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Abstract. In this work, we present an approach for automatic trans-
lation of tock-CSP into Timed Automata (TA) for Uppaal to facilitate
using Uppaal in reasoning about temporal specifications of tock-CSP
models. The process algebra tock-CSP provides textual notations for
modelling discrete-time behaviours, with the support of tools for auto-
matic verification. Automatic verification of TA with a graphical notation
is supported by Uppaal. The two approaches provide facilities for au-
tomatic verification. For instance, liveness requirements are difficult to
specify with the constructs of tock-CSP, but they are easy to specify and
verify in Uppaal. We have developed a translation technique and a tool
based for translating tock-CSP into a network of small TAs for captur-
ing the compositional structure of tock-CSP. For validating the rules, we
begin with an experimental approach based on finite approximations to
trace sets. Then, we explore using structural induction to establish the
correctness.
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1 Introduction

Communicating Sequential Processes (CSP) is an established process algebra
that provides a formal notation for both modelling and verifying concurrent
systems [19,33,35]. The use of CSP for verification has been supported by several
tools including powerful model-checkers [15,33,37].

Interest in using existing tools motivated [33] the introduction of support for
modelling discrete timed systems: tock-CSP provides an additional event tock to
record the progress of time. As a result, tock-CSP has been used to verify real-
time systems, such as security protocols [13] and railway systems [21]. Recently,
tock-CSP has been used to capture the semantics of RoboChart, a domain-
specific language for modelling robotics applications [27].

In this work, we present a technique for automatic translation of tock-CSP
into Timed Automata (TA) to enable using Uppaal [5] and temporal logic to
verify tock-CSP models. Uppaal is a tool-suite for modelling hybrid systems

? T gratefully acknowledge the financial support of Petroleum Technology Develop-
ment Fund (PTDF)



2 A. Abba, et al

using a network of TAs and verifying the systems. We describe list of translation
rules and their implementation into a tool.

Both temporal logic and refinement are powerful approaches for model check-
ing [25]. The refinement approach models both the system and its specifications
with the same notation [33, 35], while temporal logic enables asking whether a
system captures logical formulæ of the requirements specification in the form of
system |= formula [9].

Lowe has investigated the relationship between the refinement approach (in
CSP) and the temporal logic approach [25]. The result shows that, in expressing
temporal logic checks using refinement, it is necessary to use the infinite refusal
testing model of CSP. The work highlights that capturing the expressive power
of temporal logic to specify the availability of an event (liveness specification) is
not possible in the refinement model. Due to the difficulty of capturing refusal
testing, automatic support becomes problematic. A previous version of FDR
supports refusal testing, but not its recent more efficient version [15].

Additionally, Lowe’s work [25] proves that simple refinement checks cannot
match the expressive power of temporal logic, especially the three operators:
eventually (�p: p will hold in a subsequent state), until (pUq: p holds in every
state until q holds) and their negations: (¬(�p) and ¬(pUq). These three op-
erators express behaviour captured by infinite traces. Our work presented here
facilitates checking such specifications.

Example 1. Consider an Automatic Door System (ADS) that opens a door, and
after at least one-time unit, closes the door in synchronisation with a lighting
controller, which turns off the light. In tock-CSP, this is expressed as:

1 ADS = Controller [|{close}|] Lighting
2 Controller = open -> tock -> close -> Controller
3 Lighting = close -> offLight -> Lighting

ADS has two components — Controller and Lighting — that synchronise
on the event close, which enables Lighting to turn off the light after closing
the door. In tock-CSP, there is no direct way of checking if the system eventu-
ally turns off the light. However, temporal logic provides a direct construct for
specifying liveness requirements, supported in Uppaal, as follows.

– A<> offLight - - The system eventually turns off the light

Uppaal uses a subset of Timed Computational Tree Logic (TCTL) based on
the notions of path and state [5]. A path formula quantifies over paths (traces),
whereas a state formula describes locations. There are different forms of path
formulæ. Liveness is either A<>q (q is eventually satisfied) or p --> q (a state
satisfying p leads to a state satisfying q). A reachability formula in the form of
E<>q (a state satisfying q is reachable from the initial state). Safety is expressed
as either A[]q (q holds in all reachable states) or E[]q (q holds in all states on
at least one path).

