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A B S T R A C T   

Collaborative filtering (CF) recommender systems are static in nature and does not adapt well with changing user 
preferences. User preferences may change after interaction with a system or after buying a product. Conventional 
CF clustering algorithms only identifies the distribution of patterns and hidden correlations globally. However, 
the impossibility of discovering local patterns by these algorithms, headed to the popularization of bi-clustering 
algorithms. Bi-clustering algorithms can analyze all dataset dimensions simultaneously and consequently, 
discover local patterns that deliver a better understanding of the underlying hidden correlations. In this paper, 
we modelled the recommendation problem as a sequential decision-making problem using Markov Decision 
Processes (MDP). To perform state representation for MDP, we first converted user-item votings matrix to a 
binary matrix. Then we performed bi-clustering on this binary matrix to determine a subset of similar rows and 
columns. A bi-cluster merging algorithm is designed to merge similar and overlapping bi-clusters. These bi- 
clusters are then mapped to a squared grid (SG). RL is applied on this SG to determine best policy to give 
recommendation to users. Start state is determined using Improved Triangle Similarity (ITR similarity measure. 
Reward function is computed as grid state overlapping in terms of users and items in current and prospective next 
state. A thorough comparative analysis was conducted, encompassing a diverse array of methodologies, 
including RL-based, pure Collaborative Filtering (CF), and clustering methods. The results demonstrate that our 
proposed method outperforms its competitors in terms of precision, recall, and optimal policy learning.   

1. Introduction 

The indispensable integration of Recommender Systems (RSs) into 
our daily lives is undeniable, given their wide spread involvement in 
diverse activities ranging from social network interactions to shopping 
decisions and entertainment choices on streaming platforms. While the 
recommendation problem was historically construed as a classification 
or prediction challenge, primarily tackled through Collaborative 
Filtering (CF), the landscape has progressively evolved. Contemporary 
perspectives frame the recommendation dilemma as a sequential 
decision-making endeavor, invoking the utilization of Markov Decision 
Processes (MDP) to formulate recommendations, thus inviting the 
application of Reinforcement Learning (RL) algorithms. Unlike con-
ventional methods such as CF and content-based filtering, RL exhibits 

the capacity to address dynamic, sequential user-system interactions, 
opening new avenues in the realm of recommendation systems. 
Although the idea of using RL for recommendations is not new, but, due 
to the scalability problems of traditional RL algorithms, applying RL was 
not very practical (Afsar, 2022). 

Currently, the recommendation problem is primarily solved using 
techniques that include CF, content-based filtering, and hybrid methods. 
Although these techniques are successful in providing relevant recom-
mendations, however, several problems exists in these techniques, 
including absence of user engagement in generating recommendations, 
cold start, sparsity, scalability, and recommendation quality (Ayub 
et al., 2019; Ayub et al., 2019; Bobadilla, Ortega, Hernando, & Gutiér-
rez, 2013; Jannach, Zanker, Felfernig, & Friedrich, 2010). Adopting a 
sequential recommendation perspective enables us to consider various 
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facets, including prolonged user engagement and diverse forms of user- 
item interactions, encompassing actions such as clicks, purchases, and 
more. The current recommendation techniques fail to model these fac-
tors appropriately (Xin, Karatzoglou, Arapakis, & Jose, 2020). So, 
casting the sequential recommendation problem as a RL problem is a 
promising direction. Moreover, recommender systems operate within 
dynamic environments characterized by shifting user preferences, 
evolving item popularity, and varying item availability. In this context, 
Reinforcement Learning (RL) emerges as a fitting option due to its 
adaptability to dynamic settings. RL possesses the capability to learn and 
adjust to changes, rendering it well-suited for comprehending such 
volatile environments. Additionally, the application of RL to the 
recommendation problem is driven by its adeptness in addressing the 
exploration–exploitation dilemma. Unlike traditional Collaborative 
Filtering (CF) RSs, which tend to exclusively exploit existing data for 
recommendations, RL offers a means to effectively navigate the 
exploration–exploitation dilemma. 

