window. Band-pass filtering and decimation to 200Hz then 
follows.  The filters used were in most cases zero-phase so as not to corrupt seismic 
phase data.  
UEL (A) is similar to BAP except that zero-phase filtering is used in all cases; the 
data is processed throughout as one segment without having to use a cosine taper 
window. UEL (B) uses an optimal recursive algorithm by minimizing a weighted 
least squares error, the justification for its use being that the filter coefficients will be 
optimal for a given set of seismic data. This method doesn’t filter out-of-band 
relevant seismic data in the same sense as standard filtering techniques for stationary 
processes and therefore should provide a better estimate of the true ground motion, 
however the computational overhead can be substantial for long data sets. 
 
 
 
2  De-convolution of instrument response 
 
In many of the corrected data records available, instrument correction is not applied 
because the header of the original data does not provide any information on useful 
instrument parameters or indeed the type of instrument used. In a lot of cases the 
seismic data analysed did not, after processing without instrument de-convolution, 
produce marked differences in outputs when processed with instrument de-
convolution. However, with some data analysed the differences in outputs, in 
particular for the acceleration response spectra were clear and not insignificant. In 
most of the older records the accelerograms recorded the characteristics of strong-
motion earthquakes with single-degree-of-freedom, stiff and highly damped 
transducers whose relative displacement ( )tx is approximately proportional to the 
ground acceleration ( )tag . To obtain estimates of the ground acceleration from the 
recorded relative displacement response, an instrument correction can be applied as 
follows: 

( ) ( ) ( ) ( )txtxtxtag
22 ωωγ −−−= &&&                               (1) 

 
where γ is the viscous damping ratio, ω is the transducer's natural frequency and     

( )tag  is the ground acceleration. The above expression (1) can be used to de-
convolve the recorded motion from the ground acceleration in either the time [6] or 
frequency domain [4, 7].  
 
2.1  Time domain de-convolution of instrument response, using 

differential mapping 
 
Applying the central difference [6] to equation (1) and using the approximation [4], 
that the values of the acceleration of the uncorrected accelerograms are )(2 txnω−  

gives a 3-tap FIR convolver for )()( 22 taT gω− , where T is the sampling rate of the 
digitised accelerograms, as:  
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42
2222 )42()441(4 −− ++−++=−= iiig aaTaTTaTy γωωγωω       (2) 

 
where now nini xa −− −= 2ω are the discrete values of the instrument acceleration 
output of the uncorrected accelerograms. For values of 6.0=γ , Hzf 25= and 

600/1=T  the expression becomes: 
 

  42 38046.072386.010432.0 −− +−=−= iiig aaaay                         (3) 
 
The backward difference approximation gives a similar expression:  
 

21
2222 )1(2)21( −− ++−++=−= iiig aaTaTTaTy γωωγωω          (4) 

 
 For values of 6.0=γ , Hzf 25= and 600/1=T  the expression becomes: 
 

21 43211.05975.02962.0 −− +−=−= iiig aaaay                          (5) 
 
 

 
Figure 1: Frequency response curves for Instrument correction methods 

 
The frequency response using central and backward difference is shown in Figure 1. 
It vindicates the conclusions in [6] in respect of the central difference correction, at 
sampling rates greater than 4 times the instrument response frequency. The 
frequency response at a lower sampling rate in this case at sec02.0=T , using 
central difference doesn’t however exhibit suppression at higher frequencies, nor 
does it exhibit the same degree of linearity up to 6Hz as reported in [6]. The 
frequency responses at 600/1=T  in Figure 1 also indicate that the backward 
difference is approximately linear up to 12Hz, compared to 6Hz for the central 
difference. The strong-motion, unevenly spaced data has an average sampling rate of 
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approximately 600Hz, which is then interpolated to give an evenly spaced data at 
600Hz or a Nyquist rate of 300Hz. 
 
2.2  Frequency domain de-convolution of instrument response  
 
Equation (1) can also be transformed into the frequency domain [1,4,7] by applying 
the Fourier transformation   
 

    )()( fAfHgX −=&&  where   














+





−=

ii f
fi

f
ffH γ21)(      (6) 

 
where the approximate acceleration output of the instrument is )()( 2 fXfA ω= . 
The ground acceleration in time can therefore be recovered from the inverse Fourier 
transform of the ground acceleration )( fX g

&& , obtained from the Fourier transform 
of the relative displacement )( fX . Figure 1 compares these most popular three 
methods used in correcting for the instrument response. It shows that over a limited 
range the responses are almost the same with the backward difference demonstrating 
a flat response up to approximately 12Hz, therefore over this range it can be inferred 
that the acceleration is approximately equal to the ground acceleration. At higher 
frequencies further corrections must be applied. However Figure 1 also demonstrates 
that using frequency domain de-convolution the response is approximately flat up to 
20Hz; therefore results presented in this paper have been processed using this 
method. 
  
3  De-noising using a band-pass filtering method 
 
Some of the earlier correction procedures as reported in [6] implemented a digital 
band-pass filter in order to remove the low and high frequency noise. A widely used 
digital filter was the Ormsby filter [8], whose order is given by: 
 

 ( ) ( ) ( )Ω−Ω=+
∆

= dHH
FT

N ε
ε

    e      wher1012.02                        (7) 

 
ε is the error bound and ( )ΩdH  is the desired frequency response function. This is a 
finite impulse response (FIR) filter whose output is a weighted sum of previous 
inputs given by: 

 ( ) ( )∑
=

−=
p

k
k knxany

0
                                            (8) 

 
To minimise the filter order, the filter is applied to a decimated version of the signal. 
For example, with T=0.2sec and ∆F=0.02Hz at the low-frequency end, an error 
bound of ε = 0.012 the required order N = 501. It is not clear whether low-pass 
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filtering to prevent aliasing preceded the decimation, but it is reported [6] that this 
procedure produced aliasing and other distortional effects which in turn caused 
marked distortions in the processed accelerograms.  In general equation (7) was 
found to be inaccurate for values of N > 201, the error was in fact considerably 
larger than that predicted by the equation. The Ormsby filter required large values of 
N in order to meet the required band-pass design specifications, and at the time 
utilised a considerable computational effort. 
 
Infinite impulse response (IIR) digital filters are now normally employed in order to 
meet the required stringent band-pass specification and reduce computation time. 
The filter output is the weighted sum of previous inputs and the weighted sum of 
previous outputs and is given by: 
 

∑ ∑
= =

−+−=
m

k

p

k
kk knybknxany

0 1

)()()(                    (9) 

 
These designs are based on classical analogue filter methods such as Butterworth, 
Chebyshev and elliptic filter types which use a suitable transformation, typically the 
bilinear z-transformation (BZT) in order to map the s-plane poles and zeros to the z-
plane circle. These filters however have a non-linear phase response whereas a zero-
phase response is essential. A zero-phase characteristic is achieved through a 
magnitude-square response implementation procedure [9] given by the following: 
 

)()()( 12 −= zHzHzH                              (10) 
 
where                  )()()( zjezHzH β=  and )(1 )()( zjezHzH β−− =                      (11) 
 
There is a loss of computational optimality though it is still superior to the 
computational effort required for the FIR filter. However, a zero phase response is 
also secured by processing the data in both the forward and reverse direction [10]. 
The data is first filtered in the forward direction, then the filtered data is reversed 
and run back through the filter. This latter method is computationally more efficient. 
This paper uses the latter method in order to process the data for comparison with 
wavelet de-noising. 
 
4  De-noising using wavelets   
 
This method is based on taking the discrete wavelet transform (DWT) [12] of a 
signal, passing the transform through a threshold [11, 15] which removes the 
coefficients below a certain value and then taking the inverse DWT in order to 
reconstruct a de-noised time signal. The DWT is able to concentrate most of the 
energy of the signal into a small number of wavelet coefficients, after low-pass 
filtering with the appropriate filter weights depending on the selection of a wavelet 
basis. The dimensions of the wavelet coefficients will be large compared to those of 
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the noise coefficients obtained after high pass filtering. Therefore thresholding or 
shrinking the wavelet transform will remove the low-amplitude noise in the wavelet 
domain and the inverse DWT will retrieve the desired signal with little loss of detail. 
A block diagram of a 1-stage, 2-band the operation is shown below: 
 
 

LP FILTER based
on WAVELET

DOWN
SAMPLE

BY 2

UP
 SAMPLE

BY 2

HP FILTER based
on WAVELET

DOWN
SAMPLE

BY 2

LP FILTER based
on WAVELET

THRESHOLD
SIGNAL
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 SAMPLE

BY 2

HP FILTER based
on WAVELET

INPUT
SIGNAL +

NOISE
OUTPUT
SIGNAL

DECOMPOSITION FILTERS. RECOMPOSITION FILTERS.

DETAIL SUBSIGNAL

APPROXIMATION SUBSIGNAL

 

Figure 2:  1-stage, 2-band Wavelet de-noising block diagram 
 
The rules behind thresholding are due to D L Donoho and I M Johnstone [11,13,14] 
and are based on decision theory. These rules are briefly described below. 
 
Let yi be a finite signal with additive noise given by   
 

    iii nxy ε+=     where   i=1,………..N                     (12) 
 
where the signal xi is corrupted by zero mean, white Gaussian noise ni with standard 
deviation ε . The objective is to recover the signal xi from the noisy data. Let W be a 
wavelet transformation matrix of the DWT, therefore in the transformation domain 
eqn(12) becomes: 
 

    Y = X + N                                        (13) 
 
Here the upper case symbols denote the same variables but in the transformation 
space, such that  

    Y=Wy                                     (14) 
 
The inverse transform matrix must also exist therefore we have that: 
 

   IWW =−1                                          (15) 
 

If X̂  is the estimate of X  based on the observation Y ,  
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then Donoho’s scheme for de-noising can be summarised as follows: 
 

(a) determine the DWT ie Y = Wy 
 

(b) apply one of the following non-linear thresholding schemes: 

(i) ‘hard’ thresholding 












<

≥
==

tY

tYY
tYTX hard ,0

,
),(ˆ                           (16) 

(ii) ‘soft’ thresholding   












<

≥−
==

tY

tYtYY
tYTX soft ,0

),)(sgn(
),(ˆ                (17) 

 where the threshold  is given by  2/1)log2( nt ≈ , where n is the data length. 
 

(c) transform back using the inverse DWT  XWx ˆˆ 1−=  
 

  
In general hard thresholding exhibits spurious oscillation and doesn’t have the same 
smoothness properties of the soft thresholding scheme. However, there is a trade-off 
between suppression of noise and over-smoothing the data, as is the case with 
traditional low-or high pass filtering, but to a lesser extent.  
 
 
 
 

4.1 The stationary wavelet transform (SWT) (translation 
invariant DWT ) 

 
There is however a problem with the wavelet transforms; the DWT is not translation 
invariant [15,16,17]. The coefficients of the DWT do not shift with a signal, this 
means that the signal is no longer orthogonal to most of the basis functions. Many 
more coefficients would be necessary to describe the signal and the coefficient 
dimensions would also be much smaller reducing the effectiveness of any de-noising 
scheme. 
 
The problems with shift-invariance are connected with the alignment between 
features in the signal and features of the wavelet basis. In particular at 
discontinuities where Gibbs like phenomena can occur with unwanted oscillations. 
An approach to surmount this problem is described in [16] where it is suggested to 
forcibly shift the signal, so that it’s features change positions in relation to the 
wavelet basis. Then to un-shift and retrieve the de-noised signal hopefully without 
any unwanted noise or spurious oscillation. 
 
Following the arguments of Coifman and Donoho [16] we introduce a circulant shift 
operator such that  

nhtth xxS mod)()( +=                                (18) 



8 

where the operator Sh denotes the circulant shift by h. The operator has an inverse 
(Sh)-1, therefore whole process is described as follows: 
 
For an analysis technique A, calculate the time-shifted version of A, A~  therefore, 
 

)))((()():(~ 1 xSASSxA hhh
−=                                 (19) 

 
However a problem does occur if a signal contains many discontinuities, because in 
this case a best shift for one discontinuity may not be that for another. Therefore 
Coifmann and Donoho propose to apply a range of shifts H and then to average over 
several such shifts obtained. 
 
Therefore equation (19) is modified to the following 
 

)))(((())(:(~ 1 xSASAverageSxA hhHhHhh
−

∈∈ =                       (20) 
 
or 

  Average [ Shift → Denoise →  UnShift ]                          (21) 
 
 
 
 

 
Figure 3: Example of de-noising a skyline signal 



9 

This is the approach used in the results published in this paper. However it must be 
said that for most results obtained, the differences between the using a DWT and 
SWT for de-noising are marginal; output plots such as power spectral densities and 
the acceleration response spectra are virtually the same. Nevertheless discontinuities 
in seismic records do occur therefore the SWT seems a more effective choice with 
which to de-noise. Figure 3 displays results similar to that of Donoho and Johnstone. 
This is to demonstrate the difference between using the DWT and the SWT for de-
noising purposes.  
 
Figure 3 shows the de-noised skyline using the Daubechies wavelet db8 [12] 
wavelet, using 8 levels of decomposition, for both the DWT and the SWT. 
  
 
 
5   Discussion of results 
 
The plots in Figure 4 show the SWT corrected plots and those corrected using a 4th 
order Butterworth band-pass filter, cut-off frequencies 0.08Hz and 20Hz.  
 
 

 
 

Figure 4: Garvey Reservoir seismic event (USA) 

 
The SWT correction is essentially non-linear, whereas that band-pass filtering is a 
linear process. Furthermore in this case the spectral density plot shows a high degree 
of correlation with the acceleration response spectrum in the frequencies of interest. 
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Figure 5: Sierra Madre event (USA) 

   
 
 
 
 
In Figure 4 the power spectra demonstrate that the out-of-band energy of the signal 
(>20Hz) for the band-pass corrected Power Spectral Density (PSD) estimate has 
been reduced far more than the PSD estimate of the SWT corrected estimate. The 
acceleration response spectra for both of the correction methods are show that up to 
approximately 10Hz the corrections produce almost identical structural frequencies. 
There is however some difference beyond 10Hz. 
 
The Sierra Madre seismic event shown in Figure 5 shows three PSD plots for the 
uncorrected, band-pass filter corrected and SWT corrected record. Clearly the band-
pass filter has filtered out a lot of the out of band energy, whereas the SWT de-
noising has not. The acceleration response spectrum does show some significant 
differences beyond 10Hz between the two methods.  The plots of Figure 6 on the 
other hand show the low frequency detail on a log scale and clearly some differences 
between the two correction methods are again apparent. As an aside the PSD 
demonstrates that the large approximately 1Hz ground peak has had an insignificant 
impact on the structural frequency, whereas the smaller 5Hz ground peak of the PSD 
has had a considerable impact on the structural frequency. 
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Figure 6: Sierra Madre Event (USA) 

 
 
6  Summary 
 
The paper has demonstrated that the implementation of the translation invariant 
wavelet transform (SWT), in the correction of seismic data has yielded some 
significant results. The de-noising of seismic data using the SWT removes only 
those signals whose amplitudes are below a certain threshold and is not therefore 
frequency selective. This is the fundamental difference between using a band-pass 
filter and wavelet thresholding. The band-pass filtering does not consider the energy 
content of the signal and noise. Hence the removed "noise" may or may not have a 
high-energy content. In the examples show the removed "noise" does have 
significant energy. The SWT only removes "noise" that has a low energy content 
and is independent of frequency. SWT de-noising obviates the need to adjust filter 
cut-off’s to fit particular seismic events and is computationally efficient. It is evident 
that selection of filter cut-off frequencies varies for different groups of researchers 
around the world. The differences between band pass filtering and SWT methods 
exist, rather unsurprisingly, at the low and high frequency range of the spectrum. 
The low frequency or long period end is of importance in the design of large dams 
or tall building structures. These high cost structures may well require the use of 
detailed and accurately corrected acceleration timehistories.  
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Concerning Baseline Errors in the Form of Acceleration Transients

When Recovering Displacements from Strong Motion Records

Using the Undecimated Wavelet Transform

by A. A. Chanerley, N. A. Alexander, J. Berrill, H. Avery, B. Halldorsson, and R. Sigbjornsson

Abstract This paper discusses the progression of a novel algorithm that uses a
wavelet-transform approach. The transform is a generalization of the decimated, dis-
crete wavelet transform (DWT) that is the undecimated DWT or stationary wavelet
transform (SWT) also known as the undecimated á trous algorithm. It forms the basis
for recovering displacements from acceleration time histories. The approach recovers
a low-frequency fling that is usually an almost sinusoidal or cosinusoidal pulse
responsible for the big ground motions in strong motion events. The algorithm imple-
ments a well known and non-linear, denoising scheme and is applied to the low-
frequency sub-band and, in particular, succeeds in recovering the acceleration-fling
pulse. The progression is that in order to obtain estimates of displacements, the algo-
rithmic baseline-correction scheme can now locate an acceleration transient (i.e., a
spike), which creates the DC shift in velocity and the linear trend in displacement,
and is therefore the baseline error. Once this acceleration transient is corrected for
or eliminated, double-time reintegration recovers the velocity-fling pulse and residual
displacement. The paper infers that these acceleration transients may be due to ground
rotation, embedded in the translational data. The scheme provides for easier integra-
tion once the low- and higher-frequency accelerations are extracted.

Online Material: Additional results for the Chi-Chi TCU068 (1999) station, the
New Zealand Darfield Station (2010), and the Ölfus Earthquake (2008) in Iceland.

Introduction

This paper contains the results from Chi-Chi record
TCU102 (see Data and Resources) that are presented as
exemplars. The remainder of the results, on which some of
the discussions and conclusions are based, are presented in
the Ⓔ electronic supplement to this paper. This supplement
includes results from (1) the Chi-Chi (1999) event, station
TCU068 using the A900 instrument, (2) the ICEARRAY
station data designed by Iceland’s Earthquake Engineering
Research Center (EERC) (University of Iceland) with data
from the 29 May 2008 Ölfus earthquake using the CUSP in-
strument and (3) data from the 4 September 2010 earthquake
in Christchurch, New Zealand, recorded by the GeoNet Net-
work (New Zealand Earthquake Commission) also using the
CUSP instrument.

This paper introduces a novel wavelet-transform
method, which is progressed further in this paper and exam-
ines the removal of baseline-error and its location in time.
Interestingly, the form of the baseline error is simply a
sudden spike in the acceleration that occurs just after the
low-frequency fling. The wavelet method differs from those

of previous methods cited in the review below, because it
locates the baseline error without having to make any
assumptions with regard to its existence in time or its form
in the acceleration time history. The algorithm discussed in
this paper simply finds the baseline error embedded in the
fling sinusoid, or almost sinusoid, and removes it, thereby
enabling double-time integration of the acceleration time his-
tory to recover the residual displacement.

When trying to obtain displacements, baseline shifts and
baseline correction are part of a more common problem en-
countered in double integrating the acceleration time history.
These have been discussed with various solutions (Trifunac,
1971; Trifunac and Lee, 1973; Bogdanov and Graizer, 1976;
Wong and Trifunac, 1977; Graizer, 1979; Iwan et al., 1985;
Chiu, 1997; Todorovska, 1998; Trifunac et al., 1999; Boore,
2001; Trifunac and Todorovska, 2001; Boore et al., 2002;
Boore, 2003; Wang et al., 2003; Boore and Bommer, 2005;
Graizer, 2005, 2006; Boroschek and Legrand, 2006; Kalkan
and Graizer, 2007; Pillet and Virieux, 2007; Wu and Wu,
2007; Kinoshita, 2008; Akkar and Boore, 2009; Chanerley
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and Alexander, 2010; Graizer, 2010). The integration gives
DC shifts in velocity and linear or quadratic trends in
displacement in the latter portion of the record, which is a
consequence of variations in the signal baseline of the accel-
eration. These are brought about by instrument noise, tilts/
ground rotations, or cross-coupling, giving abrupt jumps
in acceleration.