To verify the correctness of the translation technique, first, we construct a
systematic list of interesting tock-CSP processes, which pair all the constructs of
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tock-CSP within the scope of this work. Second, we use the developed translation
technique and its tool to translate the formulated processes into TA for Uppaal.
Third, we use another tool we have developed to generate and compare finite
traces of the input tock-CSP models and the traces of the translated TA models.

We use Haskell [20], a functional programming language, to express, imple-
ment and evaluate the translation technique. The expressive power of Haskell
helps us provide formal descriptions of the translation technique as a list of
translation rules, which is also suitable for constructing mathematical proof.

The structure of this paper is as follows. Section 2 provides the essential
background material. In Section 3, we summarise the translation technique. We
discuss an evaluation of the translation technique in Section 4. In Section 5, we
highlight related works and present a brief comparison with this work. Finally, in
Section 6, we highlight future extensions of this work and conclude. Additional
details of the missing proofs, implementation and further examples can be found
in the extended versions [1, 2].

2 Background

As an extension of CSP, tock-CSP provides notations for modelling processes
and their interactions, such as the basic processes: SKIP and STOP, for success-
ful termination and deadlock, respectively. Operators include prefix (->)
for describing availability of an event. For example, the process move->SKIP
represents a mechanism that moves once and then terminates.

There are binary operators such as sequential composition (;), which com-
bines two processes serially. For instance, the process P3 = P1;P2 behaves as
process P1, and after successful termination of P1, then P3 behaves as P2. There
are other binary operators for concurrency, choice and interruption. Also, CSP
has a special event tau (τ) for invisible actions that are internal to a system.
The collection of these operators provides a rich set of constructs for modelling
untimed systems [33,35].

For modelling time, tock-CSP has an event tock [33], which specifies at least
single unit of time. For example, the following process Pt specifies behaviour that
moves and then after at least two time units, turns and terminates.

Pt = move->tock->tock->turn->SKIP

Timed Automata for Uppaal model hybrid systems as a network of TA.
Mathematically, a TA is a tuple (L, l0, C,A,E, I), where L is a set of locations
such that l0 is the initial location, C is a set of clocks, A is a set of actions, E is
a set of edges that connects the locations L, and I is an invariant associated to
a location l ∈ L in the form of I : L −→ B(C). So, edges E ⊆ (L×A×B(C)×
2C × L) from a location l ∈ L triggered by an action a ∈ A, guarded with a
guard g ∈ B(C), and associated clock c ∈ C that is reset on following the edge
to a location l ∈ L [5, 7].

A system is modelled as a network of TAs that communicate via either syn-
chronous channel communication or shared variables. A sending channel is dec-
orated with an exclamation mark (c!) while the corresponding receiving channel
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is decorated with a question mark c?. A TA performs an action c! to communi-
cate with another TA that performs the corresponding co-action c?. There are
also broadcast channels for communication among multiple TAs, in the form of
one-to-many communications (one sender with multiple receivers).

For expressing urgency, there are urgent channels and urgent locations that
do not allow delay. There are also committed locations; urgent locations that
must participate in the next transition, which is useful for expressing atomicity; a
compound actions spanning multiple transitions that must be executed as a unit.
Invariants specify precise delay and enforce progress [5]. In Uppaal, networks of
TAs model system’s components and an explicit operating environment [5,6,24].

3 An Overview of the Translation Technique

Our translation technique takes an input tock-CSP model and produces a list of
TAs. The occurrence of each tock-CSP event is captured in a small TA with an
Uppaal action, which records an occurrence of the translated event. The small
TAs are composed into a network of TAs that capture the behaviour of the input
tock-CSP model. The network of small TAs give us enough flexibility to capture
the compositional structure of tock-CSP.