As applying RL directly to a user-item voting database is not scalable 
as it will result in a very large number of state space. So, we performed 
bi-clustering on user-item voting database to group similar users and 
items. Bi-clustering also helped us to maintain a finite number of state 
space for MDP. The quality of these bi-clusters is measured using the 
Scaled Mean Square Residual (SMSR) fitness function and these bi- 
clusters are ordered in a list of descending quality values. The bi- 
clusters in this list are placed in a fixed size n × n grid, using the 
cantor-diagonal order traversal method. The action space contains only 
four actions i.e. up, down, left and right. The start state in the recom-
mendation process (move within the grid) is determined by ITR simi-
larity measure (Iftikhar, Ghazanfar, Ayub, Mehmood, & Maqsood, 
2020). The transition function is not completely deterministic and fol-
lows ∈ -greedy policy while environment learning. The ∈ -greedy policy 
allows us to select a random action with uniform distribution over a set 
of available actions. The reward function is measured as the overlapping 
of users in the current and prospective next state using the Jaccard 
similarity measure, with more overlapping resulting in a greater reward 
value. If the agent is not receiving the recommendation of any new items 
or gets off the grid, then this state is declared as the goal state of the 
agent. The objective of the RL agent is to maximize the reward, termed 
as return, which denotes how much the user is satisfied with the rec-
ommended items. The proposed method is also able to explain why users 
are getting recommendations for certain or all items. 

The primary contributions of our proposed approach are as follows: 

1. Transforming the conventional Collaborative Filtering (CF) recom-
mendation challenge, which traditionally relies solely on historical 
user preferences without adapting to evolving user tendencies, into a 
sequential decision-making problem through the application of 
Markov Decision Process (MDP).  

2. Employing two bi-clustering algorithms, namely Bibit and BiMax, to 
delineate users with akin localized traits. 

3. Mapping the generated biclusters to states within the MDP frame-
work on a Squared Grid (SG).  

4. Devising a bi-cluster merging algorithm to amalgamate overlapping 
biclusters, thereby curbing the number of MDP states.  

5. Application of Q-Learning and SARSA techniques on the SG to derive 
optimal recommendations catered to individual users.  

6. Evaluation is performed on two different movies dataset, MovieLens 
ML-100 K and FilmTrust dataset and effectiveness of proposed 
method in producing optimal policy for generating recommenda-
tions is verified. 

The rest of the paper is organized as follows. Section 2 provides a 
literature review; Section 3 outlines the methodology of our proposed 
method; Section 4 describes the experimental procedure and evaluation 
parameters; Section 5 gives experimentation results on ML-100 K and 
FilmTrust datasets; while, Section 6 concludes our work and highlights 

some future directions. 

2. Literature review 

Collaborative Filtering (CF) is one of the most widely used tech-
niques in RSs due to its simplicity and accuracy (Ekstrand, Riedl, & 
Konstan, 2011). Serving as a method of personalization, it relies on the 
compilation of user-provided ratings/votes associated with particular 
products and services. (Chowdhury, 2010). These user votes can be 
obtained through user-provided feedback. This feedback can be 
collected through implicit means, such as user clicks on specific items, or 
through explicit actions, where users rate objects using numerical or 
starred values. Collaborative Filtering (CF) is a technique for forecasting 
items for a target user. It considers community votes on items that 
receive high ratings from community members sharing akin tastes with 
the target user, under the assumption of the target user’s affinity for such 
items. CF first constructs a user-vote database for items, using these 
votes for predictions. It subsequently identifies resemblances in user 
voting history and leverages fellow users’ votes to generate predictions 
and recommendations. This technique has been used by Amazon, 
iTunes, GroupLens system (Konstan et al., 1997) and Ringo (htt 
ps://www.ringo.com), etc. and is also called people-to-people correla-
tion. One such CF method is Improved PCC weighted with RPB (IPWR), 
as proposed in (Ayub et al., 2019), which deliberates user Rating Pref-
erence Behavior (RPB) while calculating the similarities among users. 
User RPB is modelled as a function of cosine, taking the target user’s 
average voting value and standard deviation as input values. The user 
RPB is then combined with an enhanced version of standard PCC. The 
results of several evaluation metrics prove the superior performance of 
IPWR (Ayub et al., 2019). An enhancement to the Jaccard index was 
proposed by (Lee (2017)), encompassing the incorporation of both user 
vote frequencies and the tally of items co-rated by users. This augmen-
tation facilitates the computation of common items rated by two users, 
regardless of the specific voting scores assigned. However, it’s essential 
to acknowledge that the voting values for these shared items may span a 
spectrum from normal to extreme. This adaptation has demonstrated its 
efficacy in mitigating prominent drawbacks of the conventional Jaccard 
index, primarily its omission of actual voting values in shared items’ 
assessment. 