Sophisticated methods exist for correcting baseline
errors and obtaining stable double-time integration. Graizer
(1979) was the first to advocate a baseline correction
procedure by obtaining and fitting a straight line to a segment
of the velocity. Chiu (1997) high-pass filtered before integra-
tion, Iwan et al. (1985) removed pulses and steps by locating
the time points that exceeded a predefined acceleration, later
generalized by Boore (2001), Akkar and Boore (2009) by
adding further time points and making the time points t1 and
t2 free of any acceleration thresholds, the accumulated
effects of these baseline changes represented by average off-
sets in the baseline. Wu and Wu (2007) also used a modified
method due to Iwan et al. (1985) on the Chi-Chi event and
defined t1 at the beginning of the ground motion, and defined
t2 on the basis of a flatness coefficient and defined a further
parameter t3, the time at which the displacement had reached
a final value. Wang et al. (2003) removed pulses and steps
fitted with amplitudes that gave the same areas as the slope of
the displacement to achieve stable double integration. Pillet
and Vireaux (2007) on the other hand, using data from sta-
tion TCU068 from the 1999 Chi-Chi earthquake, recovered a
baseline error as an average acceleration from a linear trend
in the velocity and removed it at the time points at which the
velocity crossed the zero axes.

Chen and Loh (2007) also used a wavelet-transform
method that was mainly procedural, and which applied
the discrete wavelet transform (DWT) with decimation, using
a finite-impulse-response (FIR) filter approximation to the
Meyer wavelet. Their method, however, does not use a
denoising scheme, nor do they recover the fling time history.
The wavelet method described in this paper is entirely algo-
rithmic, rather than procedural, and uses the undecimated
wavelet transform with a denoising scheme. Although the
two wavelet methods are quite dissimilar in approach and
implementation, the displacements obtained for the Chi-
Chi event in both cases are comparable with Global Position-
ing System (GPS).

Rotations (Tilts) as Baseline Error

Rotations (tilts) are an often cited reason for baseline
errors, contributing to the baseline offsets and causing unsta-
ble double integration. These have been a major area of
investigation for a number of years. A number of researchers
have investigated and continue to investigate ground rota-
tions (tilts), including Wong and Trifunac (1977), Bouchon
and Aki (1982), Trifunac (1982), Graizer (1989, 1991, 2005,
2006), Nigbor (1994), Spudich et al. (1995), Todorovska
(1998), Boore (2001), Trifunac and Todorovska (2001),

Boore et al. (2002), Zahradnik and Plesinger (2005), Boro-
schek and Legrand (2006), Kalkan and Graizer (2007), Gra-
izer and Kalkan (2008), Lin et al. (2010).

In particular, Trifunac and Todorovska (2001), Wong
and Trifunac (1977), and Graizer (2005) found that, in the
main, accelerometer data comprised translational and tilt
data, as well as contributions from cross-axis sensitivity and
sensor-misalignment data. The latter effects, though, were
small compared with the former for modern digital acceler-
ometers. Graizer (2005) numerically imposed a tilt-angle
time history on a corrected Hector Mine record and demon-
strated that an upward linear trend occurs after the displace-
ment ramp and when the residual displacement begins to
appear. Graizer (2006) proposed a method for identifying
the existence of tilts by comparing the sensitivity of the ver-
tical (z) and horizontal (north–south and east–west) compo-
nents to rotational ground motion using Fourier spectra,
given that the vertical component is insensitive to tilts.

Pillet and Vireaux (2007) have estimated and subtracted
a jump in the acceleration, though there is no data on the time
of occurrence of this jump. Pillet and Vireaux (2007) point
out that these acceleration jumps may be due to tilt angles for
which the magnitudes are two or three orders greater than
generally predicted, and in their paper are given as
−0:049 cm=s2 for the vertical, 4:077 cm=s2 for the north–
south and −3:446 cm=s2 for the east–west component.

Kinoshita (2008) used broadband velocity seismograms
on data from the Noto-Hanto earthquake (Mw 6.9) 29/03/
2007, in order to estimate tilt accelerations. Kinoshita
(2008) concludes that several tilts arising from multiple
ground motions occurred during the Tokachi-Oki event. This
type of multiple ground-tilt motion may also be inferred from
some of the results presented in this paper.

Baseline Correction and the Acceleration Spike

When inspecting an acceleration-fling time history
recovered by the wavelet transform and denoising scheme,
it is not immediately obvious from the time history whether
any acceleration offsets, short-duration or otherwise, actually
occurred, which gave rise to DC shifts in velocity. The
acceleration-fling time histories presented in the results
show this. However, once the corrected and uncorrected
acceleration-fling time histories are subtracted, the subtrac-
tion yields an acceleration transient, that is, a spike. On dou-
ble-time integrating the spike, it gives the exact post-shaking,
flat-velocity DC shift and the displacement linear trend
found when integrating the uncorrected, low-frequency,
acceleration-fling pulse commencing at the time of the
occurrence of the spike. Boore et al., 2002 discuss this type
of post-shaking, flat-velocity time history in some detail,
relating it to errors due to rotation and torsion-induced dis-
tortion causing a finite duration offset in the acceleration.
Boore et al., 2002, p. 1550 states:
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“we note that the rotation- and torsion-induced distor-
tions should be very small after the strong shaking
has ceased; for this reason, the accumulated effect would
be a finite duration offset in the acceleration, which
would integrate to a post-shaking flat velocity trace.”

This is precisely what is found when using the
algorithm presented and described in this paper.

The net result, and indeed a novel result, is that the
transform locates and recovers the baseline error embedded
within the low-frequency fling, which turns out to be an
acceleration transient or, as initially referred to in Wang et al.
(2003), just a short duration spike, shown in the Results. The
removal of the offending spike from the low-frequency,
acceleration-fling pulse, then enables double-time integration
of the low-frequency fling to a stable, residual displacement.
This is a significant progression on the wavelet-transform
method proposed originally in Chanerley and Alexander
(2010) andmodified and discussed inmore detail in this paper.
The method has automated baseline correction and the
algorithm itself locates the time and form of the baseline error,
which hitherto has been unobtainable, and which in the first
place causes the instability in the double-time integration.
Once located, the algorithm then removes the error, thereby
permitting stable double-time integration.

The form of these baseline errors in digital records has
already been suggested in Boore et al. (2002), as a finite-
duration offset, in Wang et al. (2003), as a spike, or in Akkar
and Boore (2009) as near instantaneous. Essentially the
fitting and removal of 1.0 s acceleration transients in Wang
et al. (2003) is in a sense similar to the recovery of the accel-
eration transient using the presented wavelet-transform
method, except that the wavelet-transform algorithm auto-
matically recovers and defines the acceleration transient that
is embedded within the seismic data. Clinton (2004, pp. 61–
64) also shows in his thesis that passing a δ-function through
a mathematical model of the FBA-23 produces similar out-
comes as obtained in the Results.

The isolation and recovery of an optimal fling, which
appears as almost a sinusoid or cosinusoid, from the
recorded acceleration time history is the constraint used in
order to achieve stable double-time integration and to retrieve
the acceleration spike. This spike is then either removed at its
time point Ti of occurrence or equivalently the acceleration is
zeroed from t ≥ Ti and reintegrated. The time point Ti is the
point at which the low-frequency, velocity sub-band crosses
the zero axes and at which point the sharp acceleration tran-
sient occurs and prevents stable double-integration. The point
at which the velocity crosses the zero axes is also the point at
which the DC shift in the velocity fling space begins and
which then gives a first-order trend in the displacement. It
is also noted that some earthquakes have multiple, zero-cross-
ing points any one of which provides stable, double-time in-
tegration. This is discussed in detail in the Results.

After applying the algorithm the profile of the baseline-
error is isolated as an acceleration transient operating at a

clearly visible and defined time point Ti in the velocity-fling
that the algorithm itself locates. The outcome of applying the
algorithm to recorded events is discussed in the Results. On
the other hand (and so far), the higher-frequency, sub-band
velocity space does not exhibit such catastrophic baseline drift
and integrates to a stable, though oscillatory, time series that
is then added to the baseline corrected low-frequency fling to
give the final, corrected time history as shown in the Results.

Generalization of the DWT

From an engineering and seismological perspective,
the easiest way to envisage the wavelet transform is in terms
of octave filters. These are quite common in digital audio.
Octave filters form the basis of the wavelet transform,
whether the transform is decimated or undecimated. The
wavelet transform comprises in this case well-designed filter
banks (Mallat, 1989; Daubechies, 1992; Coifman and Wick-
erhauser, 1993). The decimated, DWT is applied in an octave-
band filter bank, implementing successive low-pass and
high-pass filtering and down-sampling by a factor of 2, so
that every second sample is discarded. As an example, a four-
channel filter-bank scheme is shown in Figure 1. The filters
used in wavelet filter banks are digital finite-impulse-response
filters, also called non-recursive filters because the outputs de-
pend only on the inputs and not on previous outputs. The dis-
crete convolution expression for a FIR filter is given by

y�n� �
XN−1

k�0

h�k�x�n − k�; (1)

for which h�k� are the filter coefficients and x�n − k� are the
time-shifted samples of data. Equation (1) lends itself to the
multiply-accumulate-data-shift architecture (MACD) of most
modern processing engines.

Therefore, we proceed in octave sub-bands as per
Figure 1, for which the filters H and G operate on the data
vector, x, as follows:

Figure 1. Four-channel, analysis (decomposition) wavelet filter
bank showing sub-bands.
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first octave low-frequency sub-band = Hx
second octave low-frequency sub-band = H�Hx�
third octave low-frequency sub-band = H�H�Hx��
first octave higher-frequency sub-band = Gx
second octave higher-frequency sub-band = G�Hx�
third octave higher-frequency sub-band = G�H�Hx��.

The behavior of the filters is to operate on a column
vector of data by convolving the data with the filter coeffi-
cients and to down-sample by 2, that is, discard half the
values. The inverse operation requires up-sampling by a fac-
tor of 2, followed by synthesis filter banks, and is shown in
Figure 2.

However, there is a problem with the DWT in that due to
down-sampling the DWT is not shift invariant. Aliasing can
occur between the sub-bands if not all of the coefficients are
used during reconstruction, which is undesirable if the appli-
cation needs denoising, as in this case. Therefore, the easiest
way to surmount this is not to down-sample, so that the
length of the signal remains at N rather than N=2 as in the
decimated DWT, but rather to use a generalization of the
DWT that is the undecimated wavelet transform or stationary
wavelet transform (SWT) that is shift invariant (Lang et al.,
1996). Because we do not decimate them, instead we have to
interpolate by pushing zeros into each level of the transform
(i.e., between the filter coefficients), that is, dyadically up-
sampling; this is the á trous algorithm (trous = holes)
(Shensa, 1992; Mallat, 1999). It was also shown in Coifman
and Donoho (1995) and Donoho and Johnstone (1994, 1995)
that the SWT denoises with a lower root-mean-square error
than that with the standard DWT, and denoising is a key re-
quirement for this application. Furthermore, the inverse SWT
(ISWT) averages the estimates at each level resulting from all
shifts, again minimizing the noise, so overall the SWT is a
better transform to apply. Time-domain filter banks in
Figure 3 show the SWT and the ISWT. In the analysis filter

banks, the easiest thing to do is to push zeros (á trous) in
between the filter coefficients and keep filtering the even
and odd samples from every band. In the synthesis filter
banks, they are averaged at each level as shown. The data,
of course, is also denoised between the analysis phase using
the SWT and the synthesis phase using the ISWT.

Denoising Scheme

Denoising is a non-linear method of removing unwanted
signals. It is advantageous because spectra (of signal and
noise) can overlap, whereas when filtering they should
not. It is the amplitude which is clipped or to which a thresh-
old is applied. It has been applied together with the wavelet
transform by Chanerley and Alexander (2007, 2008, 2010),
and Chanerley et al. (2009a,b, 2010) to seismic events when
deconvolving records. Denoising is superior to filtering in
the sense that filtering will remove or attenuate those
frequencies that we want to retain. In particular, filtering
low-frequency noise will also filter the low-frequency signal
(i.e., the fling), so is to be avoided.

The application of a denoising scheme initially applies a
soft threshold (Donoho and Johnstone, 1994, 1995; Coifman
and Donoho, 1995; Donoho, 1995), to both the low-
frequency and higher-frequency sub-bands signals after
applying the wavelet filters. However, it was subsequently
found that for some earthquakes applying a threshold to the
higher-frequency sub-bands removed too much detail in the
denoising process (B. Halldorsson, personal comm., 2009).
Therefore, the threshold initially applied to the higher-
frequency sub-bands was removed from the algorithm. This
retained the detail without affecting the overall displace-
ment result, and overlaying the original time history on
the corrected time history did not demonstrate any significant
differences.

In the low-frequency fling space the threshold is re-
tained, but there is some flexibility, if desired, in the number

Figure 2. Wavelet-synthesis transposition of filter bank for sub-
band reconstruction.

Figure 3. Undecimated or stationary wavelet-transform (SWT)
filter banks, showing the dyadic up-sampling of the filter coeffi-
cients, that is, the pushing of zeros in between the coefficients.
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of threshold iterations applied. At high decomposition levels,
such as at level 10 and above, there is usually very little post-
fling detail or perturbation in the time history. However, at
lower levels of decomposition, between 7 and 9, for example,
and if a light threshold is applied, that is, one or two thresh-
old iterations, detail in the post-fling time history is pre-
served. Extra detail can be retained if so desired, but the
algorithm is constructed to apply the rule stated in Graizer
(2005) that everything past the fling is distortion and so
should be removed if displacement is the objective. The
correction algorithm zeroes the acceleration after the end of
the fling pulse to remove any such distortion. However, if the
objective is to locate any possible acceleration spikes, then
more detail may be appropriate.

The Results, and also the additional material in the Ⓔ
electronic supplement, demonstrates and discusses this, and
shows in the tables of results multiple acceleration transients
in the post-fling history, which could, of course, be dismissed
as distortion.

It should again be emphasized that most of the discus-
sion that follows refers to the low-frequency sub-bands, the
higher frequencies double-integrated to an oscillation around
zero in velocity and displacement, and did not require the
same correction.

Applying the Wavelet Transform

When applying the wavelet transform, a high octave
level (e.g., level 10) with respect to the sampling rate, is ini-
tially applied. This is to limit the low-frequency, sub-band
bandwidth to the lowest frequency band feasible for a par-
ticular set of seismic time series, in order to isolate the low-
frequency, acceleration fling. For example, for a sampling
rate of 200 Hz, level 10 decimates down to a low-frequency
band in the range f ≤ 0:1 Hz, basically 100 Hz=210. How-
ever, should the fling profile be too far removed from the
sinusoidal or cosinusoidal profiles, then the next level down
is used. Thus far, we have only used bior1.3 and bior2.6,
from the bi-orthogonal wavelet set that gives linear phase
filters. The bior2.6 wavelet filters provided a zero-velocity
crossing for which this was not possible with bior1.3. This
is because at times with bior1.3, the velocity behaved asymp-
totically and never actually crossed the zero axis; therefore it
made sense to either change level or change the wavelet to
the bior2.6.

Moreover, we have applied wavelet filters from level 10
down to level 7, the latter for earthquakes that were less than

Mw 7, such as for the Mw 6.3 in Iceland in 2008. The
displacements recovered for the Iceland event from the
ICEARRAY were small, suggesting a fling pulse of shorter
duration than, for example, the Chi-Chi TCU068, the latter
giving displacement in meters rather than in centimeters as
recorded by the ICEARRAY and GPS. A shorter duration
fling suggests a lower decomposition level, therefore, higher
frequencies (though still less than 1 Hz). Level 7 for the
ICEARRAY is the 0.78 Hz band, whereas level 10 for
TCU068 is the 0.097 Hz band. Therefore, applying level 10
to some of the ICEARRAY data did not yield anything
sensible, because some of the really low frequencies apparent
in Chi-Chi TCU068, for example, were simply not present in
the ICEARRAY event, therefore, a lower decomposition
level was necessary.

Ideally, the same octave level would be expected to be
used for all three components of a seismic event, though that
may not always be possible due to the velocity not crossing
the zero axis, as explained previously, which sometimes
requires a change in level or a change in wavelet. The time
point itself is also an aspect to consider in the sense that the
transform may obtain more than one zero-crossing on the
velocity axis, though the point to note is that the time points
are all located by the transform. At the time point nearest the
fling pulse, the spike is removed through zeroing. However,
the two horizontal time points should normally be close to
one another as the results indeed show. Suffice to say,
therefore, that the low-frequency, zero-velocity, crossover
time points Ti should occur at about the same time for the
longitudinal components, with only a small margin of differ-
ence as demonstrated in the Results.

Results

This section discusses the results for the Chi-Chi (1999)
event station TCU102. Additional results in Tables S1–S5
and Figures S1–S12 are presented in the Ⓔ electronic sup-
plement from (1) Chi-Chi (1999) event station TCU068,
(2) the New Zealand (2010) Darfield event, and the (3) ICE-
ARRAY results from the Iceland (2008) Ölfus event.

Acceleration Transient for Chi-Chi TCU102

The data for this event comes from Lee et al. (2001) in
the BSSA CD ROM, an excellent source of data from the
Chi-Chi (1999) event. The acceleration transients and their
times of occurrence are shown in Table 1, together with those

Table 1
Estimates of Acceleration Transients for two Chi-Chi Stations, for Each Component, and their Time of Occurrence

North–South Components East–West Components Vertical Components

Chi-Chi Station Tilt Acceleration (cm=s=s) Time (s) Tilt Acceleration (cm=s=s) Time (s) Tilt Acceleration (cm=s=s) Time (s)

TCU068 9.565 45.65 −6:75 45.83 No Tilt n/a
TCU102 10.63 38.39 4.04 41.2 2.174 42.93
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of station TCU068. The instrument for this station was the
A900. The accelerogram and GPS stations are on the footwall
side of the fault (Wu and Wu, 2007). The wavelet transform
used was bior2.6, rather than the bior1.3, as discussed above
in Applying the Wavelet Transform.

The north–south component gave an almost sinusoidal
fling profile at level 9, whereas the east–west and vertical
components gave an almost sinusoidal fling profile at level
10 after wavelet filtering. Figures 4, 5, and 6 show the accel-
eration, velocity, and displacement sub-bands, respectively,

Figure 4. Comparison of the low-frequency sub-band fling, and higher-frequency sub-band, and the resulting total using bior2.6 for
TCU102NS component obtained at level 9, with a displacement of −61:82 cm, with zero-velocity crossover taken at 38.39 s.

Figure 5. Comparison of the low-frequency (LFS) sub-band fling and higher-frequency sub-band (HFS) and the resulting total using
bior2.6 for TCU102EW component obtained at level 10, with a displacement of 55.73 cm, with zero-velocity crossover taken at 41.2 s.
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as well as their resultants after adding the low-frequency time
series to the higher-frequency time series. The displacement
estimates are summarized in Table 2 and show good corre-
lation with GPS station G103, 1.7 km away (Boore, 2001;
Wu and Wu, 2007).

The zero-velocity crossover point at which final baseline
correction is applied for each component is in the first and
second columns, and is indicated in Table 3, and shown in
the low-frequency fling for the horizontal components in
each of the Figures 7 and 8. Figure 9 shows the double-in-
tegrated acceleration transient for the TCU102EW compo-
nent. The shown time points are the times of occurrence
of the acceleration transients at which baseline correction
was applied, and which are given in Table 1.

Returning first to Figure 7, it shows at decomposition
level 9 the TCU102NS, low-frequency, fling profile with
post-fling perturbations, and after applying two threshold
iterations. An optimal acceleration-fling profile is similar

to a theoretical benchmark, that is, similar to a sine or cosine
and the first zero-velocity, crossover point occurs at
Ti � 38:39 s just at the end of the fling cosinusoid and
the estimated tilt acceleration transient at that point is
10:63 cm=s2. In addition there are two further post-fling,
zero-velocity crossover points, as listed in Table 3. These
are too large in magnitude to be attributed to just noise. With
reference to the comments in Denoising Scheme, this is a
level-9 decomposition profile, with a lot more post-fling de-
tail than the east–west components at level 10. If we infer
that these transients are due to tilt, then more than one zero
crossing suggests that the instrument may have experienced
more than one tilt acceleration transient during the course of
the earthquake in the low-frequency fling space.