Example 2. A translation of the process ADS, from Example 1, produces a net-
work of small TAs in Figure 1. TA0 captures concurrency by starting the two
automata for the processes Controller and Lighting in two possible orders
— either Controller then Lighting or vice versa — depending on the op-
erating environment. Here we use the committed locations (s2, s3 and s4) to
show that starting the concurrent automata is a compound action. Then TA0
waits on state s5 for the termination actions in the two possible orders. For the
termination, we do not use committed locations because the processes can ter-
minate at a different times. TA0 synchronises the processes before terminating
the system with the action finishID0.

TA01, TA02 and TA03 capture the behaviour of the process Controller.
TA01 captures the occurrence of the event open. TA02 captures the occurrence
of tock? to synchronise with the environment TA in recording the progress of
time. TA03 captures the event close to synchronise with the controller TA04.

TA05 and TA06 capture the behaviour of the process Lighting. TA05 cap-
tures close, which also synchronises with TA04. Then, TA06 captures the event
offLight. Finally, Figure 2 is the environment TA that has co-actions for all
the translated events. Also, the environment TA serves the purpose of ‘closing’
the overall system as required for the model checker. In the environment TA,
we use the variable start to construct a guard start==0 that blocks the
environment from restarting the system.

The main reason for using a list of small TAs is to capture the compositional
structure of tock-CSP, which is not available in TA [11]. For instance, it can be
argued that a linear process constructed with a series of prefix operators can be
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(a) TA00

(b) TA01 (c) TA02

(d) TA03 (e) TA04

(f) TA05 (g) TA06

Fig. 1. A list of networked TA for the translation of the process ADS.
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Fig. 2. An environment TA for the translated behaviour of the process ADS.

translated into a linear TA 1. However, the compositional structure of tock-CSP
is not suitable for this straightforward translation. For instance, consider a case
where the linear process is composed of an interrupting process, the behaviour
is no longer linear because the process can be interrupted at any stable state,
as illustrated in Example 4. Also, this problem can be seen in translating a pro-
cess like P = (e1->SKIP)[]((e2->SKIP)|||(e3-SKIP)), which contains
both external choice and concurrency. However, a network of small TAs provides
enough flexibility for composing TA in various ways to capture the behaviour of
the original tock-CSP process.

In constructing the networked TAs, we use additional coordinating actions
to link the list of small TAs to establish the flow of the input tock-CSP model.
For example, the channel startIDADS links the environment TA (Figure 2)
with TA00 (Figure 1), on performing the action startIDADS! and its co-action
startIDADS?. A precise definition of the coordinating action is as follows.

Definition 1. A Coordinating Action is an Uppaal action that does not
correspond to a tock-CSP event. There are six types of coordinating actions:
Flow actions coordinate a link between two TAs for capturing the flow of their
behaviour; Terminating actions record termination information, in addition
to coordinating a link between two TAs; Synchronisation actions coordinate
a link between a TA that participates in a synchronisation action and a TA
for controlling the synchronisation; External choice actions coordinate an
external choice, such that choosing one of the TA that is part of the external
choice thus blocking the other choices TAs; Interrupting actions initiate an
interrupting transition that enables a TA to interrupt another; and Exception
actions coordinate a link between a TA that raises an action for exception and
a control TA that handles the action.

The names of each coordinating action are unique to ensure the correct flow of
the translated TAs. In our tool, the names of the flow actions are generated in
the form startIDx, where x is either a natural number or the name of the

1 A TA with liner transitions only, no branches.
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input tock-CSP process. For instance in Figure 1, startID00_1 is the flow
action that connects the TA00 and TA01.

Likewise, the names of the remaining coordinating actions follow the same
pattern: keywordIDx, where keyword is a designated word for each of the
coordinating actions; finish for a terminating action 2, ext for an external
choice action, intrp for an interrupting action, and excp for an exception
action. Similarly, we provide a special name for a synchronising action in the form
eventName___sync: an event name appended with the keyword ___sync to
differentiate a synchronising action from other actions 3.