Another heuristic-based similarity measure method, simultaneously 
embodies Proximity Significance Singularity (PSS) measures along with 
a modified Jaccard similarity (Liu, Hu, Mian, Tian, & Zhu, 2014). 
Traditional PIP similarity (Ahn, 2008) faces serious shortcomings, for 
instance, it is not normalized and cannot be combined with other sim-
ilarity measures. The enhanced metric by Liu et al. (2014) integrates 
Jaccard features, encompassing both absolute voting values and the 
relative prevalence of shared votes, leading to improved accuracy in 
predictions. Moreover, the similarity is determined not only by consid-
ering the local context only but also by the global preferences of user 
behaviour. This formalization implies building a similarity measure with 
a non-linear function based on the initial PIP similarity, which is mainly 
linear. This new similarity measure, named NHSM (Ahn, 2008), is 
normalized and can be easily combined with other similarity measures. 
Besides, this novel similarity measure effectively overcomes the short-
comings and drawbacks of traditional systems (Ahn, 2008). ITR simi-
larity measure (Iftikhar et al., 2020) models the voting vectors of two 
users and their resultant vector as a triangular shape and then computes 
the triangle similarity between them. The effectiveness and robustness 
of IPWR and ITR were vetted in (Fkih, 2022). 

Clustering is an unsupervised classification method that groups ob-
jects based on similarity, forming distinct clusters where objects within 
each cluster are more alike than those in other clusters. It deals with 
finding patterns in an unlabeled dataset. Some of the most prominent 
application areas of clustering are machine learning, pattern recogni-
tion, image analysis, outlier detection and bioinformatics (Prakash, 
Korostenskaja, Lee, Baumgartner, Castillo, & Bagci, 2017). Clustering is 
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quite often performed in daily life, such as arranging documents into 
folders based on similarity. Clustering is frequently applied in different 
fields of science like audio forensics (Malik, 2013), computer vision 
(RaviPrakash et al., 2020), data mining (Costa & Roda, 2011), bioin-
formatics (Prakash et al., 2017), stock market trend prediction (Liu & 
Malik, 2014), and smart cities (Ejaz & Anpalagan, 2019a, 2019b; 
Hammad & Ludlow, 2016). 

Sarwar et al. (Sarwar, Karypis, Konstan, & Riedl, 2002) proposed an 
algorithm that used the clustering approach to reduce the data into a 
low-dimensional space and argued that it could overcome scalability 
and sparsity problems. This approach divides the user-item voting ma-
trix into K non-overlapping partitions, using a variant of the K-Means 
clustering algorithm, called the Bisecting K-Means clustering algorithm. 
To identify neighbors for an active user, the process involves examining 
the cluster containing the active user and then generating recommen-
dations by selecting the most-similarity users (i.e., neighbors) from 
within that cluster. Khalid et al. (Khalid, Ghazanfar, Azam, Aldhafiri, & 
Zahra, 2017) proposed a one-pass clustering algorithm (SPOP) that 
maintains good accuracy and scales well with the arrival of new data in 
the case of a dynamic environment. This overcame the drawbacks of the 
K-Means clustering algorithm and claimed to increase the accuracy of 
RS. In SPOP, users are allocated to distinct hyperspheres according to 
their distances, with the primary metric being PCC using default votes. 
When a new hypersphere is created, its radius is set as the average radius 
of all existing hyperspheres. A training model is built incrementally by 
sequentially processing new data. The radius of hyperspheres is changed 
dynamically after a defined number of data points. This proposed K- 
Means clustering-based RS resolves the scalability issues of traditional 
RSs. The basic K-Means clustering algorithm selects the initial centroid 
randomly and the performance of clustering results heavily depends on 
the selection of these centroids. Zahra et al. (Zahra et al., 2015) proposed 
improved centroid selection in K-Means-based RSs, which can save cost 
as well as improve the performance of the system. Their proposed 
centroid selection methods also improved the accuracy of the system 
and have the potential to exploit underlying data correlation structures. 
Conventional clustering algorithms discover global correlations which 
may not be always desirable. We need such clustering algorithms that 
can discover local correlations and bi-clustering algorithms can help us 
here. 