Figure 8 shows, at decomposition level 10 and after
applying only one threshold iteration, the TCU102EW low-
frequency fling profile.

It has two zero-velocity crossover points in the wavelet-
transformed velocity time series. Table 3 lists the accelera-
tion transient values, 4:4 cm=s2 for TCU102EW at a time
point of 41.2 s. There is another transient at 46.2 s, but this
is small and could be attributable to noise. Figure 9 shows the
TCU102EW velocity and displacement response after dou-
ble integrating the tilt acceleration transient, extracted from
the fling. The responses for the acceleration transients of the
other two components are not shown, but are similar.

The low-frequency TCU102V fling time series (not
shown) at decomposition level 10 shows some post-fling

Figure 6. Comparison of the low-frequency (LFS) sub-band fling and higher-frequency sub-band (LFS) and the resulting total using
bior2.6 for TCU102V component obtained at level 10, with a displacement of −8:536 cm, with zero-velocity crossover taken at 42.93 s.

Table 2
Chi-Chi TCU102 Displacement Estimates

at Levels 9 and 10

Level TCU102NS (cm) TCU102EW (cm) TCU102V (cm)

9 −61:82 n/a n/a
10 n/a 55.73 −8:54
GPS −59:2 66.3 −10
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Figure 7. Station TCU102N, showing results before and after baseline correction. The triangular area in the acceleration is the result of a
gφ acceleration tilt transient taken at 38.39 s. The resulting constant velocity DC shift (2:26 cm=s) is shown in light gray, as is the linear
displacement offset. The velocity time series shows three zero-velocity crossover points, suggesting three tilt acceleration transients in the
low-frequency fling space.

Figure 8. Station TCU102E, low-frequency sub-band (LFS): showing results before and after baseline correction. The triangular area in
the acceleration is the results of a gφ acceleration tilt transient taken at 41.2 s. The resulting constant velocity DC shift (−1:55 cm=s) is shown
in light gray, as is the linear displacement offset. The velocity time series shows two zero-velocity, crossover points, suggesting two tilt
acceleration transients in the low-frequency fling space.
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detail with four zero-velocity crossover points and associated
acceleration transients listed in Table 3. However, these are
small in magnitude compared to those of the north–south and
east–west, and we attribute these to noise.

Is the Spike a Facet of Instrument Noise
or an Artifact of the Algorithm?

These have been two often-asked questions with respect
to the results, which we now discuss. With regard to noise the
papers from Trifunac and Todorovska (2001), Wang et al.
(2003), and Graizer (2005) give good guides. First, Graizer
(2005) in his equations shows that the z-component is insen-
sitive to ground rotations/tilts, therefore we may reasonably
expect that the z-component would not have any spikes.
The equations show that the two horizontal components,
on the other hand, are susceptible to distortions due to
rotations/tilts.

It is found, for example, that after the wavelet transform,
the fling pulse of the z-component of TCU068 integrated
without correction, and did not produce any spikes,

suggesting that the instrument noise was too small for that
particular instrument and did not appear in the time history.
In Chi-Chi station TCU102, the Greendale (NZ) station, and
the ICEARRAY, the vertical components have spikes, but
these are small compared with those of the horizontal com-
ponents as shown in Tables 1, 3, Ⓔ S2, and S5 (see supple-
ment). It is suggested that any z-component spikes in general
gives a measure of instrument noise and that any larger
spikes in acceleration for the horizontal components must
be due to sources other than the instrument. In this context,
the work of Boore et al. (2002) as quoted in the Baseline
Correction and the Acceleration Spike, suggests these
short-duration offsets, that is, spikes, are due to ground ro-
tation and torsion, and therefore it can be inferred that the
obtained spikes in the horizontal accelerations are just such
short duration offsets.

This brings us to Trifunac and Todorovska (2001) and
Wang et al. (2003). The latter paper refers to the Hualien
seismic station where two collocated, A-900As were in-
stalled (HWA019 and HWA2) and one A-800 (HWA),

Figure 9. Acceleration tilt transient at 41.2 s and 4:40 cm=s=s, velocity and displacement response after integration of acceleration tran-
sient at 41.2 s, for the TCU102EW component using instrument (A900).

Table 3
Estimates of Acceleration Transients at the Various Zero-Velocity Crossover Points and their Time of Occurrence for TCU102

Station
First Tilt Acceleration

(cm=s=s)
Time (Ti)

(s)
Second Tilt Acceleration

(cm=s=s)
Time
(s)

Third Tilt Acceleration
(cm=s=s)

Time
(s)

Fourth Tilt Acceleration
(cm=s=s)

Time
(s)

TCU102NS 10.63 38.39 −7:29 44.09 6.84 48.15 — —
TCU102EW 4.4 41.2 −2:18 46.2 — — — —
TCU102V 2.174 42.93 −1:44 47.61 1.13 52.81 −0:55 59.36
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separated by approximately 1 km from each other. Wang
et al. (2003) p. 679 states:

“The difference in the trends of the displacement for the
same component of motion on the three collocated in-
struments indicate that the baseline offsets are not the
same for all instruments, as would be the case whether
the offsets are caused by ground rotation or ground tilt,
either transient or permanent (Trifunac and Todorovska,
2001), which suggests that the source of the baseline
offsets must be internal to each instrument.”

The conclusion they reached was that the differences in
the trends produced by the baseline offsets for the three
Hualien station instruments suggest that the principal source
of the offsets was some transient disturbance within the in-
struments A-900A and A-800.

However, in the results presented in this paper the prin-
cipal source of the offsets did not come from instrument
noise, certainly not for all the components and in particular
not for the z-component. We cite the additional results pro-
vided in Ⓔ Tables S1–S3 (see supplement) from Chi-Chi
(1999) and Christchurch (2010) and Ⓔ Tables S4 and S5
(see supplement) from the ICEARRAY stations (Halldorsson
and Sigbjornsson, 2009; Halldorsson et al., 2009; Decriem et
al., 2010; Halldorsson et al., 2010; Rupakhety et al., 2010)
for which we present results from 11 of the 14 stations, at
50 m between each station, spanning an aperture of
1.9 km, that were installed in the SISZ. The results in Ⓔ
Table S5 (see supplement) for the ICEARRAY show consis-
tency for each set of components over the 11-ICEARRAY
stations. In particular for the 11-EW components, for which
the acceleration spikes are much greater than for either one of
the other two components and with similar magnitudes and
in the same direction (all positive) in the east–west compo-
nents, that is, without any difference in the initial spike,
implying the same initial displacement trends for all 11-
CUSP instrument stations. In the light of the above and from
Wang et al. (2003), then it is strongly suggested that certainly
for the east–west component the acceleration spikes are a
measure of ground rotations. The z-component and the
north–south component shown in ⒺTable S5 (see supple-
ment) both display smaller acceleration spikes compared to
the east–west component and suggest that these may be due
to instrument or other noise. Instrument noise may certainly
be a factor and a possible source of the recovered small
acceleration transients for the z- and maybe the north–south
component as well. The z-component transient, however,
shows a bit more dispersion than the north–south component
in its acceleration magnitudes, suggesting that for the z-
component the transients are due to noise. However, for
the horizontal east–west components, the magnitudes of the
transients are large even after subtracting out the noise esti-
mates. It is inferred, therefore, from the above that these tran-
sients are ground-rotation induced.

The second question as to whether the acceleration spike
is an artifact of the method used had in fact been tested by
using the TCU068-NS component. The test involved remov-
ing the low-frequency, acceleration-fling pulse from the time
history and replacing it by a synthetic sinusoidal pulse of
approximately the same duration, frequency, and amplitude.
The algorithm was then applied and the wavelet transform
recovered the sinusoid without any spikes and, therefore,
without the need for any baseline correction. This was
deemed as sufficient evidence that the spike obtained from
the real earthquake of TCU068-NS was not an algorithmic
artifact, otherwise the synthetic sinusoid would not have
been retrieved without correction.

Discussion

The wavelet-transform method provides the basis for an
automated baseline-correction procedure, but in particular
for locating and isolating the form and time of occurrence
of baseline error that for all the events studied thus far is
a Dirac-like acceleration transient, after which the objective
remains simply to remove the transient and proceed to stable
integration.

The new result for TCU068 shown inⒺ Figures S1–S3
(see supplement) is that the acceleration transients obtained
using the wavelet-transform method compare reasonably
with those published in Pillet and Virieux (2007) using a
non-wavelet-transformmethod, and are shown inⒺTable S1
(see supplement) for the same station.

Station TCU102 (Table 2) and Figures 4–9 are new
results for the presented method and examples of records
giving several zero-crossing points (Table 3) in the low-
frequency, velocity-fling sub-band. The zero crossings give
four consecutive acceleration transients given in Table 3.
However, the baseline error, which is from the first zero-
velocity crossing point, occurs at almost the same time for
both horizontal components. Where there are several zero-
crossing points in velocity, the rule is to use the zero-crossing
point that is nearest the clear-cut fling, on the assumption that
any time history after t ≥ Ti may be due to distortions (Gra-
izer, 2005). The displacement results show good agreement
with GPS.

The Darfield earthquake (see Ⓔ Fig. S4 in the supple-
ment) in Christchurch, New Zealand, at the Greendale station
was processed by the wavelet transform and found to give
reasonable displacement estimates in Ⓔ Table S2 (see sup-
plement) compared with GPS (Berrill et al., 2011). Other re-
sults and discussion are given in Berrill et al. (2011) mainly
for the N55°W component. New results in this paper are the
low-frequency fling-pulse plots for N55°W in Ⓔ Figure S5
(see supplement) and its acceleration transient inⒺ Figure S6
(see supplement) and their double-time integrations and the
S35°W plots in ⒺFigure S7 (see supplement). New results
inⒺTable S2 and Table S3 (see supplement) show the accel-
eration transients. The vertical component in Ⓔ Table S2 is
0:49 cm=s2, suggesting instrument noise as the cause of the
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baseline error. On the other hand, the acceleration spikes for
the two horizontal components, though small, are five and
seven times bigger than that for the vertical component, sug-
gesting therefore that these are due to ground rotations.

For the S35°W component it is demonstrated that at a
lower level of decomposition, in this case, level 9 in Ⓔ
Figures S8 and S9 (see supplement), several threshold iter-
ations can remove post-fling perturbations, without affecting
the magnitude of the displacement or the acceleration tran-
sient. It is argued, however, that in general a light-touch
threshold of only one to two iterations is applied with the
baseline-error transient removed at the fling pulse. Again,
and as for TCU102, the time points at the clear-cut fling were
used showing good agreement with GPS.

The Ölfus event,Ⓔ Figures S10–S12, (see supplement)
is interesting, however, from the perspective that the results
from the 11-ICEARRAY stations show behavior as expected
from ground rotations described by others in their research
work as discussed in Is the Spike a Facet of Instrument Noise
or an Artifact of the Algorithm? The displacement results of
the Ölfus earthquake in Iceland are shown in Ⓔ Table S4
(see supplement) and are hitherto unpublished as a full set
for the SWT method and correlate well with those obtained
by others and GPS after the acceleration transients are re-
moved. Estimates of the acceleration transients of the Ölfus
earthquake in Iceland May 2008 are significant because
of the proximity of the accelerographs within the array.
Ⓔ Table S5 (see supplement) shows that there is a good cor-
relation in the magnitude of the acceleration transients and
good correlation for the Ti time points, at which the baseline
correction is applied for each instrument and component.
To some extent it may be argued that these results are self-
validating, because it is difficult to envisage eleven 3-DOF
CUSP instruments malfunctioning almost simultaneously.
The acceleration transients in Ⓔ Table S5 (see supplement)
for this data set also show that the east–west component in
the accelerographs has the highest initial acceleration transi-
ents, averaging 16 cm=s2 at the time points at which the
baseline error was obtained and removed and residual dis-
placements measured. The results from this array are impor-
tant for the wavelet-transform method because they support
some of the conclusions in Trifunac and Todorovska (2001),
Boore et al. (2002), Wang et al. (2003), and Graizer (2005)
as discussed in this paper, and from their work we can infer
that these transients may be due to ground rotations.

Conclusion

It is demonstrated that the wavelet transform reveals a
finer structure to the acceleration jumps (transients) in the
baseline, which make recovery of stable residual displace-
ments problematic. On integrating the acceleration transients
from the events used in this paper and the Ⓔ electronic sup-
plement, then their double integrations match the velocity
DC shift and displacement error in the low-frequency, veloc-
ity, and displacement time series.

It can also be concluded that certainly some of these
transients, occurring in the low-frequency, fling pulse are
not always due to noise or some malfunction, though the
lower values of the acceleration transients occurring in the
z-component may be attributed to noise. Further, there is
no need to alter the shape of the transient by keeping the area
constant, and the time at which the pulses occur is not a free
parameter. Indeed, the baseline error in the form of the ac-
celeration transient occurs as a clearly defined time, located
by the wavelet transform and that occurs toward the end of
the low-frequency velocity-fling pulse. Moreover, it has been
shown for TCU102, the Greendale Station, and the Ölfus
earthquake that there can be more than one clearly defined
velocity zero-crossing point at different times, however, and
as often emphasized the algorithm uses the time point at the
velocity fling, the rest can be eliminated if recovering dis-
placement alone is the objective, which it usually is.

When using the wavelet transform, low-cut filtering is
not recommended, because the long-period fling is then re-
moved, and the whole purpose of applying the transform is
then rendered void. Fortunately, through good design neither
the A900 nor the CUSP (Avery et al., 2004; Avery, 2005)
instruments have built-in low-cut filters.

Finally, the wavelet-transform method as presented in
this paper locates the baseline error in the form of an accel-
eration transient and removes it. Thereafter, recovery of
displacement is possible. The wavelet-transform method is
therefore a reasonable alternative with which to obtain dis-
placements by double integration. Furthermore and based on
the results obtained for the acceleration transients, and if we
use the assumption as in Trifunac and Todorovska (2001),
Boore et al., 2002, Wang et al. (2003), and Graizer (2005),
then it may be concluded that some of these acceleration
transients causing the baseline error may be due to ground-
induced tilt/rotation.

Data and Resources

The New Zealand records for the Darfield Event,
4 September 2010 can be obtained from the following
database sites: ftp://ftp.geonet.org.nz/strong/processed/Proc/
2010/09_Prelim/2010‑09‑03_163541/Vol1/data/ (last ac-
cessed July 2012). The image in Ⓔ Figure S13 (in the elec-
tronic supplement to this paper) is from http://db.nzsee.
org.nz/PUBS (last accessed January 2011). The records
for the Chi-Chi Event is obtained from Lee et al. (2001) (last
accessed October 2011). The ICEARRAY records are as
yet not in the public domain, but can be obtained by contact-
ing Benedikt Halldorsson at skykkur@hi.is (last contacted
May 2012).
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This BSSA supplement presents additional results to those in the main paper. These additional results
are for the Chi-Chi TCU068 (1999) station, the New Zealand Darfield Station (2010) and the
ICEARRAY results from the Ölfus Earthquake (2008) in Iceland.

Acceleration transients for Chi-Chi TCU068

The 1999 Chi-Chi event from station TCU068 is considered first, the data for this is from the BSSA CD-
ROM Lee, et al (2001), a very good and useful data set from the Chi-Chi 1999 event. A point to note is
that the instrument used was the A900, which does not have an in-built low-cut filter, therefore retains
the low frequency signals. The following discussion on the wavelet transform method however focuses
only on the low-frequency, fling profile from which the acceleration transient is extracted.

Focusing on the wavelet transform method, then on applying wavelet bior1.3 at decomposition level
10, we obtain as in Figure S1 the TCU068NS low-frequency, fling superimposed before and after
correction. It reveals a new and small, sharp triangular structure at time-point T , hidden in the latter
portion of the low-frequency, strong-motion acceleration fling and whose numerical area is equal to a
flat dc shift in velocity as per Boore et al (2002), in the latter portion of the velocity plot after the
strong motion. This structure is more clearly shown in Figure S2 for TCU068NS after the triangular
area is subtracted-out from the corrected and uncorrected, low-frequency acceleration time history at
T  (= 45.65s). It shows quite clearly a sharp 9.57cm/s , peak acceleration transient, or ‘spike’, which
may be attributed to a tilt/ground rotation/torsion at time T , which as discussed in the 'Baseline
correction and the acceleration spike' section and which on removal from the low-frequency, sub-band
acceleration allows stable, double-time integration.

Figure S3 shows the (inverted) extracted peak acceleration transient of -6.75cm/s  at T  = 45.83s
from the TCU068EW fling component and the dc velocity shift and displacement offset after double
integrating the acceleration transient. The area of the acceleration transient is 5.65cm/s, which
matches the constant velocity dc shift after the fling pulse of TCU068EW. The area under the dc
shifted velocity curve is 255.65cm, which is the displacement error from the residual permanent
displacement.

The vertical components of TCU068 doesn’t show any need for baseline correction it showed only a
small transient towards the end of the time history. Effectively this component integrates to
displacement after filtering with the wavelet transform. Table 1 shows the estimates of the acceleration
transients and their times of occurrence for TCU068 and TCU102 Chi-Chi event. The times T  at which
these transients occur are the time-points at which the baseline correction is applied and is therefore an
important parameter.

Using the wavelet transform method, the peak instantaneous tilt angles calculated from the peak
transient acceleration in Table S1 are calculated as -6.9mrad (-6.75cm/s ) (EW) and 9.8mrad
(9.57cm/s ) (NS) and the resulting dynamic tilt amplitude obtained is 12.09mrad (11.86cm/s ). It is
these peak acceleration transients, which are inferred as due to instantaneous tilt/rotation angles, that
cause the dc shift in velocity in the latter portion of the time history and prevent stable double-time
integration.

For comparison, Pillet and Vireaux (2007) obtained estimates of the average acceleration for TCU068,
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from the velocity slopes of the last 30% from the velocity time histories of all components and
removed these ‘small jumps in the baseline of the acceleration’ from the acceleration time history, as
described in their paper. They then integrated the acceleration time history to obtain estimates of the
displacements. The magnitude of these ‘small jumps’, were -0.049cm/s  for the vertical, 4.077 cm/s
for the NS and -3.446 cm/s  for the EW component and Pillet and Vireaux (2007) attributed these to
tilt. The average accelerations using the wavelet transform method, estimated from the initial slope of
the largely constant velocity dc shift in Figure S2 and Figure S3 for the NS and EW components is
approximately 3.76cm/s and -3.21 cm/s  respectively. These are similar to those obtained by Pillet
and Vireaux (2007). A comparison of estimates of the acceleration transients using the wavelet
transform method with the method used by Pillet and Vireaux (2007) is given in Table S1. The values
show a similar order of magnitude. Moreover, both methods show that the NS acceleration transient
and the Pillet and Vireaux (2007) ‘small jump’ is greater than EW and the vertical component, the
latter being the least significant in both cases.

Both methods give reasonable estimates of the displacements though the wavelet transform method
gives estimates which are more comparable with GPS readings. Given that the methods are quite
different and were applied to initially obtain the displacements, the degree of correlation between the
offending acceleration transients and jumps is reasonable. The wavelet transform method however
reveals a clear structure to the offending baseline error acceleration transient shown in Table S1 and
in Figure S2 and Figure S3 and gives stable double integration if the dynamic transient is removed
from the acceleration time history or when the acceleration is zeroed from t =T .

Another point to make is that there may well be a tilt-time series, Graizer (1991, 2005), Trifunac
(1971), Trifunac et al, (1999), Nigbor (1994, 2009), but when applying the wavelet transform, it is only
in the low-frequency fling in the range f = 0.1Hz, towards the end of the strong motion, that the
acceleration transient, the velocity dc shift and the displacement errors become apparent. Moreover,
the acceleration transient is embedded in the low-frequency fling time history and not immediately
obvious and has to be subtracted out from the low-frequency, acceleration time series. It is also likely
that the higher frequencies present in the acceleration time series and separated out by the wavelet
transform, may have also recorded some acceleration transients. However, it is concluded that any
acceleration transients, trends and other outliers in the higher frequencies have been removed. This is
because at the higher frequencies the final integration proceeds to an average, zero-velocity dc shift
and an average, zero permanent displacement.