For each translated tock-CSP specification, we provide an environment TA,
like the TA in Figure 2, which has corresponding co-actions for all the translated
events of the input tock-CSP model, plus three coordinating actions that link
the environment TA with the networked TAs. The first flow action links the
environment with the first TA in the list of the translated TA (as illustrated
in Figure 2, the action startIDADS links the environment TA with TA00 in
Figure 1). This first flow action activates the behaviour of the translated TA.
Second, a terminating action to link back the terminating TA to the environment
TA to capture a successful termination of a process (as shown in Figure 2 with
the action FinishID0). Third, a flow action tock for recording the progress of
time. A precise definition of the structure of the environment TA is as follows.

Definition 2. Environment TA model operating environments for Uppaal.
An environment TA has one state and transitions for each co-action of all the
events in the input tock-CSP process, in addition to three transitions: the first
starting flow action, the final terminating co-action and the action tock for
recording the progress of time.

In translating multi-synchronisation, we adopt a centralised approach devel-
oped in [30] and implemented using Java in [14], which uses a separate centralised
controller. Here, we use a separate TA with an Uppaal broadcast channel to
communicate synchronising information to synchronise TA and a control TA.
In Figure 1, we illustrate the translation of synchronisation in translating the
event close, which synchronises TA03 and TA05 using the broadcasting chan-
nel close___sync.

Each synchronising TA has a guard to ensure synchronisation with the correct
number of TAs. The guard is a logical expression that sum of variables from all
the TAs that synchronise on the synchronisation action, where each TA updates
its variable from 0 to 1 to show its readiness for the synchronisation and waits for
the synchronisation action. In Figure 1, the synchronising TA (TA04) has a guard
expression (g_close00_3 + g_close01_2)==2, which becomes true only
when TA03 and TA05 update their synchronisation variables: g_close00_3

2 We use terminating actions where a TA needs to communicate a successful termina-
tion for another TA to proceed. For instance, in translating sequential composition
P1;P2, the process P2 begins only after successful termination of the process P1.

3 This is particularly important for analysis and is in the reserved keywords for the
supporting tool.
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and g_close01_2, from 0 to 1. Then, TA04 notifies the occurrence of the action
close and broadcasts the synchronising action close___sync!. After the
synchronisation, each TA resets its variable to zero and performs its remaining
behaviour. A precise definition of the synchronisation TA is as follows.

Definition 3. A synchronisation TA coordinates synchronisation actions.
Each synchronisation TA has an initial state, and a committed state for each
synchronisation action, such that each committed state is connected to the ini-
tial state with two transitions. The first transition from the initial state has a
guard and an action. The guard is enabled only when all the processes are ready
for synchronisation, which also enables the synchronising TA to perform the as-
sociated action that notifies the environment of its occurrence. In the second
transition, the TA broadcasts the synchronisation action to all the processes that
synchronise, which enables them to synchronise and proceed.

In translating external choice, we provide additional transitions to capture
the behaviour of the chosen process in blocking the behaviour of the other pro-
cesses. Initially, in the translated TA, all the initials 4 of the translated processes
are available such that choosing one process blocks all the other choices.

Example 3. A translation of external choice is illustrated in Figure 3 for the
process Pe=(left->STOP)[](right->STOP), which composes two processes
left->STOP and right->STOP using the external choice operator ([]).

In Figure 3, TA00 captures the operator external choice. TA01 and TA03
capture the LHS process (left->STOP). TA02 and TA04 capture the RHS
process (right->STOP). TA00 has three transitions labelled with the actions:
startIDp0_6?, startID00_1! and startId01_2!. TA00 begins with the
first flow action startIDpExtChoice? and then starts both TA01 and TA02,
using the actions startID00_1! and startId01_2!, available for choice.

Initially, TA01 synchronises on startID00_1 and moves to location s2
that has three transitions labelled: left_exch?, right_exch! and tock?.
With the co-action tock?, the TA records the progress of time and remains on
the same location s2. With the co-action right_exch?, the TA performs an
external choice co-action for blocking the LHS process when the environment
chooses the RHS process, and TA01 returns to initial location s1.