Reinforcement Learning (RL) is an algorithmic paradigm enabling 
machines to learn without any a priori knowledge. By engaging in 
repeated interactions with the environment and responding to rewards 
and penalties, RL systems determine optimal policies to achieve objec-
tives (Li, Wang, & Gandomi, 2021). This iterative and multi-objective 
approach is often structured as episodes, with each iteration represent-
ing an episode (Li, Wang, Dong, Yeh, & Li, 2021). Many algorithms have 
been proposed to solve a RL problem and they can be generally divided 
into tabular and approximate methods. In tabular methods, RL value 
functions are denoted as tables. Tabular methods are used when we have 
a small size of action and state space, hence, finding the exact optimal 
policy can be determined in a small amount of time. The most popular 
tabular methods consist of Dynamic Programming (DP), Monte Carlo 
(MC), and Temporal Difference (TD). DP methods assume a perfect 
model of the environment and use a value function to search for good 
policies. Two important algorithms from this class are policy iteration 
(Bohnenberger & Jameson, 2001; Mahmood & Ricci, 2007) and value 
iteration (Mahmood & Ricci, 2009). Contrary to DP methods, MC 
methods only need a sample sequence of states, actions, and rewards 
from the environment, which could be real or simulated. Monte Carlo 
Tree Search (MCTS) (Vodopivec, Samothrakis, & Ster, 2017) is an 
important algorithm from this family. Finally, TD methods are a mixture 
of MC and DP and do not require a model of the environment, instead, 
they can bootstrap, having the ability to update estimates based on other 
estimates (Sutton & Barto, 1998a). From this family, an off-policy 
method, Q-learning (Watkins, 1989) is very famous. While SARSA 
(Rojanavasu, Srinil, & Pinngern, 2005), an on-policy method, is also 

very famous. Since the size of the state space can be enormous in RL, 
function approximation methods try to discover a good approximate 
solution which can be identified with limited computational resources. 
In such methods, a useful tactic is to generalize from previous experi-
ences to unseen states. Many techniques have been proposed for func-
tion approximation, including artificial neural networks. Value 
Penalized Q-learning (VPQ) is proposed in (Gao, Xu, Zhou, Li, Wang, 
Yuan, & Zhao, 2022), that penalizes the unstable Q-values in the 
regression target using uncertainty-aware weights. This resulted in a 
conservative Q-function without the need of estimating the behavior 
policy. This approach is appropriate for RSs having a large number of 
items. 

To the best of our knowledge, Webwatcher (Joachims, Freitag, & 
Mitchell, 1997) was the first to use RL to enhance the recommendation 
accuracy of RSs. Webwatcher modelled the web page recommendation 
problem as an RL problem and used Q-learning to enhance the accuracy 
of their basic web RS. Their basic web RS was using TF-IDF, to recom-
mend pages similar to the past interest of the user. Taghipour, Kardan 
and Ghidary (Taghipour, Kardan, & Ghidary, 2007) extended this hint to 
recommend personalized web pages to the users by grabbing the state 
dimensionality problem. They used the N-gram model from the web 
usage mining literature (Mobasher, Cooley, & Srivastava, 2000) and a 
sliding window to represent states. (Srivihok & Sukonmanee, 2005) 
proposed an RL-based tourism recommendation system, composed of 
two main modules. A personalization learner is used to learn the dy-
namic and static information of users and a personalization ranking 
module to produce recommendations using Q-learning. Although their 
work was novel it was not clear how they handled large state and action 
spaces. In addition, how rewards were generated and how they are 
assigned was also unclear. (Mahmood, Mujtaba, & Venturini, 2014), 
proposed an RL-based conversational RS where Q-learning was used to 
optimize the policy. To minimize state and action space manageably 
they used a parametric value. In (Hu, Shi, & Liu, 2017), researchers 
proposed a state compression model to solve the large dimensionality 
problem of state space. Their idea was to cluster songs based on similar 
user preferences and then replace songs with song clusters in the 
learning phase. A web-based RS was presented by Rojanavasu, Srinil and 
Pinngern (Rojanavasu et al., 2005). This system was composed of two 
main modules; the global module is responsible for learning global 
trends like trending products, while the local module is focused on 
tracking each user’s needs. The system uses a weighted combination of 
both modules to determine what to recommend next. This system suffers 
from the scalability problem as it was not made clear how they keep 
track of all users on a global level. Intayoad, Kamyod and Temdee 
(Intayoad, Kamyod, & Temdee, 2018) used RL for online clustering, to 
provide a learning path to students based on their specific needs and 
characteristics. To minimize the large state space they used an N-gram 
model. Choi et al. (Choi, Ha, Hwang, Kim, Ha, & Yoon, 2018) proposed a 
greedy-based algorithm using both Q-learning and SARSA. They used 
the BiMax (Prelić et al., 2006) and Bibit (Rodriguez-Baena, Perez-Pulido, 
& Aguilar− Ruiz, 2011) binary clustering algorithms to model the state 
spaces for MDP. The recommendation problem is modelled as a grid 
world game problem. However, most of the details of their work are 
hidden as they did not explain how they transformed binary clusters to 
state spaces in the grid world and in which order transformation was 
applied as setting the optimized state spaces is crucial to solving MDP. 
To select the start state, they computed the Jaccard similarity of the 
target user with all state spaces. The grid world state having maximum 
similarity is selected as the start space and the action space used 
involved up, down, left and right actions. Only two evaluation param-
eters precision and recall were applied to ML-100K dataset. Scalarized 
Multi-Objective Reinforcement Learning (SMORL) was presented in 
(Stamenkovic, Karatzoglou, Arapakis, Xin, & Katevas, 2022) to solve 
multi-objective recommendation tasks. These multi-objectives involve 
diversity, novelty and accuracy evaluation parameters. These parame-
ters are somewhat contradictory as increasing diversity and novelty 
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decreases accuracy. The SMORL method acts as a regularizer for 
bringing appropriate properties into the recommendation model, thus 
accomplishing a balance between accuracy, diversity and novelty of 
recommendations. In this work they concluded that combined optimi-
zation of these three contradicting objectives is crucial for improving 
metrics that are tightly correlated with user satisfaction. Work in (Ge, 
Zhao, Yu, Paul, Hu, Hsieh, & Zhang, 2022) applied pareto concept to 
solve fairness-utility tradeoff of recommender systems using RL. 