New Zealand Mw 7.1, Darfield Event, 4th Sept 2010

The Canterbury region on the South Island of New Zealand experienced a magnitude M  7.1
earthquake on the 4th Sept 2010. The epicentre was located about 10 km SE of the town of Darfield
and about 40 km west of the city of Christchurch. The seismic event produced a right-lateral, strike-
slip surface rupture = 28 km long, approximately west-east, Figure S4. Much damage occurred to
residential buildings as well as a lot of liquefaction and lateral spreading. The situation however
deteriorated further after a 2nd earthquake of M  6.3 hit, damaging the Christchurch city centre and
with considerable loss of life. One hopes and prays that the residents of Christchurch people will
overcome these tragic events.

New fling pulse examples are presented for N55W and the S35W components and the acceleration
transient and displacement results from the Darfield earthquake as recorded on a 14-bit, CUSP-3B at
the Greendale station, using the wavelet transform method. More displacement results obtained using
the wavelet transform method is in Berrill et al (2011). Table S2 gives a summary for all components
of the Greendale Station. The horizontal displacements give a resultant of 183.6cm, which compares
well with GPS at 189.79cm Berrill et al (2011), 1.6 km away. Table S2 also gives estimates of the tilt
acceleration transients taken at the fling zero-velocity time point, at which the correction is applied.

Figure S5 shows the low-frequency, sub-band for the N55W component, at level 10 decomposition
and Figure S6 shows the velocity and displacement responses after double integrating the extracted
transient acceleration. Table S2 also demonstrates that the vertical acceleration transient is small
compared to the two horizontal components, as would be expected Graizer (2005) and may be a
measure of the noise floor. It should be noted that as for the Chi-Chi station TCU068, level 10
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decomposition has removed any post-fling perturbations in the fling acceleration and produced an
almost sinusoidal time history. The zero-velocity, cross-over time-point is taken at time T  = 26.55s at
the end of the fling, at which the correction is applied. The acceleration transient at that zero-velocity,
cross-over point is 2.33cm/s .

For the S35W component, the low-frequency time history showed a much distorted acceleration fling
and was abandoned at level 10 decomposition. At level 9 decomposition on the other hand and as
shown in Figure S7 and after two threshold iterations, a reasonable strong motion fling is observed
and post-fling perturbations with 3 zero-velocity cross-over points suggesting that more acceleration
transients occurred (Table S3) further down the time series, but as before we use T  at the end of the
double-fling.

However in Figure S8, the low-frequency S35W component is shown after seven threshold iterations
at level 9 decomposition and it is clear that most of the post-fling perturbations in the acceleration time
history have been removed. This is in a sense equivalent to level 10 of decomposition, which
unfortunately gave too much distortion. This time though only one acceleration transient is evident at
3.341cm/s  at time-point of 27.65s, which are almost the same values as in Table S2 and Table S3
for the two threshold iterations at level 9 decomposition, the final displacement too is almost
unaffected. However, the velocity dc shift is considerably more at 7.23cm/s, indicating that the sum of
the post-fling oscillations at two threshold iterations lowered the velocity dc shift.

It is argued here that there isn’t any advantage to implementing so many threshold iterations. Indeed it
may be disadvantageous because post-fling detail may yield additional information, such as the
number of times the instrument tilted and in which direction of rotation. However, because the
algorithm is almost automated and executes rapidly therefore it’s worthwhile to sometimes experiment
with different iteration thresholds. Finally, Figure S9 shows the power plots for the S35W
component, which demonstrate that at frequencies as low as 0.012Hz there is significant power in the
low-frequency spectrum, with a peak at 0.21Hz.

Acceleration Transients for the ICEARRAY after the M  6.3 Ölfus
Earthquake (29th May 2008), in the South Iceland Seismic Zone
(SISZ)

The Icelandic Strong-motion Array (ICEARRAY), the first of its kind in Iceland, was installed in 2007
(Halldorsson et al., 2009) and has already produced a globally unique dataset of near-fault earthquake
strong ground motion (Halldorsson & Sigbjörnsson 2009) during the magnitude 6.3 Ölfus earthquake
in the SISZ at 15:45 on 29 May 2008. (see Figure S10). The array was designed as consisting of 14
stations with an aperture of approximately 1.9 km and minimum inter-element distance of 50 m. The
recording system at each ICEARRAY station is a CUSP-3Clp strong-motion accelerograph unit
manufactured by Canterbury University Seismic Project in New Zealand, for the Canterbury Network
in New Zealand. The units are equipped with 24-bit, tri-axial, low-noise (~70 µg rms) Micro-Electro-
Mechanical (MEM) accelerometers with a high maximum range (± 2.5 g) and a wide-frequency pass-
band (0-80Hz at 200 Hz sampling frequency) (Halldorsson et al. 2009; Halldorsson and Avery 2009).

During the Ölfus earthquake on 29 May 2008 the ICEARRAY produced 33 components of near-fault
earthquake ground accelerations (Halldorsson and Sigbjörnsson 2009). Estimates of coseismic ground
displacements during this earthquake were first recovered in May 2009 using the wavelet transform
method of Chanerley and Alexander (2010). The results show considerable permanent displacements
at all stations along both NS and EW components (Chanerley et al., 2009; Chanerley and Alexander
2010; Halldorsson et al. 2010; Rupakhety et al., 2010;). Here we present the full time-series of
processed earthquake ground motion demonstrating the wavelet transform method for obtaining
displacement estimates as well as the inferred tilt acceleration transients. Also included are the
horizontal displacements obtained using the wavelet transform method in Table S4, which lists the NS
and EW, permanent displacements obtained for the 11 ICEARRAY stations. A comparison of the
displacement given in Table S4 for station IS609, showing a resultant of 16.81 cm NW using the
wavelet transform method, which is in reasonable agreement with estimates from continuous GPS
station located 1.6 km away (Decriem et al. 2010: 19.90 cm NW). Using a quite different method based
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on the work of Iwan, et al (1985) and Wu and Wu (2007) the results in Rupakhety et al., (2010)
compare favorably with those obtained using the wavelet transform method and all listed in this paper
for the 1st time.

Figure S11 shows the corrected acceleration, velocity and displacement for station IS604 EW as an
example. The decomposition level is 7 with only one threshold iteration and in this case using bior1.3.
This is a somewhat lower decomposition level than previous, probably due to a lower magnitude
earthquake compared for example to that of the Chi-Chi event, as discussed in the 'Applying the
Wavelet Transform' section. When using levels 8, 9 and 10 it was difficult to isolate a zero-crossing
point as well as an optimal fling profile. Level 7 on the other hand, produced a clear fling from which
the zero-velocity, cross-over time-point, Ti = 20.21s, is used to zero the acceleration at t = T  and re-
integrate the fling, sub-band acceleration to give a sub-band velocity without a dc shift and a
displacement without any linear/quadratic errors as shown in Figure S12. The acceleration transient
is taken at the fling at T  = 20.21s and has a value of 18.6 cm/s . As for the Chi-Chi records above, the
higher frequency sub-bands didn’t require baseline correction and double-time integrated normally.
Level 7 includes a band of frequencies up to 0.78Hz, higher than for Chi-Chi TCU068.

Other stations for the EW component give similar results and all at level 7 decomposition and all time
points, T , were measured at the optimal fling and all acceleration transients were removed at that
point. This gave some consistency in analysis. The focus here is on the acceleration transient at the
low-frequency fling, since it is from there that the correction for baseline shift is applied and the
permanent displacement obtained. Table S5 gives the complete list of acceleration transients
obtained from each of the ICEARRAY stations. Table S5 shows that the EW components have the
largest initial acceleration transients, though most stations had several velocity zero-crossings. Station
IS604 has for example an initial tilt of approximately 1 degree just after the velocity-fling. This is high
compared to the NS component; moreover these components have several zero-crossing and therefore
several possible acceleration transients. In a similar manner to Chi-Chi station TCU102, station IS604
shows, six zero-velocity, cross-over time points and each time point has an acceleration transient in the
low-frequency acceleration, which contribute to the dc shift in velocity, their values and time-points
are given in Table S6 as an example. Their magnitudes diminish as shown in Table S6 for station
IS604, with a 1 cm change in displacement between the value on removing baseline error from the 1st
transient and that on removing from the 6th transient and re-integrating to displacement.

The EW component of most stations had several zero-crossing points at level 7 with smaller
acceleration transients further along the time history in much the same way as station IS604.
Therefore any one of those could have been used by the algorithm and which also gave sensible
displacement values. However, following Graizer (2005) a clear-cut fling profile of the velocity-pulse is
used by the algorithm at which time-point the acceleration transient removed. The results also shows
that the acceleration transients and their T  times correlate well for each component for each stations,
but that the NS transients are much lower in magnitude and similar to those of the vertical component
and so can be attributed to noise. As discussed the much larger acceleration transients for the EW
component may be indicative of tilts/rotations.

The results are consistent with the fact that the aperture of the ICEARRAY is as mentioned, small at 1.9
km, therefore perhaps it is right to expect some degree of correlation from such a close-knit array of
sensors. This consistency in results does lend some weight to the fact that certainly in the EW
component these transient accelerations may be due to tilts/rotations rather than to instrument
malfunctions or noise. The results form a significant contribution to the discussions and conclusions
from Boore, Stephens and Joyner (2002) and Trifunac and Todorovska (2001), Wang, et al (2003)
and Graizer (2005) as discussed in section on 'Baseline correction and the acceleration spike' and in the
'Discussion' section.

Tables

▼Table S1. Comparison of the estimated acceleration transients obtained by Pillet and Vireaux
(2007) with that obtained using the wavelet transform method for Chi-Chi stationTCU068.
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Methodology due to: TCU068NS TCU068EW TCU068V

Pillet and Vireaux (2007) (cm/s/s) 4.077 -3.446 -0.049

Chanerley and Alexander (2010) (cm/s/s) 9.57 -6.75 ignore

▼Table S2. Estimates of the component accelerations transients and displacements and the time at
which the transients and occurred at which baseline corrections were applied (Greendale station).

Component Tilt Acc., (cm/s/s) Time, (s) Displacement, (cm)

N55W 2.33 26.55 -177.8 (Level 10)

S35W 3.44 28.56 -47.85 (Level 9)

UP 0.49 27.2 -66.5 (level 10

▼Table S3. Estimates of the acceleration transients and time of occurrence for the Greendale station,
S35W. The velocity dc shift is 2.14cm/s (Greendale station S35W).

Order of Tilt Acc Tilt Acc., (cm/s/s) Time, (s)

1st Tilt Acc. 3.44 28.56

2nd Tilt Acc. -3.44 38.34

3rd Tilt Acc. 3.92 41.06

▼Table S4. Estimates of permanent (horizontal) ground displacements at each ICEARRAY station
that recorded the Ölfus earthquake in South Iceland on 29 May 2008.

Station NS, (cm) EW, (cm) Resultant, (cm) W(degrees)N

IS601 12.88 -9.98 16.3 53

IS602 14.93 -17.37 20.71 41

IS603 15.38 -13.62 20.55 49

IS604 15.58 -9.448 18.23 59

IS605 14.48 -11.61 18.56 52

IS607 15.36 -10.67 18.71 56

IS608 19.48 -9.73 21.78 64

IS688 17.36 -11.41 20.78 57

IS609 10.93 -12.76 16.81 41

IS610 9.173 -8.68 12.63 47

IS611 16.57 -14.77 22.2 49

Mean 14.74 -11.82 19.04 -

▼Table S5. Estimates of three-component acceleration transients and their time of occurrence at
each ICEARRAY station that recorded the Ölfus earthquake in South Iceland on 29 May 2008.

Station
N-S Tilt Acc,

cm/s/s
N-S Time,

s
E-W Tilt Acc,

cm/s/s
E-W Time,

s
V Tilt Acc,
cm/s/s

V Time,
s

IS601 -0.8894 19.54 14.71 20.26 0.8263 20.87

IS602 -3.194 18.95 26.14 20.29 -0.66 22.67

IS603 -3.014 19.14 20.6 20.29 -2.22 20.16

IS604 -3.503 19.04 18.6 20.21 -2.064 20.13

IS605 -2.861 19.21 15.52 20.29 -5.559 19.8

IS607 -2.804 19.27 23.24 20.28 -8.99 19.56
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IS608 -2.758 19.45 16.42 20.30 -2.317 19.94

IS688 -2.936 19.34 15.72 20.30 -1.761 20

IS609 -2.052 19.00 9.18 20.23 -1.328 20.53

IS610 -1.119 19.15 2.8 22.27 -1.76 20.36

IS611 -2.456 19.38 12.9 20.32 -2.001 20.36

Mean -2.51 19.23 15.99 20.46 -2.54 20.4

Std. Dev. 0.84 - 6.74 - 2.63 -

▼Table S6. Estimates of the 6 tilt-acceleration transients and their time of occurrence for the EW
component of station IS604. (Station IS604 EW).

Order of Tilt Acc. Acc., cm/s/s Transient, s

1st Tilt Acc. 18.6 20.21

2nd Tilt Acc. -13.23 21.41

3rd Tilt Acc. 5.9 22.29

4th Tilt Acc. -7 23.11

5th Tilt Acc. 2.45 24.19

6th Tilt Acc. -1.98 24.64

Figures

▲Figure S1. TCU068NS low-frequency sub-band, fling, which shows results before (light gray) and
after (black) baseline correction. The triangular area in the acceleration is the results of an acceleration
transient gf at 45.65s. The resulting constant velocity dc shift of 11.61cm/s is shown in light gray as a
post shaking, flat velocity time history

http://www.seismosoc.org/publications/BSSA_html/bssa_103-1/2011352-esupp/FigureS1.jpg
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▲Figure S2.Acceleration Tilt transient for TCU068NS at 45.65s. The resulting constant velocity dc
shift of 11.61cm/s is a clear example of a post shaking, flat velocity time history (Boore et al (2002))

▲Figure S3. Acceleration tilt transient (inverted) at 45.83s and 6.749cm/s/s, velocity and
displacement response after integration of acceleration transient, for the TCU068EW component
using instrument (A900)

http://www.seismosoc.org/publications/BSSA_html/bssa_103-1/2011352-esupp/FigureS2.jpg
http://www.seismosoc.org/publications/BSSA_html/bssa_103-1/2011352-esupp/FigureS3.jpg
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▲Figure S4. Aerial shot of the Christchurch area showing the surface fault rupture and the epicentre
of the Darfield EQ the image is about 117 km across.

▲Figure S5. N55W component time-series, bior1.3 wavelet, at decomposition level 10, showing low-
frequency fling with a (tilt) acceleration transient of 2.33cm/s/s at 26.55s giving a velocity dc shift of
-0.5cm/s and a displacement offset of 25.8cm. Instrument is CUSP 3B

http://www.seismosoc.org/publications/BSSA_html/bssa_103-1/2011352-esupp/FigureS4.jpg
http://www.seismosoc.org/publications/BSSA_html/bssa_103-1/2011352-esupp/FigureS5.jpg
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▲Figure S6. Acceleration tilt transient at 26.55s and 2.33cm/s/s, a velocity dc shift of -0.5cm/s and
displacement response after integration of acceleration transient for the N55W Greendale component
using a CUSP instrument

▲Figure S7. S35W component time-series, at decomposition level 9, after 2 x threshold iterations,
showing low-frequency fling and post-fling perturbation, with the first (tilt) acceleration transient of
3.54cm/s/s at 28.56s. The resulting velocity dc shift is 2.135cm/s. Two other possible acceleration
transients at 2 x more velocity zero-crossing points are shown and listed in Table S3. Instrument is
the CUSP 3B and the displacement is -47.85cm.

http://www.seismosoc.org/publications/BSSA_html/bssa_103-1/2011352-esupp/FigureS6.jpg
http://www.seismosoc.org/publications/BSSA_html/bssa_103-1/2011352-esupp/FigureS7.jpg
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▲Figure S8. S35W component time-series, at decomposition level 9, after 7 x threshold iterations,
with almost all post-fling perturbations removed. The plots show a low-frequency fling with only one
(tilt) acceleration transient of 3.341cm/s/s at 27.65s. The resulting velocity dc shift is 7.24cm/s. The
permanent displacement is -46.46cm.

▲Figure S9. S35W component power plots showing significant low-frequency power, down to
0.012Hz and a low-frequency power peak at 0.21Hz.

http://www.seismosoc.org/publications/BSSA_html/bssa_103-1/2011352-esupp/FigureS8.jpg
http://www.seismosoc.org/publications/BSSA_html/bssa_103-1/2011352-esupp/FigureS9.jpg
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▲Figure S10. The Ölfus earthquake of 29 May 2008 in South Iceland. The map indicates the macro-
seismic area of the Ölfus earthquake which occurred on two separate but parallel north-south trending
faults (red dashed lines) as outlined by the extent of aftershock activity. Of the two towns Selfoss and
Hveragerdi closest to the earthquake faults, the town of Hveragerdi suffered the largest earthquake
ground motion during the earthquake. The ICEARRAY stations in Hveragerdi are shown by black dots
and a triangle (triangles denote stations of the Icelandic Strong-motion network). The small map inset
at top left shows a close-up of Hveragerdi with the street-layout of the town shown as gray lines. For
reference, the small map inset at bottom left shows Iceland in reference to the present-day Mid-
Atlantic Ridge extensional plate boundary (gray line) between the North American and Eurasian
tectonic plates, respectively. Major transform zones are indicated with black dashed lines. The
earthquake occurred in the Ölfus district, marked with the solid red rectangle within the SISZ.

▲Figure S11. Corrected low-frequency sub-band (LFS) fling and higher frequency sub-bands (HFS)
and the resulting total using bior1.3 for ICEARRAY station IS604, EW component obtained at level 7,
with a displacement of -9.448cm, with a time point at 20.21s.

http://www.seismosoc.org/publications/BSSA_html/bssa_103-1/2011352-esupp/FigureS10.jpg
http://www.seismosoc.org/publications/BSSA_html/bssa_103-1/2011352-esupp/FigureS11.jpg
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▲Figure S12. ICEARRAY Station IS604 EW, low frequency sub-band (LFS): showing results before
and after baseline correction. The triangular area in the acceleration is the results of gf acceleration tilt
transient taken at 20.21s. The resulting constant velocity dc shift (-0.833cm/s) is shown and the linear
displacement offset. The velocity time series shows 6 zero-velocities, cross-over points, suggesting 6
tilt acceleration transients in the low-frequency, fling space; these are given in Table S6.
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Abstract This paper proposes a novel, wavelet-based algorithm, which by extracting the
low-frequency fling makes it possible to automatically correct for baseline shift and re-inte-
grate down to displacement. The algorithm applies a stationary-wavelet transform at a suitable
level of decomposition to extract the low frequency fling model in the acceleration time histo-
ries. The low frequency, acceleration fling should be as close as possible to the theoretical type
A model, which after correction leads to a pulse-type velocity and ramp-like displacement
after first and second integration. The wavelet transform essentially decomposes the seismic
record using maximally flat filters and these together with a de-noising scheme form the core
of this approach, which is to extract the lower and higher frequency sub-band acceleration,
velocity and displacement profiles and correct for baseline shift. The correction automati-
cally selects one time point from the low-frequency sub-band and then zeros the acceleration
baseline after the fling. This implies pure, translation without any instrument tilts. Estimates
of instrument tilt angles are also obtainable from the wavelet transformed time history as well
as estimates of signal-to-noise ratios. The acceleration data used in this study is from station
TCU068 in the near-fault region of the Chi-Chi, Taiwan, earthquake of 20th September 1999.