Alternatively, TA01 performs the action left_exch! when the environment
chooses the LHS process, and TA01 proceeds to location s3 to perform the
chosen action left that leads to location s5 and performs the flow action
startID00_2, which activates TA03 for the subsequent process STOP. For the
RHS process, TA02 captures the similar translation of the event right. The
omitted environment TA is similar to that in Figure 2.

In tock-CSP, a process can be interrupted by another process when composed
using an operator interrupt (/\). Thus, we provide additional transitions to
capture interruptive behaviour.

4 The term initials describe the first visible events of a process.
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(a) TA00 (b) TA01

TA02 TA03

TA04

Fig. 3. A list of TA for the translated behaviour of the process Pe

Example 4. An example of translating interrupt is in Figure 4, for the translation
of the process Pi = (open->STOP)/\(fire->close->STOP).

In Pi, the RHS process fire->close->STOP can interrupt open->STOP at
any stable state. So, in the translated behaviour of the LHS process, we provide
interruptive actions (like fire_intrpt) that enable the translated behaviour
of the RHS process to interrupt that of the LHS process. The corresponding
co-action of the interruptive actions are provided only for the initials of the RHS
process (fire) because it can only interrupt with its initials.

In Figure 4, TA00 is a translation of the operator interrupt, TA01 and TA02
capture the translation of the LHS process open->STOP, while TA03, TA04
and TA05 capture the translation of the RHS process fire->close->STOP.
The environment TA is similar to the TA in Figure 2.

First, TA00 performs the actions startID00_1! and startID01_2! to
activate TA01 and TA03. TA01 synchronises on startID00_1 and moves to lo-
cation s2 where there are three possible transitions for the actions: tock, open
and fire_intrpt. With the co-action fire_intrpt?, the TA is interrupted
by the RHS, and returns to its initial location s1. With tock, the TA records
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(a) TA00 (b) TA01

(c) TA02 (d) TA03

(e) TA04 (f) TA05

Fig. 4. A list of TA for the translated behaviour of the process Pi.

the progress of time and remains on the same location s2. With open, the TA
proceeds to location s5 to perform the flow action startID00_2 to activate
TA02 for the subsequent process STOP. TA02 synchronises on startID00_2
and moves to location s2, where it either performs tock? to record the progress
of time or is interrupted through the co-action fire_intrpt?, and returns to
its initial location s1.

For the RHS, TA03 captures the translation of the event fire. TA03 begins
with synchronising on startID01_2, which progresses by interrupting the LHS
process using the interruptive flow action fire_intrpt, then fire, and per-
forms startID01_3 for activating TA04 which synchronises on the flow action
and moves to location s2, where it either performs the action tock? for the
progress of time and remains in the same location or performs the action close
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Fig. 5. Structure of the trace analysis system

and proceeds to location s5, then performs the flow action startID01_4 for
starting TA05 for the translation of STOP (deadlock).

We translate tock into a corresponding action tock using a broadcast chan-
nel for the environment TA to broadcast the progress of time for all the TAs
to synchronise. For instance, in Figure 1, the environment TA has a transition
labelled tock guarded with the clock expression ck ≥ 1, so that tock happens
every 1 time unit, and resets the clock ck = 0 to zero on following the transition.

Also, we translate non-deterministic choice into silent transitions, such that
the translated TA follows one of the silent transitions non-deterministically. This
completes an overview of the strategy we follow in developing the translation
technique. A precise description of all the translation rules in Haskell is in [1,2].

4 Evaluation

A sound translation ensures that the properties of the source model are preserved
in the translated model. This is determined by comparing their behaviours [4,
22,26,28]. We compare the behaviour of the input tock-CSP and the output TA
in two phases: experimental evaluation and mathematical proof.

4.1 Experimental Evaluation

We use trace semantics to evaluate the equivalent of the traces using bisimu-
lation. In carrying out the experiment, we have developed an evaluation tool,
which uses our translation tool and both FDR and Uppaal as black boxes for
generating finite traces. Figure 5 is the structure of the tool, available at [1].