(Shani, Heckerman, Brafman, & Boutilier, 2005) were the first one to 
model the recommendation problem as an MDP problem. They sug-
gested that traditional recommendation generation systems are static 
and do not adapt to evolving trends. They proved that the recommen-
dation generation problem can be modelled as a sequential optimization 
problem and thus MDPs can be used more appropriately to model the 
recommendation generation problem. They solved MDP using a DP 
approach. Since the model parameters of an MDP-based recommender 
are unknown and deployment on a real system is very costly, they 
proposed a predictive model that can provide the initial parameters for 
MDP. They tested their proposed method on an Israeli online bookstore. 
A music recommender system proposed by Liebman, Saar-Tsechansky 
and Stone (Liebman, Saar-Tsechansky, & Stone, 2014) is based on RL. 
To minimize dimensions, each song is represented as a vector of spectral 
auditory descriptors, including overall loudness, rhythmic properties, 
the spectral fingerprint of the song and sound changing over time. The 
reward function is modelled as the song transition pattern and the lis-
tener’s preference over individual songs. This system, called DJ-MC, was 
composed of two main units; a learning unit responsible for initializa-
tion, playing songs and getting feedback from the user, and a planning 
unit responsible for recommending the best song to the user. To reduce 
the song space, K-Means clustering was used. To solve the top-N 
recommendation problem (Zou, Xia, Ding, Yin, Song, & Liu, 2019), 
proposed a method, called Div-FMCTS, which worked in two cyclic 
stages. In the first cycle, optimal top-N recommendations are heuristi-
cally searched in the item space using the MCTS algorithm and those 
found are generalized using neural networks. To overcome the large 
item space problem of two methods, problem decomposition and 
structured pruning are used. Gated recurring units are used to encode 
the user preference information into states. Lu and Yang (Lu & Yang, 
2016) presented an RL-based RS that uses fitted-Q for policy optimiza-
tion. They reported the Recurrent Deterioration phenomenon of RSs 
where an RS suffers from performance degradation when it is trained 
based on user feedback from previous recommendations. 

In our study, bi-clustering was employed to group similar items and 
users within a subset of a user-item voting matrix. These clusters were 
subsequently mapped onto an n × n squared grid, where each grid cell/ 
state corresponded to a specific bi-cluster. The sequencing of bi-cluster 
mapping onto the grid was deliberate, as it dictated the user/agent 
movement on these grid cells/states. A similarity metric was computed 
between all bi-clusters, guiding their arrangement on the grid so that 
more similar bi-clusters were positioned in closer proximity. When bi- 
clusters exceeded the grid size, merging was employed to condense 
their count. Conversely, if the bi-cluster count was lower than the grid 
size, substantial bi-clusters were decomposed into sub-clusters. The ef-
ficacy of our proposed approach was assessed using publicly available 
datasets, namely ML-100K and FilmTrust datasets. Comprehensive 
elaboration of our methodology is presented in the subsequent sections. 

3. Methodology 

Our proposed method consists of several steps, all of which are 
explained in the coming subsections. 