Keywords Correction · Seismic · Wavelet transform · Integration · Acceleration · Velocity ·
Displacement · Chi–Chi · Fling · Decomposition · Reconstruction

1 Introduction

Strong ground motions at near-fault sites may contain low frequency, pulse type
waves which induce substantial permanent ground deformation. Standard filtering methods
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(Trifunac et al. 1999; Trifunac 1971) cannot extract such permanent displacements of the
ground from acceleration time-histories. This is partly because the low frequency accelera-
tion may be buried in noise of similar magnitude, making it hitherto difficult to extract the
long period information using standard filtering methods. It is proposed and shown that the
wavelet transform overcomes some of the problems associated with obtaining low frequency,
pulse type waves. The wavelet transform (Debauchies 1992) has been used (Chanerley and
Alexander 2008, 2007) for de-noising the seismic record prior to de-convoluting the instru-
ment response. The wavelet transform has also been used (Chen and Loh 2006) in order to
implement baseline correction scheme and consequent estimates of permanent displacement
of some Chi–Chi seismic recordings. A three-phase procedural approach is used in Iwan
et al. (1985), but the approach is still involved requiring selection processes at the various
phases, their results compare favourably with GPS readings.

Other recent work in Wu and Wu (2007) compares estimates of displacement obtained
through first and second integration’s from the Chi–Chi events with those of GPS readings
taken near the sites of the strong-motion recordings. In order to obtain reasonable estimates of
displacements a baseline correction procedure has been required. Thus approximate methods
have been used in order to correct for baseline shift and then integrate for velocity and inte-
grate again for displacement. Most of the approximate baseline correction schemes have been
based on a two-point scheme proposed in Iwan et al. (1985) with modifications proposed by
Boore (2001) and Boore and Bommer (2005). A good corrected displacement history is sim-
ilar to a ramp function (Wu and Wu 2007) between two points suitably chosen. However, the
limitation of all of the above methods is that they cannot extract the low-frequency fling and
the choice of different time points can lead to considerably different estimates of final differ-
ent displacements. The difficulty is that a standard and automated procedure for the correction
of baseline-shift has not hitherto existed. This paper aims to show an approach, which corrects
automatically for the baseline-shift occurring in seismic records and extracts the fling.

The paper proposes a novel wavelet-based algorithm for the routine processing of seis-
mic data, in particular near-fault, strong-motion data. The method provides a scheme for
straightforward and automated baseline correction of the acceleration and its integration to
stable and unbiased estimates of velocity and displacement. The method also demonstrates
that the wavelet transform extracts completely naturally the low-frequency fling that appears
in near-fault velocity time histories, a phenomenon caused by the earthquake. In order to
demonstrate the utility of the method, the seismic record TCU068 from the 1999 Chi–Chi
event, shown in Fig. 1, has been used.

The paper shows that the application of wavelet transform filters extracts the low-fre-
quency, sub-band fling by applying filter banks for decomposition and reconstruction. The
wavelets also give depth of decomposition such that an optimal estimate of fling and thus
consequent displacement is obtained. Moreover the method need not be transform spe-
cific, though the choice of transform is guided by linear phase requirements. In some cases
the wavelet transform can automatically correct for baseline shifts and extract the fling, in
other cases a straightforward correction can be applied which relies only on improving the
extracted long-period fling and pulse-like velocity and therefore removes some of the deci-
sions in the published methods of Chanerley and Alexander (2008, 2007), Chen and Loh
(2006), Wu and Wu (2007), Iwan et al. (1985), Boore (2001), Alexander et al. (2001) and
Chanerley and Alexander (2002). It is a simplified procedure for baseline correction, which
makes it easier to integrate to displacement. The displacements are compared with GPS
readings and the initial results are encouraging.

Figure 2 shows a comparison of existing and the proposed approaches. The raw acceler-
ation is twice integrated to produce a displacement timeseries that is grossly in error. As a
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Fig. 1 A zoom of the epicenter (star) of the magnitude 7.6 Chi–Chi, Taiwan, earthquake of 20 September
1999 and the associated fault trace of surface rupture (“irregular” line). The triangle at the northern end of
the fault indicates the extreme near-fault location of the recording station TCU068, the data of which is the
topic of this study. The inset map at top right shows a wider view of Taiwan where the gray rectangle and
circles show the extent of the fault plane of the Chi–Chi earthquake as assumed by Halldorsson et al. (2009)
and the respective sub-events of the specific barrier model of the earthquake

comparison a standard low-cut filters of 0.02, 0.05, and 0.1 Hz are passed over the acceleration
timeseries before double integration. The results are better; however, the filters unfortunately
remove the fling component that is a low-frequency phenomenon. A piecewise linear detrend
is applied to the acceleration and velocity timeseries by defining two breakpoints. This pro-
cedure is similar to Iwan et al. (1985) and Boore (2001). Note that without nuancing these
breakpoints, as in Iwan et al. (1985) and Boore (2001), the results can be no better than
employing filters. The proposed scheme recovers the fling phenomenon and estimates the
permanent displacement at the end of the record.

2 Components of accelerogram records

2.1 The fling model

In the 1970s Bolt (1971, 1975) identified coherent ground velocity pulses radiating from a
rapidly slipping fault gives rise to a wave pattern called fling. Bertero et al. (1976, 1978),
showed that the near source destructive ground motions were due to the low frequency
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acceleration ground pulses. The model fling pulse parameters are related by the following
(Veletsos et al. 1965; Makris 1997; Makris and Black 2003) Eq. (1)

s̈ (t) = A sin

(
2π (t − t1)

T

)
, T = t2 − t1, t1 ≤ t ≤ t2 (1)

for the sine, type A fling model, where, s(t) is the ground displacement time-series, t1 and
t2 are the start and stop times and T is the duration of the acceleration sine.

For the cosine type B type fling model the expression is similar

s̈ (t) = A cos

(
2π (t − t1)

T

)
, T = t2 − t1, t1 ≤ t ≤ t2. (2)

Integration of the above equations gives the type A and type B profiles for velocity and
displacement. The sine type A and cosine type B are shown in Figs. 3 and 4.

The profile is type A where the acceleration is shown as a sine pulse, leading to a one-sided
velocity pulse and ramp-like displacement. This means that the displacement retains its per-
manency and doesn’t recover. The type B cosine profile leads to a two-sided velocity profile
where the displacement recovers. In the profiles analyzed in this paper from the Chi–Chi
1999 event, the wavelet transform extracts mainly type A profiles in the lower frequency
sub-band and type B profiles in the higher frequency sub-band. The latter are summed with
the former and give rise to an estimate of the local ground motion.

2.2 Influence of instrument tilts

It is reported and discussed in Boore (2001) and Graizer (2005) that instrument and/or sensor
tilting causes baseline shifts in acceleration and velocity, in particular in the long period
which leads to offsets in the final displacement. Moreover Graizer (2005) has demonstrated
displacement offsets using numerical simulations, by contaminating the Hector Mine seismic
data with artificial instrument tilts of 0.1◦ (1.75 mrad). The simulation [in Fig. 4 of Graizer
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Fig. 4 cosine models of type B fling profiles. Type B fling leads to a recovery in displacement

2005] showed that the contaminated Hector Mine data had a similar profile in the displace-
ment, to that of an actual displacement from the Chi–Chi TCU068 data discussed in the
results of Sect. 5. We show therefore that after processing the seismic data using the wavelet
transform, the angle of tilt can be estimated.

The approximate equations (Graizer 2005) which describe small tilt angles are as follows,

ä1 + 2µ1ω1ȧ1 + ω2
1a1 = −ẍ1 + gψ2 + ε (3)

ä2 + 2µ2ω2ȧ2 + ω2
2a2 = −ẍ2 + gψ1 + ε (4)

ä3 + 2µ3ω3ȧ3 + ω2
3a3 = −ẍ3 + ε (5)
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where (a1, a2, a3) are the recorded responses of the accelerometer, (ω1, ω2, ω3) are its natural
frequencies, (µ1, µ2, µ3) are its ratios of critical damping, g is the acceleration due to gravity,
(ψ1, ψ2) are the rotation of the ground surface about horizontal basis (i.e., roll and pitch),
(ẍ1, ẍ2, ẍ3) are the actual translational ground accelerations, in the Easterly, Northerly and
Vertical directions respectively, and ε is the instrument noise timeseries.

The conclusions from the above equations are that the two horizontal sensors are respond-
ing to horizontal acceleration and tilts (pitch and roll) and that the vertical sensor is responding
to vertical acceleration only. The yaw rotation has only a second order effect on the accel-
erograms, as do axes cross-coupling terms (Graizer 2005). Using the results presented, it is
demonstrated that the tilt angle can be estimated from the lower frequency sub-band displace-
ment offsets after the wavelet operation, but before correction for baseline shift is applied.
The wavelet transform does not remove the tilt, but it makes it easier to adjust for the final
imposed residual tilt. Estimating this final imposed residual tilt angle allows the baseline
shift to be corrected more precisely.

According to Graizer (2005) the following conditions (repeated below) are necessary in
order to extract the true displacement from real accelerograms:

(i) The input ground motion must be purely translational, without any tilting or any other
natural distortion.

(ii) The record must contain clear beginning and ending parts with relatively small ampli-
tudes to allow baseline correction.

(iii) The signal to noise ratio (SNR) must be high enough at least 40 dB.

From the Chi–Chi (1999) records condition (i) is difficult to obtain without correction.
When applying the proposed wavelet scheme (without baseline tilt correction) a large dis-
placement offset can be observed at the end of the record, as discussed in the result Sect. 5.
This is consistent with simulations shown in Graizer (2005) and is due to residual instrument
tilt. Therefore, in this case condition (ii) is implicit in that small amplitudes exist in both the
acceleration and velocity time histories and require baseline correction in order to approxi-
mate pure translation. Condition (iii) requiring a SNR of 40 dB is optimistic, the SNR found
were much less than that required in Graizer (2005). It is shown in this paper that, using only
the lower frequency sub-band (timeseries) extracted by the wavelet transform, it is possible
to approximate the pure translational ground motion.

3 Employing the wavelet transform

3.1 Optimal filter banks

The wavelet transform may be considered as a set of complementary low-pass and band-pass
filters, which can convolute and down sample by a factor of 2, a noisy signal by successively
applying the filters. Effectively the process decomposes, i.e., halves the frequency band each
time (hence the name dyadic sampling) creating sub-bands. Each time it applies a low-pass
filter bank it decomposes the transition band by a factor of 2 moving to lower sub-band fre-
quencies at each level of decomposition. A similar argument applies to the band-pass filter
banks for the shorter period parts of a signal.

Moreover the method takes the discrete wavelet transform (DWT) (Debauchies 1992) of
a signal, and passes the transform through a threshold (Coifman and Donoho 1995; Donoho
1995), which de-noises the signal. Reconstruction is the inverse process of decomposition,
which up samples by a factor of 2 and applies low-pass and high pass filter banks. For the
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Fig. 6 Wavelet bior1.3 associated low pass and high pass filters and their phase. Note that these QMFs are
maximally flat

events used in this paper wavelets db2 (Daubechies wavelet order 2), and bior1.3 (Bi-orthogo-
nal wavelet, order 1 associated filter length 3) were tried, though similar results were obtained
for some of the other wavelets. However, bior1.3 is the wavelet of choice since one of its
properties is linear phase. The dimensions of the wavelet coefficients after low-pass filtering
will be large compared to those of the noise coefficients obtained after high pass filtering.
Therefore after thresholding the noise in the wavelet domain, the inverse DWT will retrieve
the desired signal with little loss of important detail. Figure 5 show the scaling and wavelet
functions for bior1.3. Figure 6 display the quadrature mirror filters (QMF) associated with
bior1.3; these are maximally flat low pass and high pass filters and have linear phase.

The forward wavelet transform of a set of data comprises successive down sampling by
a factor of 2, then filtering the data with low and high-pass filter coefficients. The filters
used for this purpose are FIR (Finite Impulse Response) filters of orderN , called quadrature
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mirror filters (QMF). These have mirror image symmetry in both magnitude and phase about
the frequency π/2. The transfer functions relating such filters are given by

H1 (z) = H2 (−z) . (6)

For example, H1 = 1 + z−1 and H2 = 1 − z−1 form a QMF pair, with coefficients [1, 1]
and [1,−1]. The Daubechies filters of order N = 2 will filter in the forward direction and
then down sample by 2. The forward FIR, decomposition, QMF filter-pair coefficients, are
given by:

Decomposition low-pass coefficients
[
c3 c2 c1 c0

]
(7)

Decomposition high-pass coefficients
[−c0 c1 −c2 c3

]
(8)

and the reconstruction filter coefficients are given by:

Reconstruction low-pass coefficients
[
c0 c1 c2 c3

]
(9)

Reconstruction high-pass coefficients
[
c3 −c2 c1 −c0

]
(10)

where the ci are the filter coefficients of the QMF pairs. The reconstruction filters are used
after up sampling by a factor of 2 in order to reconstruct the signal after it has been de-noised.
Though this scheme was used to ascertain a measure of the noise performance, it was not
initially required to explicitly reconstruct the de-noised acceleration time histories. Rather
the decomposed lower and higher frequency sub-band acceleration time histories were used
separately for the first and second integration and for correcting low frequency baseline
shifts. The QMF filters are maximally flat in the pass-band and it is these filters together with
thresholding, which gives this method its measure of success.

3.2 The stationary wavelet transform (SWT)

Unfortunately the DWT is not translation invariant. This implementation, for denoising, uses
the stationary or translation invariant wavelet transform (SWT) (Coifman and Donoho 1995).
This essentially applies a range of signal shifts to allow for misalignment of the signal and
wavelet features, it then averages out the shifts in order to obtain the de-noised signal.

The problems with shift-invariance are connected with the alignment between features in
the signal and features of the wavelet basis. In particular at discontinuities where Gibbs-like
phenomena can occur with unwanted oscillations. An approach to surmount this problem is
described in Coifman and Donoho (1995) where it is suggested to forcibly shift the signal,
so that its features change positions in relation to the wavelet basis. Then to un-shift and
retrieve the de-noised signal hopefully without any unwanted noise or spurious oscillation.
Following the arguments of Coifman and Donoho (1995) the procedure is an average of (1)
shifting, (2) denoising, and (3) un-shifting.

Figures 7 and 8 show a wavelet decomposition tree. At each level of decomposition lower
and higher frequency components are separated. The resulting low frequency component is
further decomposed showing the lower frequency pulse type signal with greater clarity as we
move to lower levels of the decomposition tree.
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Fig. 8 Identifying higher frequencies sub-band (HFS) using multi-level wavelet decomposition

4 The proposed algorithm

4.1 Wavelet selection

Intuitively a choice of scaling function, associated with low-pass decomposition filters, which
has the closest resemblance to the low frequency, fling of Fig. 3, should give good low fre-
quency acceleration. In fact most of the scaling functions of the Daubechies wavelets bear
some resemblance to the acceleration fling model.

However, it should be clear that ultimately the reasonable results are due to the maximally
flat decomposition low-pass and high-pass filters, the non-linear scaling and the thresholding.
These are the properties, which determine the usefulness of this method and give a better
insight into the profile of the earthquake, as well as making the task of correcting for baseline
shifts somewhat easier, in particular at long periods.

4.2 Wavelet decomposition of signal

The classical multi-level wavelet de-noising scheme involves (1) decomposition down to
level n as shown in Fig. 7, (2) soft-thresholding of the decomposed components of the signal,
and (3) re-composition of the signal.

Hence initially, the signal is decomposed into ApproximationA1 and DetailD1. The QMF
that separate the low and high frequency components of the signal at level 1 achieve this.
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Fig. 9 a The wavelet level’s pseudo frequency versus wavelet level. b Maximum wavelet level of decompo-
sition permitted versus number of point in timeseries

Subsequently, the approximation A1 is further decomposed into A2 andD2. This process of
decomposition is repeated until the signal is decomposed into a set of frequency sub-bands,
Eq. (11). The level n approximation An contains the lowest frequency content of the signal.
The Details Dn to D1 contain progressively higher frequency sub-bands of the signal s.

s = An +
n∑
k=1

Dk. (11)

In this paper, the approximation, An, is termed the lower frequencies sub-band (LFS) and
the sum of the details,

∑
Dk , is termed the higher frequencies sub-band (HFS).

Down to what level n decomposition should one go? Clearly this will depend on the low-
frequency fling feature one is trying to characterize. Wavelet scale (or level) and frequency
have an approximate relationship (Abry 1997), Eq. (12),

fn = fsfw

2n
(12)

where fn is the pseudo-frequency [Hz] of a level n decomposition, fw is the central fre-
quency [Hz] of a mother wavelet and fs is the sampling rate [Hz] of the timeseries. Note that
wavelet scale 2n must have units [Hz]. This equation provides an estimate of n. In addition
the maximum level of wavelet decomposition must not be exceeded. This is dependant on
the mother wavelet and number of points in the timeseries. Generally, the larger the number
of points N, in the timeseries, the greater the level of decomposition available n. Figure 9a
depicts Eq. (12) for the mother wavelets suggested here and Fig. 9b shows the maximal level
of decomposition permitted.

In this paper the records processed haveN = 214 points and are sampled at fs = 200 Hz.
This corresponds to a maximum level of decomposition for the bior1.3 wavelet of 11. The fling
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feature we are trying to identify is within the frequency sub-band<0.2 Hz thusfn/fs < 10−3.
From Fig. 9a we obtain range of levels of decomposition from 9 to 11 (the maximum permit-
ted here). Thus, some expert opinion still remains as to which level to choose. In this paper
we choose the level that produces a LFS most topologically similar to simple fling type A
response.

Knowledge of the lower frequency limit is not a pre-requisite, because we know that to
reach the lower frequencies, down sampling by several levels is necessary. A general guide-
line or rule of thumb, which might be useful, is just to follow the operation of the wavelet
transform. This down-samples by a factor of 2 each time as the level increases, therefore
to isolate for example frequencies <0.2 Hz, then starting at half the sampling frequency (in
this case 100 Hz) we divide by 2 each time. Therefore we reach 0.19 Hz at level 9, 0.09 Hz
at level 10 etc. A 100 Hz sampling rate for example brings us to level 8 for frequencies
<0.2 Hz etc. As pointed out above, we choose the most topologically similar sine type A
response.

4.3 Defining thresholds for denoising

A soft thresholded timeseries
�
xi , where i ∈ {1, 2, . . . , N}, is given by Eq. (13), where τ is a

threshold value. Hence, the low power components of xi are de-noised (removed).

x̆i =
{
(xi − τ) sgn (xi) |xi | > τ

0 |xi | ≤ τ
(13)

Different threshold values are employed for LFS and HFS of the simplified signal. The
LHS threshold τL is estimated from the standard deviation of the data σ , multiplied by
Donoho’s “root two log N” (Coifman and Donoho 1995; Donoho 1995)

τL = σ
√

2 logN. (14)

The HFS threshold τH uses a consistent estimator of the standard deviation, σ̂ (median
absolute deviation MAD, Coifman and Donoho 1995; Donoho 1995), used in image process-
ing. The scaling factor 0.6745 is obtained by assuming a normal distribution of the noise

τH = σ̂
√

2 logN, σ̂ = MAD

0.6745
. (15)

It was found that repeated application of the thresholds enables an improved identification
of fling in the acceleration. This repetition is more aggressive in terms of removing noise in
the signal.

4.4 Re-composition of signal

The signal is recomposed by inverse stationary wavelet transforming (ISWT) of thresholded
LFS and HFS. The lowest level n detail and approximations recomposed to produce the level
n− 1 Approximation and so on until the signal is recomposed.

It is also possible to re-compose just the LFS and HFS separately. Computationally this
is achieved by, for example zeroing Dn and using thresholded An or zeroing An and using
thresholded Dn and applying ISWT.
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4.5 Integration of errors and tilts

Typically, an accelerometer records timeseries ai or äi from which estimate ˆ̈xi , Eq. (16), can
be obtained through deconvolution, see Eq. (3). Note that all equations in this section only
apply to the horizontal components of the accelerometer.

ˆ̈xi = ẍi − gψ3−i − ε, i ∈ {1, 2} (16)

However, it is clear that recorded and obtained estimate of ˆ̈xi is not precisely the transla-
tional ground acceleration ẍi , i.e., it is corrupted by the tilt timeseriesψ3−i and the instrument
noise timeseries ε, both of which are unknown. In order to obtain the velocity and displace-
ment timeseries we must integrate ˆ̈xi and recognize it is not precisely ẍi .