In generating traces, like most model checkers, FDR produces only one trace
(counterexample) at a time. So, based on the testing technique in [29], we have
developed a trace-generation technique that repeatedly invokes FDR until we
get all the required trace sets of the input process. Similarly, based on another
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Table 1. An overview of the case studies

No. System States Transitions Events

1 Thermostat Machine 7 16 5

2 Bookshop Payment System 7 32 9

3 Simple ATM 15 33 15

4 AutoBarrier system 35 84 10

5 Rail Crossing System 80 361 12

testing technique with temporal logic [24], we have developed a trace-generation
technique that uses Uppaal to generate traces of the translated TA models.

These two trace-generation techniques form components of our trace analysis
tool (Figure 5), which has two stages. In the first stage, we generate traces of
the input tock-CSP and its corresponding translated TA, using both FDR and
Uppaal. Then, we compare the generated traces; if they do not match, we move
to the second stage where we use FDR to complement Uppaal in generating
traces. The mismatch may be because FDR distinguishes different permutations
of events (traces). In contrast, Uppaal uses a logical formula to generate traces
[5, 24] which do not distinguishes traces with different permutations.

Essentially, Uppaal checks if a system satisfies its requirement specifica-
tions (logical formula), irrespective of the behaviour of the system. For example,
Uppaal does not distinguish between the two traces 〈e1, e2, e3〉 and 〈e1, e3〉,
if both traces satisfy the requirement specification formula, such as a system
performs the event e3, either through e2 or before e2. However, FDR is capable
of generating both traces. Thus, in the second stage, we use Uppaal to check if
all the traces of FDR are acceptable traces of the translated TA.

For evaluation, we have used a list of systematically formulated tock-CSP
processes that pair the constructs of tock-CSP. The list contains 111 processes.
Archives of the processes and their traces are available in this repository [1].

In addition, we test the translation technique with larger examples from
the literature, such as an automated barrier to a car park [35], a thermostat
machine for monitoring ambient temperature [35], an Automated Teller Machine
(ATM) [34], a bookshop payment system [35], and a railway crossing system [33].
An overview of these case studies is in Table 1, while the details, including the
traces, are also available in the repository of this work [1].

Considering that the experimental approach with trace analysis is an approx-
imation for establishing correctness with a finite set of traces, covering infinite
sets of traces in proving correctness has to use mathematical proof.

4.2 Mathematical Proof

Here, we illustrate part of the proof using one of the base cases of the structural
induction. A more detailed account of our proof can be found in [1, 2]. Mathe-
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matically TA is defined as tuple 5 (Section 2). Consider TA1 as the translation of
the process STOP (TA05 from Figure 4), then mathematically TA1 is expressed
as follows:

TA1 = ({s1, s2}, s1, {ck}, {startID01 4, tock},
{(s1, startID01 4, ∅, ∅, s2), (s2, tock, ck ≤ 1, ck, s2)}, {}) (1)

In the language of TA, a path [3,7] is a sequence of consecutive transitions that
begins from the initial state. A trace [3, 7] (or word) is a sequence of actions
in each path. In TA1, there is only one infinite path; the first transition from
location s1 to location s2 and the second transition from location s2 and return
to location s2, repeated infinitely (s2 to s2). The traces on the path are as
follows:

traces‘TA(TA1) = {〈〉} ∪ {〈startID01 4〉_〈tock〉n | n ∈ N} (2)

The function trace‘TA(TA) describes the traces of TA1 as follows: the first
empty sequence happens at the initial state, before the first transition; the action
startID01_4 happens on the first transition; the action tock happens on the
second transition, which is repeated infinitely for the infinite traces 〈tock〉n.