3.1. Generating binarized data 

The user-item votings matrix constitutes a fundamental component 
within recommendation systems, capturing user preferences and their 

corresponding votes. This matrix encompasses two distinct value cate-
gories. The first entails the voting values, signifying users’ evaluations of 
items, often adhering to a predefined scale, conventionally spanning 
from 1 to 5. The second category delineates instances where users opt 
not to provide ratings for specific items, denoted as “Ø”. In order to 
establish a binary matrix from this voting matrix, a transformative 
process is initiated. This entails the conversion of individual user voting 
values into binary equivalents, specifically 0 or 1, facilitated through a 
thresholding mechanism. A voting value of 1 is used as a threshold. This 
leads to a value of 1 in the binary matrix if the corresponding vote is 
above or equals the voting value of 1 and will be zero if the voting value 
is below 1 implying item is noted voted by the user. This is mathemat-
ically expressed in Eq. (1), 

v =

{
1if va,j ≥ 1

0ifuserdidn′tratedj(Ø)
(1)  

where va,j denotes that user a voted value v on a certain item j. Median 
vote value of the dataset’s voting scale or dataset’s overall average value 
can also be used a threshold value. But it will result in information loss as 
an item having low vote value and an unseen item vote value both be-
comes zero making them non-discriminative. Tables 1 and 2 show an 
example user-item voting matrix and the corresponding binary matrix 
achieved using Eq. (1). 

3.2. Bi-Clustering binary data 

Clustering is a prominent technique for revealing pattern distribu-
tions and hidden correlations within extensive datasets. Notably, K- 
Means, a Partitional clustering approach, associates users with singular 
clusters based on their complete item sets. In contrast, bi-clustering 
enables users to belong to multiple bi-clusters simultaneously, each 
characterized by distinct item sets. The emergence of bi-clustering al-
gorithms is driven by the challenge of discovering localized patterns 
using conventional clustering methods. These algorithms offer the 
unique ability to analyze all dataset dimensions concurrently, extracting 
intricate local patterns that enhance our understanding of underlying 
correlations. BiMax (Prelić et al., 2006) and Bibit (Rodriguez-Baena 
et al., 2011) are two binary or bi-clustering algorithms designed to work 
in the field of bioinformatics. In bioinformatics, the binary values 0 and 
1 may correspond to gene and protein features respectively. 

In this study, we employ both the BiMax and Bibit bi-clustering al-
gorithms for the explicit purpose of enhancing product/movie recom-
mendation. Both BiMax and Bibit algorithms are tailored to the task of 
bi-clustering binary matrix elements with a value of 1. BiMax adopts a 
divide-and-conquer approach, iteratively partitioning the binary matrix 
in a checkerboard pattern. Conversely, Bibit identifies patterns through 
the combination of any two rows within the binary matrix. Notably, 
both BiMax and Bibit algorithms yield dual lists for each cluster: the first 
list comprises indices of the rows encompassed by the cluster, while the 
second list comprises indices of the columns integrated within the 
cluster. The result of applying BiMax and Bibit algorithms on Table 2 is 
shown in Figs. 1 and 2. Both figures contain three colors, white corre-
sponds to 0 s in the binary matrix, grey corresponds to 1 s in the binary 
matrix and black also corresponds to 1 in the binary matrix. The black 1 
s are identified as a bi-cluster by the corresponding bi-clustering algo-
rithm. On the other hand, the grey 1’s doesn’t belong to any bi-cluster 

Table 1 
Example user-item votings matrix.   

Item1 Item2 Item3 Item4 

User1 5 Ø 5 1 
User2 5 Ø Ø 1 
User3 4 4 5 1 
User4 4 Ø 5 5 
User5 1 2 Ø 5  
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and white 0’s also doesn’t belong to any bi-cluster. As the Bibit algo-
rithm requires that we should input the size of the minimum number of 
rows and columns that we desire in the bi-cluster. For Table 2 we set the 
minimum value of rows and columns to two. Hence we can see that the 
identified bi-cluster contains two rows and three columns. 

Fig. 1(a) shows that the BiMax algorithm identified a bi-cluster at 
cells {(user1, item1), (user1, item3), (user3, item1), (user3, item3)} of 
Table 2. To make resulting bi-cluster contiguous, rows and columns of 
the binary matrix (Table 2) are shuffled, thus producing a bi-cluster that 
is easy to view. Fig. 2(a) shows a contiguous bi-cluster formed by per-
forming rows and columns shuffling on Fig. 1 (a). In Fig. 2(a), row2 (user 
2) and row3 (user 3) of Table 2 are shuffled, and column2 (item2) and 
column3 (item3) are shuffled. Fig. 2(b) shows that the Bibit algorithm 
identified a bi-cluster at cells {(user3, item1), (user3, item2), (user3, 
item4), (user5, item1), (user5, item2), (user5, item4)} of Table 2. Fig. 2 
(b) shows a contiguous bi-cluster formed by performing rows and col-
umns shuffling on Fig. 2 (a). In Fig. 2(b), row3 (user 3) and row4 (user 4) 
are shuffled of Table 2, and column3 (item3) and column4 (item4) are 

shuffled. 