The estimate ˆ̈xi contains three terms. The first term is the actual translational ground
acceleration. From mechanics we note that the dynamic motion of the ground starts from
rest and ends at rest; hence ẋi (0) = ẋi (Ti) = 0. In addition, ẋi (t > Ti) = 0, where Ti is an
estimate of the duration of the LFS of the seismic timeseries.

The second term of ˆ̈xi is the unknown tilt timeseries. There is no way of removing this
unknown error during the earthquake. At present we have very limited information about the
statistics of ψ3−i . Note that the ground tilts are likely to be very small. Evidence for this is
given later is this paper. The mean of the tilt timeseries ψ̄3−i is not necessarily zero as there
is no argument from mechanics to suggest it should be zero.

Ti∫
0

ψ3−i dt = Tiψ̄3−i �= 0 (17)

At the end of the earthquake vibration a residual tilt angle of ψ∗
3−i is attained, i.e., if the

accelerometer is no longer horizontal. Integrating this constant residual tilt angleψ∗
3−i results

in the following, Eq. (18)

t∫
Ti

ψ∗
3−i dt = ψ∗

3−i (t − Ti) . (18)

Hence, the effect of residual tilt angles on velocity timeseries after the end of the earthquake
is a linear function with time.

The third term of ˆ̈xi is due to instrument noise ε. Integrating noise is very problematic.
Fundamentally, it is analogous to summing a set ofN random variables. For arguments sake,
let us assume that these random variables have a zero mean and variance σ 2. The expected
value of this sum is zero, which is good. However, the variance of this sum of random vari-
ables is, unfortunately, Nσ 2, i.e., it increases with N , see Freund (2003). This is clearly
very bad. Consequently, given a particular sample of N random variables, its cumulative
sum will be very unpredictable and it is likely to have increasing amplitude oscillation with
increasing N .

Note that the above argument suggests that down-sampling a timeseries has a positive
effect on noise mitigation in summation processes. Down sampling is a component of the
multi-level wavelet decomposition. Thus, it seem likely that efficacy of wavelet decomposi-
tion, in the process of integrating timeseries, is good for this very reason.

It is worth noting that summing and integration are not completely analogous. Summing is
a very poor integrator; in particular it does not have the correct frequency domain character-
istics. Integration is the same as dividing by Fourier frequency ωf in the frequency domain.
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Fig. 10 Example Integration (Simpson’s Rule) of 20 timeseries of Gaussian noiseN (0,1). Sampled at 100 Hz,
with 6,001 data points

As a result, it is a low-pass filter, i.e., it attenuates higher frequency components. Integrating
noise does the same, high frequencies are attenuated but lower frequencies are amplified.

Nevertheless, the argument for summation of random variables still applies. Integration
of a noise timeseries is very unpredictable. Yet, we do know that the resulting timeseries in
likely to be of a lower frequency character. Figure 10 shows that on integrating Gaussian noise
twice (i.e., low pass filtering twice), the offsets produced are similar to those observed when
integrating noisy seismic data to displacement, even after standard filtering, contributing
therefore to the source of errors in displacement.

For the horizontal components, the estimate of velocity timeseries is given by Eq. (19)

ˆ̇xi =

⎧⎪⎪⎨
⎪⎪⎩

ẋi + g
t∫

0
ψ3−i dt +

t∫
0
ε dt t ≤ Ti

g
(
ψ̄3−i − ψ∗

3−i
)
Ti + gψ∗

3−i t +
t∫

0
ε dt t > Ti

. (19)

By integrating again an estimated displacement timeseries Eq. (20) is obtained

x̂i =

⎧⎪⎪⎨
⎪⎪⎩

xi + g
t∫

0

t∫
0
ψ3−i dt dt +

t∫
0

t∫
0
ε dt dt t ≤ Ti

xi (Ti)+ g
(
ψ̄3−i − ψ∗

3−i
)
Tit + 1

2gψ
∗
3−i t2 +

t∫
0

t∫
0
ε dt dt t > Ti

. (20)

In general, the tilt angles impose a linear error in velocity and quadratic error in displace-
ment after the end of the timeseries. While the instrument noise may produces oscillations of
low frequency content that may also be linear/quadratic like after the end of the timeseries.
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Thus, it is essential that an effective noise reduction strategy is employed to increase the
signal to noise ratio.

In this paper wavelet denoising is employed to reduce the magnitude of instrument noise.
This allows a clearer distinction between errors due to tilts and errors due to noise in derived
displacement timeseries. A wavelet based de-noising strategy is far superior to band pass
filtering, as it make no assumption as to the frequency content of the noise.

4.6 Baseline correction and estimation of tilt angles

Now, to remove this quadratic from the displacement timeseries for t > Ti we could detrend
both velocity and displacement timeseries for t > Ti . Or more simply we could zero the LFS
acceleration timeseries for t > Ti . Note that it is not necessary in this case to zero the HFS
acceleration for t > Ti . The time Ti is the time at which the LFS velocity timeseries returns
to zero. In this paper this approach is perfectly adequate for defining Ti . Locating Ti is an
approach, which does bear some resemblance to the tried and tested methods, and indeed
there isn’t any reason why this shouldn’t be the case. However, the process de-noises well; it
is made easier by the fact the wavelet transform can isolate the low-frequency fling making
it possible to automatically apply baseline correction.

In this way the quadratic term for the LFS for t > Ti is removed. This is what we term
correcting the baseline for tilt angles in this paper. The profile of Fig. 15 for example without
baseline correction, is similar to that in the simulation of Graizer (2005) obtained after adding
an artificial tilt of 0.1◦ to the corrected Hector Mine data discussed in Sect. 2.2. The automated
baseline correction scheme then locates Ti , then zeros the acceleration from that point and re-
integrates down to displacement producing the corrected profile in the component of Fig. 15.

A least squares fit of form (21) is obtained from the displacement timeseries for t > Ti .
From this optimal quadratic and Eq. (20) the following estimates of tilt angles, Eq. (22), are
achieved

x = c2t
2 + c1t + c0 (21)

ψ∗
3−i = 2c2

g
, ψ̄3−i = c1

gTi
− ψ∗

3−i . (22)

4.7 General comments

Some general comments on the transforms used: both wavelets db1 and db2 can give a greater
depth of decomposition, useful for some of the records, on the other hand their filters don’t
have guaranteed linear phase properties and in general using linear phase filters is recom-
mended. Though db2 has an almost linear phase response and gives reasonable results. The
bi-orthogonal wavelets have symmetric filters and guaranteed linear phase which are use-
ful properties when correcting seismic records, bior1.3 wavelet was used for most of the
analyses. These bases and their associated low-pass and high-pass filters are well suited to
the task and give reasonable results for the seismic records under investigation. The scaling
and wavelet functions or more precisely their associated filters are successively applied with
thresholds to de-noise the acceleration time history. The object being to automatically obtain
as good a fling output as is possible in the LFS acceleration, followed by a pulse-like velocity
time-history after the first integration, and a ramp-like displacement after the second inte-
gration. Both the acceleration sine-type fling and velocity pulse is obtained, but not without
some distortion as the results show. Other wavelet transforms also give good results, because
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as mentioned, it is the properties of the associated filters in conjunction with thresholding,
which makes the method useful.

5 Results

The results obtained using the wavelet transform (filter banks) have been easily and quickly
obtained using the automated procedure and give results comparable with Wu and Wu (2007)
and Boore (2001) and GPS. The point being that by running the wavelet filters an almost ide-
alized fling is obtained in the LFS acceleration, then after applying a baseline correction, the
velocity fling follows almost naturally after integration as does the subsequent displacement.
The results below commence with an in-depth study of a seismic event from the Chi–Chi
event, Taiwan, 1999/09/20.

5.1 Processing vertical component, TCU068V

The fling in the vertical components, in the events used is the easiest to analyze. The type
A sine, fling profiles are obtained almost immediately after application of the wavelet trans-
form and first and second integration. This is because as pointed out in Eq. (3) from Graizer
(2005) the vertical component is the least sensitive to tilts and is almost purely translational.
Figure 11 shows the LFS acceleration, velocity and displacement using wavelet bior1.3 at
level 10 decomposition. Similar results are obtained using wavelet db2, or db1 at level 10.
The LFS acceleration shows a type A fling profile, which after integration yields a veloc-
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Fig. 11 Baseline correction lower frequency sub-band (LFS) for TCU068V component obtained at level 10
with bior1.3
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Table 1 Estimated data obtained from corrected Chi-Chi event

Wavelet bior1.3 i Baseline Residual disp. Fit coeff. Fit coeff. Mean tilt Residual tilt
point

Ti (s) xi (tend) (cm) c2 (cm/s2) c1 (cm/s) ψ̄3−i (Deg.) ψ∗
3−i (Deg.)

TCU068EW 1 45.7 −731 1.43E-2 −7.7 −0.0082 0.0017

TCU068NS 2 45.67 555 3.67E-3 11.18 0.015 4.3E-4

TCU068V 3 56.84 300 −9.17E-4 −0.298 – –

ity pulse and a displacement ramp after second integration. The HFS velocity profile is an
asymmetric type B, such that the HFS displacement produces local ground movement and
eventual displacement recovery. The LFS fling profile is almost like the model type A shown
in Figure except that it is extracted from a real event. The acceleration peaks are at +20 and
−25 [cm/s2]. This is not very large when compared to the HFS.

The TCU068V LFS displacement shows an almost horizontal trace for t > Ti . The coeffi-
cients of a quadratic fit to displacement data in range t > Ti results in coefficients in Table 1.
Both of these coefficients are small suggesting that there is no tilt error. And this is as it
should be; given the vertical component should be insensitive to tilt angles, Eq. (5). This very
shallow optimal quadratic is a result of noise integration. This gives us an estimate of the
magnitude of noise integration error after wavelet denoising.

To correct for the very small baseline shift (due to noise) in the vertical component it
is necessary to zero the baseline after the lower frequency acceleration fling. In this case
the process is almost trivial since after applying the wavelet transform and integrating, a
type A sine acceleration fling, velocity pulse and ramp displacement occur almost naturally
since the motion is almost purely translational. The baseline adjustment requires one time-
point selection at 56.84 [s] that is obtained automatically from the zero of the LFS velocity
timeseries. This is a reasonable and straightforward correction to apply because it removes
the small artifacts in the later portion of the acceleration record. The object being, to achieve
an almost perfect type A sine, fling model as shown in Fig. 3. Thus satisfying condition (i) and
(ii) in Sect. 2.2 as described in Graizer (2005) and this implies pure translation.

Moreover, the correction only affects the LFS. Then first and second re-integration of the
corrected LFS acceleration automatically adjusts the velocity baseline to zero in the latter
portion of the time history. This produces a velocity pulse and ramp-like acceleration with a
permanent displacement, as seen in Figure.

Figure 12 also show the separated LFS and HFS acceleration time histories, which are
integrated separately to give the resulting velocity and displacement timeseries. The LFS and
HFS can also then be recombined to give the total form of velocity and displacements just
by adding the waveforms.

The wavelet transform enables the necessary filtering, de-noising and LFS and HFS sep-
aration making integration and baseline correction simple.

5.2 Processing horizontal component, TCU068EW

Figure 13 shows the LFS of the EW component using bior1.3 at level 10 decomposition
and after wavelet transforming, integrating and baseline correcting. The fling is apparent in
the acceleration and velocity sub-bands followed by the large ramp-like displacement. The
wavelet transform locates the optimal fling acceleration sub-band, from which the second
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Fig. 12 Comparison of lower and higher frequency sub-bands for TCU068V at level 10, using bior1.3
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Fig. 14 Comparison of lower and higher frequency sub-bands for TCU068EW obtained at level 10, using
bior1.3

integration yields the displacement. Figure 14 also shows the HFS acceleration, velocity and
displacement timeseries. The combined corrected timeseries are obtained either by adding
the LFS and HFS timeseries or by re-integrating the corrected (summed) acceleration. Fig-
ure 14 compares the LFS acceleration (fling type A) and the one-sided velocity with that of
the HFS. The velocity for the HFS is type B, which gives a displacement recovery in the
short period.

In this case and after wavelet transforming, the LFS displacement shows a downward
quadratic profile. The mean and residual tilt angles are computed from the optimal quadratic
coefficients, Eq. (21), as describe previously. These are given in Table 1.

The Residual displacement is obtained simply by inspection from the end point of LFS
displacement timeseries, i.e., at tend = 90 s.

5.3 Processing horizontal component, TCU068NS

Figure 15 shows the LFS obtained by using wavelet bior1.3 at level 10. In this case the veloc-
ity baseline shift in the latter portion of the wavelet-transformed velocity time history, giving
rise to a displacement offset nearly 11 m. This is due to the effects of tilt. To correct for the
offsets, the baseline procedure described previously is applied.

The net displacement for this event Wu and Wu (2007) and [private communication,
Dr Hung-Chie Chiu] was approximately 10 m (vector sum of NS and EW). This was
recorded on an A900 instrument installed at the Taiwan strong motion station TCU068.
It recorded the Chi–Chi main shock at a distance of 380 m from the fault surface rupture.
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Fig. 15 Baseline correction lower frequency sub-band (LFS) for TCU068NS component obtained at level 10
with bior1.3

The vector sum of permanent displacements obtained here is 9.66 m, which is of the correct
order.

Figure 16 shows the LFS and HFS acceleration profiles. These demonstrate that the LFS
has a sine type A profile, whilst the HFS has a cosine type B profile. The HFS therefore shows
local vibrations, which are superimposed on the LFS. Figure also shows the corrected total
profile after wavelet transforming, baseline correction and first and second re-integration.

Finally, Fig. 17 shows all the three derived displacement timeseries. It also includes the
vector sum of all three components. The vector displacement is defined as d= (x1, x2, x3).
The timeseries of vector displacement magnitude |d| indicates a maximum total displace-
ment of 11.8 m with a residual (final) displacement of 9.66 m. Figure 18 displays the vector
displacement d including directional information. The direction of the displacement vector
is in keeping with the GPS vectors displayed in Wu and Wu (2007).

5.4 Estimates of signal-to-noise ratio (SNR)

It is important to consider the effect of the wavelet-denoising scheme. It is possible to subtract
the corrected accelerograms from the raw accelerogram data thus obtaining an estimate of
the noise. The power spectrum of this extracted noise is displayed in Fig. 19. This figure also
compares the power spectra for the LFS, HFS, corrected data and raw accelerograms. Note
that the wavelet denoising scheme extract very little power at the low frequency end of the
spectrum. Thus, it does not remove the fling component. This is clearly not the case when
employing a low-cut filter.
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The signal-to-noise ratio is an important measure of how clean the raw data was before
denoising. The signal-to-noise ratio in this paper is defined by Eq. (22)

SNR = 20 log10 (s̄/ε̄) (23)
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Fig. 18 Resultant ground displacement traces for TCU068 Chi–Chi Event

where s̄ is the mean power of the raw (signal) acceleration within bandwidth of 0 to 25 Hz, ε̄
is the mean power of the extracted noise over this same band width. Note that the multitaper
method (Coifman and Donoho 1995) or multiple-window method is employed to determine
the power spectra and thence these mean power levels. This is a non-parametric method and
essentially finds an approximate solution to a Fredholm integral equation of the first kind.
The method uses windows defined by Slepian sequences, which essentially allow a reduced
variance of the spectral estimate. Table 2 summarizes the SNR for the three components of
the Chi–Chi event.

Note a SNR of 40 dB as described in Graizer (2005) seems too optimistic. The SNR of
TCU068V is much lower than for the other two components. Again this is a reflection of
the fact that the vertical component is insensitive to tilts and other distortions therefore the
dispersion is less than for the horizontal components.

6 Discussion on method

The assumption that the LFS displacement offsets are only due to tilt needs some more jus-
tification and is presented here. Table 2 demonstrates that the noise power of the horizontal
sensors is slightly greater than that of the vertical sensor. Therefore although the noise may
behave differently for the three components, the wavelet de-noising performs equally well
in cleaning the LFS of most of the noise for all three components.
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Table 2 Estimated
signal-to-noise ratio (SNR)

Signal s̄ (dB) Noise ε̄ (dB) SNR (dB)

TCU068EW 40 8.79 31.2

TCU068NS 39.7 8.22 31.5

TCU068V 34.3 7.63 26.7

Indeed correcting the vertical component may be considered superfluous in this case
because the baseline corrected profile is almost identical to that without the correction. This
shows only a difference in displacement of 13 cm in 300 cm at the end of the record see
Fig. 11. It is consistent with Eq. (5), which demonstrates that the vertical sensor is respond-
ing to vertical acceleration only and is insensitive to tilt. This difference at the end of the
record, (13 cm in 300 cm, i.e., ∼4%) may indeed be due to noise, but it is very small and not
significant in this case. The noise power is indeed greater in the horizontal sensors, but it is
only by 1 dB and 0.6 dB with respect to the vertical sensor (see Table 2). The discrepancy
in displacement, however, of ∼4.5 m for the northern component for example, between the
wavelet de-noised + baseline corrected and the wavelet de-noised and baseline uncorrected, is
far too great to be attributed to the small differences in noise power. If the discrepancy due to
noise, in the horizontal components, was of the same order as that for the vertical component
we would be expect a final displacement offset of 10–20 cm. Similar results are observed
for the eastern component, see Fig. 13. Therefore it is concluded that the contribution due to
noise can be ignored and that the offset in the LFS displacement is due to tilt.

The values of Ti for the two horizontal components are similar, which indeed is confirma-
tion of good estimation. The value of Ti for the vertical component is significantly different
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(∼10 s difference) from that of the horizontal components. This is a consequence of the fact
that baseline correction is automated and therefore applied to the vertical component as well,
even though baseline correction may be considered as unnecessary in this case, since the dis-
placement artifact is very small and consistent with Eq. (5), as discussed earlier. The wavelet
de-noised + baseline corrected profile and the wavelet de-noised and uncorrected profile are
virtually the same as shown in Fig. 11. The deviation in displacement is only slight from
56 s onwards to the end, because tilt has a negligible effect on the accelerometer, see Eq. (5).
Therefore in this case, it is safe to ignore this difference in Ti between the vertical sensor
and the two horizontal sensors and conclude that the vertical sensor behaves in a manner
predicted in theory in Eq. (5); dependant only on translation, and not tilt, which is itself a
good result. Therefore the similar Ti’s of the horizontal sensors are confirmation of good
estimation, but all three components are evidence of satisfactory performance of the method
described in this paper.

7 Summary and conclusions

This paper shows that the wavelet transform and more specifically the wavelet QMF filters,
the non-linear scaling with de-noising provide a very reasonable method for automatically
correcting seismic events, and provide an alternative to some of the current methods used.
In particular the combination of wavelet filtering and de-noising produces lower and higher
frequency acceleration sub-bands, which are easily integrated and automatically corrected
for baseline shift. In particular the wavelet transform can isolate the fling. The paper focuses
on the Chi–Chi 1999 event with data from Lee (2001), which has a wealth of data for anal-
ysis. The paper demonstrates that the wavelet transform is a useful tool to apply, not just
for seismic correction but also for extracting LFS and HFS time histories from the data as
well estimating tilt angles and signal-to-noise ratios. The separation of the data into LFS
and HFS makes correction and integration easier. Generally only one time point is required
from which to correct for baseline shifts and then to re-integrate to obtain profiles resembling
the theoretical fling models. Sometimes, but not in this case, the same automated baseline
correction method may need to be applied to the HFS, in particular for events of a lower
magnitude. This method has been found to be equally as successful on data from the Ice-
landic event of 29th May in 2008; an event of a lower magnitude 6.3 and with smaller
displacements.