Another function traceTA(TA) is similar to traces‘TA(TA) but removes all
the coordinating actions (Definition 1) from the traces.

tracesTA(TA) = {t \ CoordinatingActions | t ∈ traces‘TA(TA)} (3)

Therefore, without coordinating actions, the traces of TA1 become.

tracesTA(TA1) = {〈tock〉n | n ∈ N} (4)

Proof. For this proof, our goal is to establish that the traces of tock-CSP mod-
els are the same as those of the translated TA models. Here, transTA is the
translation function we have formalised (see Section 3) for translating tock-CSP
models into TA models. Thus, for each valid tock-CSP process P, within the
scope of this work, we need to establish that:

tracestock−CSP (P ) = tracesTA(transTA(P )) (5)

Therefore, for each translation rule, we have to prove that the translated TAs
capture the behaviour of the corresponding input tock-CSP model. We use au-
tomatic proof, expressed in Haskell. Starting with the basic process STOP:

1 traces_tockCSP(STOP) = traces_TA(transTA STOP)

Using structural induction in Haskell, we show that:

1 (traces_tockCSP n STOP = traces_TA n (transTA STOP))
2 => (traces_tockCSP (n+1) STOP = traces_TA (n+1) (transTA STOP))

Each step is evaluated automatically that helps us prove that the traces of the
translated TAs capture the traces of the input tock-CSP correctly. Detailed steps
of the proof are available in the extended reports [1, 2].

5 TA = (L, l0, C,A,E, I) where L is a set of locations, l0 is the initial location, C is a
set of clocks, A is a set of actions, E is a set of edges and I is an invariant.
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5 Related Work

Timed-CSP [35] is another popular extension of CSP for capturing temporal
specifications. Unlike tock-CSP, Timed-CSP records the progress of time with
a series of positive real numbers. However, the approach of Timed-CSP can not
specify deadline nor urgency. Also, traces of Timed-CSP are infinite, which is
problematic for automatic analysis and verification [33]. Thus, there is no proper
tool support for verifying Timed-CSP models. Therefore, researchers explore
various approaches, such as model transformations in translating Timed-CSP
into tock-CSP for using FDR in automatic verification [31]; translation of Timed-
CSP into Uppaal, initially reported in [11] and then subsequently improved
in [16]; and translation of Timed-CSP into Constraint Logic Programming (CLP)
for reasoning with the constraint solver CLP(R) [12]. Additionally, using PAT
for verifying Stateful Timed CSP (a variation of Timed-CSP) [36] and using
FDR for verfiying a variation of Timed-CSP [32].

However, there is less focus on applying the same transformation techniques
for tock-CSP. Although, an attempt to transform TA into tock-CSP was pro-
posed in [23], whereas in this work, we consider the opposite direction.

Apart from CSP and TA, model transformations have been used for improv-
ing various formal modelling notations. For instance, Circus has been translated
into CSP||B for using the tool ProB for automatic verification [38]. Additionally,
the language B has been translated into TLA+ for automatic validation with
TLC [18]. Also, translating TLA+ to B has been investigated for automated val-
idation of TLA+ with ProB [17], such that both B and TLA+ benefit from the
resources of each other, and their supporting tools ProB and TLC, respectively.

Model transformation has become an established field for addressing compu-
tational problems; here we also consider model transformation. The novelty of
this translation work is traced back to the early days of model translation works,
such as the translation of the timed variants of LOTOS into TA [8,10]. A recent
systematic survey of model transformation provides a rich collection of model
transformation techniques [22].

6 Conclusion

In this work, we have presented a technique for translating tock-CSP into TA for
Uppaal to facilitate using temporal logic and facilities of Uppaal in verifying
tock-CSP models. This work contributes an alternative way of using TCTL to
specify liveness requirements and other related requirements that are difficult to
verify in tock-CSP with refinement. Also, our work sheds light into the complex
relationship between tock-CSP and TA (temporal logic model).

Currently, we have used trace analysis to justify the correctness of the trans-
lation work. Also, we translate the event tock into an action that is controlled
by a timed clock in Uppaal. A recommended next step is to relate the notion
of tock to the notion of time in TA and get rid of tock as an action. This
additional extension will help us to explore additional interesting facilities of
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Uppaal to verify temporal specifications. Also, in future work, a better under-
standing of relating tock-CSP to TA will help us to explore using a single TA
instead of network TAs for more efficient verification.
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