3.3. Measuring the quality of bi-clusters 

Numerous quality measurement functions have been proposed by 
researchers to quantitatively assess the quality of bi-clusters. These 
include Variance (VAR) (Hartigan, 1972), Mean Square Residue (MSR) 
(Cheng & Church, 2000), Scaling Mean Square Residue (SMSR) 
(Mukhopadhyay, Maulik, & Bandyopadhyay, 2009), Relevance Index 
(RI) (Yip, Cheung, & Ng, 2004) and correlation-based measures, such as 
PCC. In this work, we are using the SMSR fitness function as a quality 
measure of bi-clusters. SMSR is based on MSR, and the mathematical 
detail of MSR is given below in Eq. (2): 

MSR(B) =
1

|I|.|J|

∑|I|

i=1

∑|J|

j=1
(bij − biJ − bIj + bIJ)

2 (2)  

where B denotes a bi-cluster consisting of I rows and J columns, bij de-
notes the bi-cluster value at the ith row and jth column. biJ denotes the 
row mean of each row i, bIj denotes the column mean of each column j 
and bIJ denotes the overall mean of bi-cluster B. MSR measures the 
coherence of rows and columns in bi-cluster B. A low value of MSR in-
dicates better quality of bi-cluster B, conversely, a high value indicates 
poor quality. A value of 0 indicates a perfect bi-cluster, indicating that 
all rows fluctuate in the same way under the experimental conditions. 
But ideally, such bi-clusters are hard to meet. However, MSR only cap-
ture shifting variance and not the scaling variance. So we need a mea-

Table 2 
Binary form of Table 1.   

Item1 Item2 Item3 Item4 

User1 1 0 1 1 
User2 1 0 0 1 
User3 1 1 1 1 
User4 1 0 1 1 
User5 1 1 0 1  

Fig. 1. (a) One bi-cluster created from the values in Table 2 using the BiMax algorithm (b) One bi-cluster created from Table 2 using the Bibit algorithm.  

Fig. 2. Contiguous Bi-cluster formed by performing rows and columns shuffling (a) BiMax (b) Bibit.  
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sure that is able to capture both scaling and shifting variance. Mukho-
padhyay et al. (Mukhopadhyay et al., 2009) developed SMSR to identify 
scaling patterns within the bi-cluster. Identification of a scaling pattern 
within the bi-cluster leads us to the usage of SMSR as a fitness function 
for the quality measure of our bi-clusters. SMSR is mathematically given 
in Eq. (3): 

SMSR(B) =
1

|I|.|J|

∑|I|

i=1

∑|J|

j=1

(biJ × biJ − bij × bIJ)
2

b2
iJ×b2

Ij
(3) 

The values of SMSR(B) are scaled in the range of 0 to 1 as compared 
to MSR which is not scaled from 0 to 1. So we applied SMSR on our 
generated bi-clusters to generate a sorted list of bi-clusters according to 
their quality values. 

3.4. Placement of bi-clusters in a square grid 

Following the generation and subsequent sorting of bi-clusters based 
on their SMSR values, the subsequent step involves establishing a RL 
environment to facilitate our recommendation agent in generating 
personalized recommendations. Our RL environment consists of a 
Square Grid (SG) of size n× n. The placement of sorted bi-clusters onto 
the designated Square Grid (SG) presents a pivotal task. Yet, this 
endeavor is not without its challenges, encompassing three notable 
challenges. 

We shall.  

• Challenge#1: What if the number of bi-clusters are greater than the 
size of SG? For example, if the size of the SG is 3 × 3 = 9 and the 
number of bi-clusters are greater than 9. To solve this, we propose  

• bi-cluster merging.  
• Challenge#2: What if the number of bi-clusters is smaller than the 

size of SG? For example, if the size of the square grid is 3 × 3 = 9 and 
the number of bi-clusters is smaller than 9. To solve this, we propose 
a decomposition of the poor-quality bi-clusters using the same bi- 
clustering algorithm that is used to generate bi-clusters.  

• Challenge#3:What should be the placement of bi-clusters in the SG? 
The placement of bi-clusters in the SG should follow two principles:  
o Principle#1: Bi-clusters having closed SMSR values should be 

close to each other on the SG.  
o Principle#2: Bi-clusters having a large difference in SMSR values 

should be furthest from each other on SG. 