The analysis uses the condition (i) and (ii) extensively, as in Graizer (2005). These essen-
tially set out the framework for obtaining estimates of ground motions due to translation only.
In doing so the lower frequency content in particular should give the type A sine model as a
basis for approximating as best possible the model fling in the long period. It also uses the
type B cosine model for the short period. To comply with condition (i) and (ii) for the lower
frequencies, the wavelet transform is used to filter and de-noise and then to integrate the LFS
and HFS separately for the velocity and displacement profiles. The object then is to zero the
tilts and other distortions in the latter portion of the LFS acceleration time history, then to
re-integrate to obtain the velocity and displacement profiles, which resembles the fling type
A model.

As an aside the method also lends itself to obtaining estimates of the tilt angles from the
lower frequency displacement profile offsets. In this case the results clearly show that the
vertical component is insensitive to tilt, in contrast to the two longitudinal components, which
are very sensitive to tilt angles. This is similar to the results obtained using event TCU052,
10 km away from event TCU068.
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These estimates of tilt angles assume that the noise content of the signal has been
successfully removed. So that what we see at the end of the LFS displacement is, by assump-
tion, the influence of ground tilts. It has been shown that noise twice integrated can pro-
duce linear/quadratic like displacement profile. Therefore the question as to whether the
linear/quadratic function in the latter part of some of the displacement timeseries is in fact
due to tilts, should remain open. Without a priori information on the noise this seems dif-
ficult to answer in the general case. However, it can be said with some certainty that for
TCU068, the vertical component behaves in a theoretically consistent manner and points
to small displacement artifacts due to noise. The horizontal components also behave con-
sistently, but that the displacement artifacts are too large for the very small differences in
noise power between these and the vertical component. Therefore it is concluded that these
artifacts must be due to tilt only. It is suspected that for the large magnitude events, this
may be the norm, since the deviations due to tilt will subsume those due to noise. However,
this needs further work and investigation to determine whether this holds for the general
case.

Finally, wavelet filtering and de-noising makes it possible to obtain estimates of the
signal-to-noise ratios (SNR) for the seismic components. The SNR, and signal power
estimate, for the vertical component is lower than that of the horizontal components, dem-
onstrating again that the vertical component shows less sensitivity to errors due to tilts.
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1 

Abstract 
 
This paper presents a new and alternative method of estimating displacements from 
seismic acceleration records. The method essentially uses biorthogonal and/or 
debauchies wavelets in order to denoise the noisy accelerometer data. Wavelets use 
quadrature mirror filters, theseare maximally flat filters and in the case of the 
biorthogonal filters have linear phase. These are  useful properties and when used 
with a denoising scheme these filters are able to extractthe long period fling from the 
record. The net result is that integration to velocity and to displacement is made 
easier. Furthermore, the method also enables automatic baseline correction, without 
having to manually locate suitable time points. The records used in this paper are 
from the strong motion Chi-Chi 1999 event of magnitude 7.3 and the May 29th 2008 
event at Selfoss in Iceland of magnitide 6.3 
 
Keywords: fling, baseline, correction, wavelet, strong motion, filters, denoise, 
displacement, acceleration, Chi-Chi. 
 
 
1   Introduction 
 
The problem with obtaining estimates of displacement is that standard filtering 
methods cannot extract the low frequency displacement from the acceleration time 
history. This is partly due to baseline shift brought about by integrating noise buried 
in the time history and partly by integrating distortions due to instrument tilts 
brought on by the seismic wave perturbing the ground. Usually the correction 
schemes try to locate time points at which to adjust for baseline shift evident after 
two integration’s of the acceleration time history recorded by the instruments. 
Therefore schemes such as those proposed by [1,2,3,8,13] are used to correct for 
baseline shifts. It is also acknowledged that the baseline shift is due to tilt as well as 
noise [3,13,14,15], though absolute measurements of tilt are not available, this paper 
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uses a least squares method with which to estimate the residual angles of tilt for the 
horizontal components. 
The seismic correction scheme described in this paper provides an efficient filtering 
and thresholding method with which to extract permanent ground displacements 
from the acceleration time histories. Standard filtering methods cannot do this, but 
the wavelet filters, which are maximally flat when combined with a threshold 
scheme not only extract the long and short period, but de-noise the time-history 
thereby improving the signal-to-noise ratio. The correction scheme is applied to the 
data from the Chi-Chi event 1999, with M = 7.6. 
 
 
 
 
 
 
2  Wavelet filtering and de-noising 
 
The discrete wavelet transform (DWT) [3] may be considered as an octave-band 
filter bank, which implements successive low-pass and high-pass decomposition 
followed by down sampling by a factor of 2. As an example, 4-channel filter bank 
scheme is shown in Figure (1). The filters used in wavelet filter banks are digital 
finite impulse response filters (FIR), also called non-recursive filters because the 
outputs depend only on the inputs and not on previous outputs. Digital equivalents 
of classical Butterworth, Chebyshev and other classical analogue filters all depend 
on previous outputs as well as on the inputs.  
 
The method takes the discrete wavelet transform (DWT) [4-9] of a signal, and 
passes the transform through a threshold [16,17], by removing the data below a 
certain value and then takes the inverse transform (iDWT), then to reconstruct a de-
noised time signal. Reconstruction is the inverse process of decomposition, which 
up samples by a factor of 2 and applies low-pass and high pass filter banks. 
Essentially, through decomposition the DWT is able to concentrate most of the 
energy of the signal into a small number of data, after convoluting and down 
sampling with the appropriate filter weights depending on the selection of a wavelet 
basis. The dimensions of the transformed and de-noised data will be large compared 
to the magnitude of the noise obtained after high pass filtering. Therefore 
thresholding the wavelet transform will remove the low-amplitude noise in the 
wavelet domain and the inverse DWT will retrieve the desired signal with little loss 
of relevant detail. 
 
The diagram of Figure (1) essentially shows how both the low frequency and the 
higher-frequency components of the signal can be extracted using a wavelet 
decomposition tree. In this paper a wavelet decomposition tree is implemented, 
where the resulting low frequency component is further decomposed showing the 
long period pulse type signal with greater clarity as we move to higher levels of the 
decomposition tree 
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Figure 1: A 4- channel, analysis (decomposition) wavelet filter bank  

showing sub-bands 
 
 
 
 
However, because the DWT is not translation invariant it is better to use the 
stationary or translation invariant wavelet (SWT) transform [10,12] and its 
corresponding complement the inverse stationary wavelet transform (iSWT). This 
essentially applies a range of signal shifts to allow for misalignment of the signal 
and wavelet features, it then averages out the shifts in order to obtain the de-noised 
signal 
 
The problems with shift-invariance are connected with the alignment between 
features in the signal and features of the wavelet basis. In particular at 
discontinuities where Gibbs like phenomena can occur with unwanted oscillations. 
An approach to surmount this problem is described in [16,17] where it is suggested 
to forcibly shift the signal, so that it’s features change positions in relation to the 
wavelet basis. Then to un-shift and retrieve the de-noised signal hopefully without 
any unwanted noise or spurious oscillation i.e. 
 

Average [Shift → De-noise → Un-Shift 

HP        
2           
 

HP     2    
 
 
LP 2

HP     2   
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2.1 Other Wavelet Properties  
 
Another property of the low and high pass filters is that their frequency responses 
are mirror images about π/2, hence they are called quadrature mirror filters (QMF). 
This is shown in Figures (2) and (3), showing linear phase and that the frequency 
response mirror images about π/2. In the case the biorthogonal wavelet(s) (bior1.3) 
shown these wavelet filters are symmetric and have linear phase, which make them 
important for the sort of processing necessary for seismic correction. Other wavelets 
such as symlets are nearly symmetric and have nearly linear phase. 
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Figure 2: (a) the bior1.3 scaling function and (b) bior1.3 Wavelet 
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Figure 3:  Wavelet bior1.3 associated low pass and high pass filters and their phase. 

Note that these QMFs are maximally flat 
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The other factor in this analysis is that we also de-noise the signal by thresholding 
[17], an essential operation. Basically thresholding involves the setting to zero 
wavelet coefficients (i.e. the transformed data values), whose absolute values are 
below a certain threshold. This type of thresholding is called ‘hard’. It leaves 
discontinuities in a signal, which could lead to unwanted and spurious oscillations. 
A ‘soft’ threshold scheme  [17] on the other hand still removes absolute values 
below a threshold, but it then gradually sets to zero the discontinuities, in effect 
smoothing and therefore is a better procedure to apply. 
 
Therefore a soft thresholding scheme is implemented however, with some 
differences. The wavelet coefficients of the transformed signal remain in their 
separated sub-bands at a suitable level of decomposition and de-noising is applied to 
each of the lower frequency sub-bands and the higher frequency sub-bands. This is 
the usefulness of the wavelet transform and de-noising in this application. 
Integrating noise twice produces considerable errors, which contribute to baseline 
shifts in the velocity and quadratic trends in the displacement. Standard filtering 
methods are not able to remove noise to a sufficient degree. However the wavelet 
transform with thresholding removes the noise and reveals a cleaned low frequency 
fling. Further distortions after 1st and 2nd integration are then due to tilts and 
rotations, which can be corrected relatively easily 
 
 
 

 
3  The low frequency Fling model(s) 
 
Fling is identified in velocity and low frequency acceleration ground pulses. The 
model fling pulses are related by the following equation (11)  
 

( ) ( )12
sin

t t
s t A

T
π⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

, 2 1T t t= − ,      1 2t t t≤ ≤           (1) 

 
for the sine, type A fling model, where, ( )s t  is the ground displacement time-series,  

1t  and 2t are the start and stop times and T is the duration of the acceleration sine. 
 
For the cosine type B type fling model the expression is similar 
 

 ( ) ( )12
cos

t t
s t A

T
π⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

,   2 1T t t= − ,     1 2t t t≤ ≤      (2) 

      
Integration of the above equations gives the type A and type B profiles for velocity 
and displacement. These are shown in Figure 4 and Figure 5. 
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The profile is type A where the acceleration is shown as a sine pulse, leading to a 
one-sided velocity pulse and ramp-like displacement. The displacement therefore 
retains its permanency and doesn’t recover. The type B cosine profile leads to a two-
sided velocity profile where the displacement recovers. The wavelet transform 
extracts mainly type A profiles in the lower frequency sub-band and type B profiles 
in the higher frequency sub-band. The latter are summed with the former and give 
rise to an estimate of the local ground motion. 
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Figure 4: Sine model of type A fling profiles. Type A fling leaves a permanent 

displacement 
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Figure 5: cosine models of type B fling profiles. Type B fling leads to a recovery in 
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3.1   Correcting for Baseline shift 
 
Baseline shifts [3,10,11,12,15] are a cause of integration problems when integrating 
from acceleration through to displacement. These are caused by instrument/sensor 
tilts during the earthquake. They lead to offsets in acceleration, velocity and 
displacement. 
 
In order to resolve this issue of the baseline shift, the paper invokes the conditions 
specified in [13], these are repeated below for ease and coherence of presentation. 
 
1. The input ground motion must be purely translational, without any tilting or any 

other natural distortions. 
2. The record must contain clear beginning and ending parts with relatively small 

amplitudes to allow baseline correction. 
3. The signal to noise level of the record must be high enough, at least 40dB. 
 
Condition (1) implies the ideal low frequency model of the acceleration fling(s) 
shown in Figures (4) and (5). Condition (2) is met after de-noising with the wavelet 
transform and extracting the low-frequency fling. In order to meet fully condition (1) 
the extracted low frequency, acceleration time history is zeroed after the sine-like 
fling and re-integrated to yield the velocity and displacement. Condition (3) 
requiring a SNR of 40dB is optimistic, the SNR found were much less than that 
required in [13]. It is shown in this paper that, using only the lower frequency sub-
band timeseries extracted by the wavelet transform, it is possible to approximate the 
pure translational ground motion. 
 
 
 
 

4  Baseline Correction and Estimation of Tilt Angles 
Typically, an accelerometer records timeseries ia or ia  from which an estimate of 

the ground motion ˆ
ix , can be obtained through de-convolution. Note that all 

equations in this section only apply to the horizontal components of the 
accelerometer.  
 
 { }3

ˆ , 1, 2i i ix x g iψ ε−= − − ∈  (3) 
 
However, it is clear that recorded and obtained estimate ˆ

ix  is not precisely the 
translational ground acceleration ix i.e. it is corrupted by the tilt timeseries 3 iψ − and 
the instrument noise timeseries ε , both of which are unknown. In order to obtain the 
velocity and displacement timeseries we must integrate ˆ

ix  and recognize it is not 
precisely ix .  
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In general, the tilt angles impose a linear error in velocity and quadratic error in 
displacement after the end of the timeseries. While the instrument noise may 
produce oscillations of low frequency content that may also be linear/quadratic like 
after the end of the timeseries. Thus, it is essential that an effective noise reduction 
strategy is employed to increase the signal to noise ratio. Wavelet de-noising 
provides such a strategy and is employed to reduce the magnitude of instrument 
noise. This allows a clearer distinction between errors due to tilts and errors due to 
noise in derived displacement timeseries. A wavelet based de-noising strategy is far 
superior to band pass filtering, as it make no assumption as to the frequency content 
of the noise.   
 
To remove this quadratic from the displacement time series for it T>  we zero the 
low frequency sub-band acceleration time series for it T> . The time iT is the time at 
which the low frequency sub-band velocity timeseries returns to zero. A least 
squares fit of the form in equation (4) is obtained from the displacement timeseries 
for it T> . From this optimal quadratic the following estimates of tilt angles, 
equation (5), are achieved.  
 

   2
2 1 0x c t c t c= + +  (4) 

      * *2 1
3 3 3

2 ,i i i
i

c c
g gT

ψ ψ ψ− − −= = −                             (5) 

 
The higher frequency sub-bands for all three components do not require any 
correction. These reset to zero in the latter portion of the time history after the strong 
motion and after application of the wavelet transform. This isn’t the case for other 
events in which the same correction is applied to the higher frequencies. 
 
In the result section 5, the bior1.3 wavelet is used throughout because it has linear 
phase properties, though other wavelet bases give similar results.  
 
 
 
 
5  Results 
 
5.1 Results for TCU052V 
 
Figure (6) shows the result for the low frequency sub-band of the vertical 
component for TCU052, with and without baseline correction. It’s clear there isn’t a 
great deal of difference between the time histories with and without the correction. 
Pendulum theory [13] demonstrates that for small angles, the vertical component is 
insensitive to tilt and responds only to acceleration due to translation. The offset 
shown in the displacement before correction is 58.6cm (at 278.6cm) at 90sec, and is 
due to sensor noise. 
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Figure 6: TCU052 low frequency sub-band fling for vertical component at level 9, 
using the bior 1.3 wavelet 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure (7) shows the resulting time histories re-integrated from the acceleration after 
wavelet transforming, de-noising and correcting for baseline shift of Ti =56.8sec, the 
final displacement is 336.9cm, this compares with 350cm published in [1], and 
397.2cm GPS, 2.7km distance.  
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Figure 7: TCU052N comparing the low frequency sub-band (LFS), the higher 
frequency sub-band (HFS) and the total time history after correction and re-

integration from acceleration to displacement 
 
 
 
 
 
 
5.2 Results for TCU052N 
 
Figure (8) shows the low-frequency fling for the northern component. Level 10 was 
selected for this analysis because it gives an acceleration fling with very much less 
ripple in the latter portion of the time history, therefore is a better approximation to 
the model fling of Figure (4).  Figure (9) shows the low frequency sub-band (LFS) 
compared with the higher frequency sub-band (HFS) and with the corrected time-
history after re-integration. The Ti for this correction is 48.76sec and the final 
displacement is 625.4cm. This compares with 687.9 obtained by [1] and 845.1cm 
GPS, 2.7km distance.  
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Figure 8: TCU052 low frequency sub-band fling for northern component at 
level 10, using the bior 1.3 wavelet 



12 

0 10 20 30 40 50 60 70 80 90
-500

0

500
TCU052N

[c
m

/s
2 ]

0 10 20 30 40 50 60 70 80 90
-200

0

200

400

[c
m

/s
]

0 10 20 30 40 50 60 70 80 90
-500

0

500

1000

[c
m

]

time [s]

X: 90
Y: 625.4

Total
LFS
HFS

Total

LFS
HFS

Total

LFS
HFS

 
 

Figure 9: TCU052N comparing the low frequency sub-band (LFS), the higher 
frequency sub-band (HFS) and the total time history after correction and re-

integration from acceleration to displacement. 
 
 
 
5.3   Results for TCU052E 
 
Figure (10) below shows the low frequency sub-band fling for the easterly 
component, at level 10 and using the bior1.3 wavelet. As for the northerly 
component level 10 was selected since the acceleration fling was the closest to a 
model fling, and almost ripple free in the latter half of the low frequency 
acceleration time history, as shown above. Figure (11) compares the low and high 
frequency sub-bands and gives the total resultant displacement after correcting the 
acceleration sub-bands and re-integrating. The Ti for the correction is at 40.05sec 
and the permanent dispalcement is at –355.3cm, this compares with –357.7cm 
published in [1] and –342cm GPS at 2.7km distance.  
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Figure 10: TCU052 low frequency sub-band fling for the easterly component at 
level 10, using the bior 1.3 wavelet 
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Figure 11: TCU052E comparing the low frequency sub-band (LFS), the higher 
frequency sub-band (HFS) and the total time history after correction and re-

integration from acceleration to displacement. 
 
6   Summary 
 
Table 1 and 2 below summarise the data profile of the TCU052 event. The final 
residual displacement is 8m. The above displacement results are consistent with 
those obtained in [1], in which they developed a baseline correction scheme based 
on the [2]. The method described in this paper uses the wavelet transform, which 
isolates the low-frequency fling, corrects automatically for baseline shift and re-
integrates from acceleration down to displacement. In addition the method 
determines the mean and residual tilt angles for the horizontal components by least 
squares fitting the quadratic displacement offset. The method is relatively easy to 
use and the analysis uses the condition (i) and (ii) extensively, as in [13].  These 
essentially set out the framework for obtaining estimates of ground motions due to 
translation only. In doing so the lower frequency content in particular should give 
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the type A sine model as a basis for approximating as best possible the model fling 
in the long period. It also uses the type B cosine model for the short period. To 
comply with condition (i) and (ii) for the lower frequencies, the wavelet transform is 
used to filter and de-noise and then to integrate the low-frequency sub-band (LFS) 
and the higher frequency sub-band (HFS) separately for the velocity and 
displacement profiles. The object then is to zero the tilts and other distortions in the 
latter portion of the LFS acceleration time history, then to re-integrate to obtain the 
velocity and displacement profiles, which resembles the fling type A model. This 
method doesn’t supersede any other methods, but presents an alternative, which is 
quick and easy to use. 
 
Wavelet 
bior1.3 

 Baselin
e point 

Residual 
disp. 

Disp 
offset 

GPS:Wu 
(2.7km) 

Mean 
tilt 

Residual 
tilt 

i
 

iT  ( )i endx t    3 iψ −  *
3 iψ −  

 [s] [cm] [cm] [cm] [Deg.] [Deg.] 

TCU052E 1 40.05 -355 150 -342.3:-357.7 0.0051 -0.0024  

TCU052N 2  48.76 635 248 845.1:687.9 0.0077 -9.13E-4 

TCU052V  3 56.93  337 59 397.2:350.5 - - 

 
Table 1: Estimated data obtained from corrected Chi-Chi Event. 

 
 
 Signal s (dB) Noise ε (dB) SNR (dB) 
TCU052E 38.8 0.45 38.36 
TCU052N 39.1 1.57 37.49 
TCU052V 28.2  1.34 26.8 
 

Table 2: Estimated Signal-to-Noise Ratio (SNR) 
 
 
 
7   Iceland Event May 29th 2008 
 
On May 29th 2008 an earthquake occurred in Iceland in the Olfus district about 8 km 
NE of the town of Selfoss. According to the USGS and the EMSC he magnitude of 
the earthquake was 6.3. The Icelandic Strong Motion Network and the newly 
installed ICEARRAY network recorded this seismic event. The ICEARRAY is a 
small aperture array located around the village of Hveragerdi. A total of 13 stations 
recorded the event and all 39 components have been analysed using the 
methodology described in this paper, therefore some results are presented. 
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5.1 Station 1, Component 1 (EW) 
 
Figure (12) shows the low frequency fling is approximately 2 cm/sec/sec producing 
a velocity pulse, with a peak velocity of approximately 4cm/sec, which gives rise to 
a displacement of 12.34cm. In this case the acceleration fling is not as smooth as 
that for the Chi-Chi event, but nevertheless is clearly manifest.  
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Figure 12: low frequency sub-band (LFS) acceleration fling for the EW component 
of station 1 and  a velocity peak. 

 
 

 
 
 
 
Figure (13) shows the low and higher frequency sub-bands after correction and re-
integartion from acceleration to displacement. The Ti for the correction is at 
19.35sec and the permanent displacement is at 12.34cm.  
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Figure 13: comparing the low frequency sub-band (LFS), the higher frequency sub-

band (HFS) and the total time history after correction and re-integration from 
acceleration to displacement for the EW component. 

 
 
 
7.2 Station 1, Component 2 (NS) 
 
Figure (14) shows a –sine type A acceleration fling response with sensors aligned in 
the opposite direction to the ground movement. The peak fling acceleration is 
approximately 14cm/sec/sec and the peak velocity pulse is at 10cm/sec, giving rise 
to a displacement of 13.37cm. Figure (15) shows a comparison of the low and higher 
frequency components as well as the total acceleration, velocity and displacement. 
The Ti for the correction is at 18.99sec and the permanent displacement is at 
13.37cm., the Ti is consistent with that for the EW component. The resultant motion 
in a NW direction is approximately 18cm; this is consistent with GPS, which gives 
an overall displacement of 17cm NW. 
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Figure 14: low frequency sub-band (LFS) acceleration fling for the NS component 

of station 1 showing a (-)sine type A time history 
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Figure 15: comparing the low frequency sub-band (LFS), the higher frequency sub-

band (HFS) and the total time history after correction and re-integration from 
acceleration to displacement for the NS component. 

 
 
 
 
 
7.3 Station 1, Component 3 (V) 
 
Figure (16) above shows the low frequency acceleration sine type A fling, which 
gives a pulse like velocity of 0.6cm/sec and a permanent displacement of 1.2cm. 
Figure (17) below, shows the low and higher frequency time histories and the 
resultant after re-integration from acceleration to displacement. 
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Figure 16: low frequency sub-band (LFS) acceleration fling for the Vertical 

component of station 1 showing a sine type A time history, with a permanent 
displacement of 1.2cm 
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Figure 17: comparing the low frequency sub-band (LFS), the higher frequency sub-

band (HFS) and the total time history after correction and re-integration from 
acceleration to displacement for the Vertical component. 

 
 
 
 
 
7.4 Summary 
 
The results for horizontal and vertical components are similar for the 11 stations; 
these make up the ICEARRAY in the village of Hveragerdi. GPS shows that the 
village moved 17cm NW and most of the results reflect this movement to within a 
few centimetres. Stations 12 and 13 however, were some way away from the 
ICEARRAY and their results are not the same with net displacements much less 
than that experienced in Hveragerdi.  
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Abstract 
 
This paper proposes a novel approach using a wavelet-based algorithm for the 
routine processing of seismic events, baseline correction and displacement and 
shows that the wavelet transform extracts the acceleration ‘fling’ completely 
naturally from seismic events. It uses seismic records from the Chi-Chi event and 
extracts the fling by applying wavelet filter banks for decomposition and 
reconstruction. Initially the choice of wavelet is based on the shape of the long-
period ‘fling’ and in this case the Haar Transform, db1, and db(2) and their  
associated filter banks seem well suited. These wavelets also give depth of 
decomposition such that an optimal estimate of ‘fling’ and thus consequent 
displacement is obtained. Other Wavelet transforms also give good results therefore 
the method is not transform specific. This method can automatically correct for 
baseline shifts in the velocity characteristics, to then obtain displacements, but there 
can be a trade off. Moreover the process is routine and relatively straightforward to 
implement. The displacements are compared with GPS readings and results using 
other methods and the initial results are encouraging. In particular the acceleration 
and velocity ‘fling’ are manifest as the transform runs through the decomposition 
levels, which lends credibility to this routine method of seismic and baseline 
correction and displacement estimation. The point to make is that at a particular 
level of decomposition, the wavelet transform separates the long and short period 
acceleration sub-bands. It then becomes easier to perform a 1st and 2nd integration 
separately on the short period but in particular the long period, which identifies 
acceleration and velocity ‘fling’ and velocity baseline offsets, the latter which can 
then be corrected.  
 
Keywords: correction, seismic, wavelet transform, integration, Chi-Chi, 
Abrahamson’s ‘fling’, decomposition, reconstruction. 
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1   Introduction 
 
Strong ground motions at near-fault sites may contain long period, pulse type waves 
which induce substantial permanent ground deformation. Standard filtering methods 
[1] cannot extract such permanent displacements of the ground from acceleration 
time-histories. Recent work in [2] compares estimates of displacement obtained 
through 1st and 2nd integration’s from the Chi-Chi events with those of GPS readings 
taken near the sites of the strong-motion recordings. In order to obtain reasonable 
estimates of displacements a baseline correction procedure has been required. Thus 
approximate methods have been used in order to correct for baseline shift and then 
integrate for velocity and integrate again for displacement. The difficulty is that a 
standard and automated procedure for baseline-shift correction had not hitherto 
existed. Most of the baseline correction schemes have been based on a two-point 
scheme proposed in [3] with modifications proposed by [4]. A good corrected 
displacement history is similar to a ramp function [2] between two points suitably 
chosen. However, the choice of differing points can lead to considerably different 
estimates of final displacements.  
 
The wavelet transform has been used  [5,7] for de-noising the seismic record prior to 
de-convoluting the instrument response. The wavelet transform has also been used  
[6] in order to implement baseline correction scheme and consequent estimates of 
permanent displacement of some Chi-Chi seismic recordings. The procedure [6] 
uses a 3-phase approach but is still complicated requiring selection processes at the 
various phases, but their results compare favourably with GPS readings. 
 
The proposition from this paper is essentially an easy and almost automated 
operation. It is routine and applies an automated stationary-wavelet procedure to 
look for the long period, ‘fling’ in the acceleration and velocity time histories at a 
suitable decomposition level. The main point to note is that the wavelet transform 
successively down-samples, convolutes, de-noises and separates the long and short 
period sub-bands of the acceleration time histories, at each level of decomposition. 
A threshold scheme removes the resulting coefficients below a certain value and 
then reconstructs a de-noised time-history from the long and short period de-noised 
sub-bands, using the inverse wavelet transform.   
 
 
2     Filter Bank Approach to the Wavelet Transform 
 
The wavelet transform may be considered as a set of complementary low-pass and 
band-pass filters, which can correlate/convolute and down sample by a factor of 2, a 
noisy signal by successively applying the filters. Effectively the process decomposes 
i.e. halves the frequency band each time (hence the name dyadic sampling) creating 
sub-bands. Each time it applies a low-pass filter bank it decomposes the transition 
band by a factor of 2 moving to lower sub-band frequencies at each level of 
decomposition.  
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A similar argument applies to the band-pass filter banks for the shorter period parts 
of a signal.  
 
Moreover the method takes the discrete wavelet transform (DWT) [8,12] of a signal, 
and passes the transform through a threshold [9,12], which de-noises the signal. It 
removes the coefficients below a certain value and then takes the inverse DWT in 
order to reconstruct a de-noised time signal. Reconstruction is the inverse process of 
decomposition, which up samples by a factor of 2 and applies low-pass and high 
pass filter banks. The DWT is able to concentrate most of the energy of the signal 
into a small number of wavelet coefficients, after correlating/convoluting and down 
sampling with the appropriate filter weights depending on the selection of a wavelet 
basis. In this case the wavelet ‘db1’, (Daubechies (1)) and ‘db2’ (Daubechies (2)) 
were chosen over other wavelets because they gave a greater depth of decomposition 
levels, necessary for some of the seismic events and because to some extent they 
correlate with the acceleration ‘fling’. The dimensions of the wavelet coefficients 
will be large compared to those of the noise coefficients obtained after high pass 
filtering. Therefore thresholding or shrinking the wavelet transform will remove the 
low-amplitude noise in the wavelet domain and the inverse DWT will retrieve the 
desired signal with little loss of detail. A block diagram of a 1-level, 2-band the 
operation is shown in Figure (1). 
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Figure 1: 1-level, 2-band Wavelet de-noising block diagram 

 
 
 
 
However the DWT is not translation invariant and so the implementation in this 
paper uses the stationary or translation invariant wavelet transform [10,12]. This 
essentially applies a range of signal shifts to allow for misalignment of the signal 
and wavelet features, it then averages out the shifts in order to obtain the de-noised 
signal 
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The problems with shift-invariance are connected with the alignment between 
features in the signal and features of the wavelet basis. In particular at 
discontinuities where Gibbs like phenomena can occur with unwanted oscillations. 
An approach to surmount this problem is described in [10,12] where it is suggested 
to forcibly shift the signal, so that it’s features change positions in relation to the 
wavelet basis. Then to un-shift and retrieve the de-noised signal hopefully without 
any unwanted noise or spurious oscillation i.e. 
 

Average [Shift → De-noise → Un-Shift] 
 
The diagram of Figure 1 shows that both the low frequency and the high-frequency 
components of the signal can be extracted. It shows only one level of 
decomposition, but a a wavlelet decomposition tree is usually implemented, where 
the resulting low frequency component is further decomposed showing the long 
period pulse type signal with greater clarity as we move to higher levels of the 
decomposition tree 
 
 
 
 
 
 
 
 
3     Selection of Wavelet Basis 
 
In this paper wavelet ‘db1’, the Haar transform, wavelets ‘db2’, are selected and 
mainly used at typical decomposition levels of 10 and 11. The ‘db1’ Haar transform 
has a rectangular shape, which correlates with a clipped, long period, ‘‘fling’’ and 
the wavelet ‘db2’, has a spiky ‘fling’ shape. This is shown in Figures (2). Other 
wavelets also have a shape, which is similar to the seismic waveform for particular 
events. These therefore and their associated filter banks are well suited to the task 
and gives good results for the seismic records under investigation..  These give a 
good ‘fling’ output of the long-period acceleration and velocity time-history, and a 
ramp-like displacement time history. Other wavelet bases are also possible and 
Figure (3) illustrate the point with bi-orthogonal wavelet pairs bior1.3 and bior6.8, 
showing that reasonable displacements are obtainable by both with only one level of 
adjustment. Figure (4) uses the Haar wavelet (db1) and db10. The former gives a 
maximum of 15 levels of decomposition with good results. The Haar wavelet result 
is consistent with that of [2] and GPS as shown for the vertical component of 
TCU052 from the B-series of seismic events [11]. 
 
 
Wu & Wu 2007 [2]  GPS [2]   Wavelet ‘db1’ 
disp = 350.5cm             disp = 397.2cm level = 11, disp = 358.8cm 
       level = 10, disp = 380.4cm 
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4     Results 
 
4.1     TCU052 N-component 
  
This component gives a large GPS reading. It shows the onset of a big ‘fling’, 
shown in Figures (5) and (6). This demonstrates the results of wavelet de-noising 
and decomposition, followed by the two integrations on TCU052, North component.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure (2) The ‘db2’ wavelet, showing a shape similar to that of a spiky acceleration 

‘fling’ and the ‘db1’ wavelet as that of a clipped ‘fling’ shape. 
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Figure (3) Event TCU052 vertical component using bi-orthogonal wavelets showing 

displacements with different levels of decomposition 
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Figure (4) Event TCU052 vertical component using Daubechies wavelets db1 and 

db10 showing displacements and different levels of decomposition 
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Figure (5) TCU052 N-Component, long period sub-band at level 10, wavelet db2. 
The acceleration ‘fling’ is symmetric with ±27cm/s/s/, the velocity peak is at 

106.6cm/s and the end displacement is 604cm. The long period mean was removed 
from the acceleration 
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Figure (6) TCU052 N-Component, long period sub-band comparison at level 10, 
wavelet db2. Velocity plot B has had long period acceleration mean removed for 

baseline adjustment and so the long period velocity goes to zero. Velocity plot A has 
only the pre-event mean removed from the original record. 
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As mentioned earlier the criterion for choosing the db1 or db2 wavelet is its 
correlation with the shape of the acceleration ‘fling’. In this case decomposition at 
level 10 shows in Figure (5) such a ‘fling’ in the long period, acceleration and 
velocity sub-band. The peak velocity is at 106.6cm/s ending at a zero velocity at the 
end of the 90sec record. The acceleration ‘fling’ is textbook symmetric with peaks at 
±27cm/s2. The displacement is at 604cm, which compares with 687.9cm [2] and 
845.1cm from a GPS station 2.7km away. In this case the long period acceleration 
mean was removed, because there was a baseline shift in the long period velocity in 
the 2nd half of the record, [4] between 50sec and 90sec.  
 
For the purposes of comparison Figure (6) shows the long period record with only 
the pre-event mean removed from the whole original record [4] without any further 
baseline processing, plots [A]. This shows an offset in velocity of 9cm/sec over 
approximately 45sec, which gives rise to shift in displacement of 405sec. Figure (6) 
also shows the linear velocity trend adding to the final displacement. In plot [B] 
adjusting the offset for the last portion of the record by removing the long period 
mean in this automated manner forces the velocity to zero, but produce an offset at 
the beginning of the record. However, this offset is small and for a much shorter 
duration, therefore may be neglected where the motion produces large 
displacements. For example at 19sec the original record shows a zero displacement, 
whereas after adjusting for zero velocity in the latter record by removing the long-
period mean, at 19sec the displacement produced is now –18cm, i.e. 3% of the 
overall displacement.  
 
Figure (7) compares the long period acceleration, velocity and displacement sub-
bands against their total records. These demonstrate that the accelerations need not 
be very large to produce ramp-like displacements, it is of course the time for which 
these occur that can make a significant contribution to the displacement. Figure (8) 
shows the long and short period acceleration sub-bands at level 10 decomposition, 
followed by the corresponding long and short period velocity sub-bands after 1st 
integration.  Finally Figure (9) shows the corresponding long and short period 
displacement at level 10 after a 2nd integration.  
 
4.2 TCU052 EW-component 
 
The East component of TCU052 of Figure (10) shows a negative going ‘fling’ in the 
long period, sub-band velocity profile which reaches a max of –64 cm/sec. The final 
displacement at 90-sec is -270cm. This compares with a GPS station reading of -
342.3 cm and that of [2] of –357.7 cm. In this particular case, the baseline shifts in 
the latter portion of the velocity by 0.92cm/s and a linear displacement shift of 50cm 
over 57sec. However, after de-noising with the wavelet transform the long and short 
period means are removed and the velocity ends at zero. This changes the velocity in 
the initial portion, from zero to a maximum of -0.2cm/s and the displacement from 
zero to –2.5cm. The end displacement after the ramp is steady at –270cm for 
approximately 50secs. These small changes can be ignored. Figure (11) shows the 
total displacement with the long and short period displacement sub-bands are added 
together. 
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Figure (7) TCU052 N Component, wavelet db2, level 10. The above compares the 

long period sub-band acceleration, velocity and displacement. It shows the 
dominance of the small, long period ground acceleration ‘fling’, giving rise to a 

100cm/s-velocity peak and 5m-ramp displacement 
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Figure (8) TCU052 N Comp: the top plot shows the long and short period 

acceleration sub-bands at level 10. The second plots show the corresponding long 
and short period velocity sub-bands after the 1st integration of the acceleration sub-

bands of the top plots 
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Figure (9) TCU052 N Comp: db2, long and short period displacement at level 10 
after integrating (2nd integration) of the velocity sub-bands at level 10. 
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Figure (10) TCU052 EW component, long period sub-band at level 10, showing an 

acceleration ‘fling’, giving rise to a velocity trough and zero velocity, a 
displacement ramp and a final displacement of –270cm. 
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Figure (11) TCU052 EW component: total displacement (-270cm) at level 10, db2 
wavelet, long and short period displacement sub-bands added together 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (12) TCU052 V component: long period sub-band, level 10, db2 showing 
‘fling’ and velocity at zero. Displacement at 338cm from 43sec to end of trace. 
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4.3 TCU052 V-component 
 
The plots in Figures (12) and (13) show a classic almost theoretical ‘fling’ obtained 
using wavelet ‘db2’ at level 10 on the vertical component of the TCU052 record.  
The long period ‘fling’ in the acceleration sub-band is clear as is the velocity pulse 
after integration. The displacement is a classic ramp after the 2nd integration. Figure 
(13) shows the final displacement from both the long and short period contributions. 
These are of course added on the assumption that the movements are in the same 
direction, which may not be the case. The overshoot is due to the short period 
displacement modulation, the end displacement gives 338cm at 90sec, and the 
method in [2] gives 350.5cm. It is observed that wavelet ‘db1’ gives a displacement 
of 350cm, nearer to the GPS reading of 397.2-cm, where the station is 2.7km away. 
However the acceleration sub-band ‘fling’ is almost theoretical for ‘db2’, hence the 
preference for its displacement output.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure (13) TCU052 V component: total displacement at level 10, db2 wavelet, long 
and short period displacement sub-bands added together giving a final displacement 

of 338cm 

 
4.4 Noise Power  
 
Figure (14) shows the noise power spectral plots of TCU052 NS and Vertical 
components. The EW component noise power spectrum is similar to that of the NS, 
therefore is not shown. The plots are quite clear in demonstrating that the vertical 
component has a much smaller noise power than that of the NS ad the EW 
components. It is also clear that the low frequency noise power is tends to dominate 
until approximately 2.5Hz in both the NS and EW components and then reduces 
considerably. In all 3 cases the noise power is reduced after applying the wavelet 
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transform, in the NS and EW components the noise averages 0dB after 0.8Hz and 
then reduces to below 0dB after approximately 2Hz.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure (14) TCU052 N and V Comp: noise power spectrum shows in the North (N) 

comp a reduction in the noise power at low frequencies by an average of 1.5dB 
reaching 0dB at 1.1Hz, after applying the wavelet transform. The actual noise power 
is on average 2.5dB to approximately 2.2Hz. The Vertical (V) component shows a 

much smaller noise power, on average at –5dB. 
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5      Summary and Conclusion 
 
The results demonstrate that wavelet transform is well suited in de-noising and 
analysing the accelerogram from a seismic event and decomposing it down to long 
and short period sub-bands, from which the sub-band velocity and displacement 
follows naturally after integration only, without any further processing.  In particular 
the wavelet transform is well suited to identifying the long period ‘fling’ in both the 
acceleration and velocity, from which the ramp-like displacement is a natural 
outcome after 2nd integration. The point to make is that at a particular level of 
decomposition, the wavelet transform can automatically separate the long and short 
period acceleration sub-bands, as shown in Figure (8). It is then easier to perform a 
1st and 2nd integration separately, but on the long period in particular as shown in 
Figure (8) and (9). This method also identifies acceleration and velocity ‘fling’ and 
importantly velocity baseline offsets, (Figure (6)) in the latter portions of the long 
period velocity sub-band. This velocity shift can lead to misleading displacement 
results, assuming that there isn’t any afterslip in the seismic event. The shift in the 
latter velocity portion can be corrected by removing the long period mean after 
applying the wavelet transform, which forces the long period velocity to end at zero. 
This was the case with the TCU052 NS component and with the EW, but not with 
the Vertical component. This though may lead to a slight shift in baseline at the 
beginning of the long period velocity. This was evident in the NS case, but to a 
much lesser extent in the EW case since its velocity had a small velocity offset. The 
enforced shift at the beginning is usually for a much shorter time, therefore small 
changes in displacement at the beginning can be ignored where the overall ground 
motion leads to large displacements. Alternatively since the baseline offsets in the 
long period velocity is more easily identified after the wavelet decomposition as 
described in this paper, the baseline offset can also be corrected by methods due to 
[2,3,4,6]. The noise floor during the seismic event is shown to be at an average of 
2.5dB for the EW and NS components, but much lower for the vertical component.  
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