Space-filling curves provide us with the base to satisfy the two 
principles stated above. Space-filling curves are curves that can visit all 
possible points in the multidimensional space, in our case the n × n 
square grid. Suppose we have bi-clusters in the range of 1 to 36 =
{B1,B2,B3,⋯..B36}and the grid size is 6× 6. Four methods are given by 
Candan and Sapino (Candan & Sapino, 2010) to position one- 
dimensional data on a two-dimensional grid. These methods include 
row order traversal, column order traversal, cantor diagonal and row 
prime order traversal. How these methods will place different bi-clusters 
in each grid cell is illustrated in Fig. 3. Placement of data on a grid 
having dimension n × n is given by Eq. (4): 

Cπ order( v→) =
∑m

i=1
v→[π(i)] × (2n)

m− i (4) 

For a 2D grid, π(1) corresponds to the first dimension and π(2) cor-
responds to the second dimension. In this way, we can find cell (1, 0) in 
the 6 × 6 grid that will contain which bi-cluster in row-order traversing. 
For example, Croworder(1,0) = 1× 61 + 0× 60 = 6 = B7. While in col-
umn order traversal cell (1, 0) will contain B2 and in cantor-diagonal 
traversal grid cell (1,0) will also contain B2. One common thing in all 
three types of traversals is that the best bi-cluster (bi-cluster with the 
lowest SMSR value) is at the first position and the worst bi-cluster is at 
the last position. More complex grid positions like the Hilbert curve and 
Z-order traversal are also available but they will make our method more 
computationally intensive. 

3.5. Bi-cluster merging 

To adapt bi-clusters to the dimensions of the squared grid, a process 

Fig. 3. (a) Row order traversal of 6 × 6 grid. (b) Column order traversal of 6 ×6 grid. (c) Cantor-diagonal traversal of 6 × 6 grid. (d) Row prime order traversal of 
6 × 6 grid. 
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of merging bi-clusters was employed, specifically targeting those bi- 
clusters with lower SMSR quality function values. Such bi-clusters of 
inferior quality were consolidated with higher-quality counterparts. To 
achieve this, an analysis was conducted to assess the extent of overlap 
and similarity between the less optimal bi-clusters and their more 
favorable counterparts. This assessment encompassed evaluating the 
degree of user and item overlap within both the lower-quality and 
higher-quality bi-clusters.. The similarity of both bi-clusters is measured 
using ITR similarity (Iftikhar et al., 2020). A detailed description of ITR 
similarity is given in section 3.6. ITR similarity first computes triangle ′ 
similarity between column-wise average voting vectors of both bi- 
clusters and then computes the User Ratings Preferences (URP) be-
tween both bi-clusters. To obtain the average and standard deviation 
values required for URP, column-wise average voting vectors of both bi- 
clusters are computed and then the average voting value and the stan-
dard deviation is computed for this average voting vector. Table 3 pre-
sents different cases of bi-cluster merging. 

Suppose we have two bi-clusters, Bi-cluster1 and Bi-cluster 2, as 
shown in Fig. 4, and we want to perform a merging of these two bi- 
clusters. Fig. 5 pictorially show four merging cases for these two bi- 
clusters. 

3.5.1. Example of bi-cluster merging 
Fig. 6 presents an example of bi-cluster merging for bi-clusters 1 and 

2. Where, rows of merged bi-cluster corresponds to union set of users of 
both bi-clusters 1 and 2 and columns corresponds to union set of items of 
both bi-clusters 1 and 2.  

• Bi-cluster1 Users={U4, U6, U7}  
• Bi-cluster2 Users={U6, U7, U8}  
• Bi-cluster1 Items={I1, I2, I3}  
• Bi-cluster2 Items={I3, I4, I5}  
• Users overlapping in both Bi-clusters ={ U6, U7}  
• Items overlapping in both Bi-clusters ={ I3}  
• Union set of users in both bi-clusters={U4, U6, U7, U8}  
• Item set of items in both bi-clusters={I1, I2, I3, I4, I5}  
• Merged Bi-cluster Users={U4, U6, U7, U8}  
• Merged Bi-cluster Items={I1, I2, I3, I4, I5} 

In order to obtain a merged bicluster we used a very simple tech-
nique. We make union set of users and items in both bi-clusters 1 and 2. 
As these union set of users and items are subset of user and item set of 
actual user-item voting database and rows of merged bi-cluster should 
correspond to union set of users and columns of merged bi-cluster should 
correspond to union set of items. So, to generate a merged bi-cluster we 
extracted each user and item corresponding value from actual user-item 
voting database. 

3.6. MDP notation 

In an MDP, we have a set of states S, a set of actions A, and a set of 
rewards R. The state space S = {B1,B2,B3,B4⋯Bn, } and the action space 
A = {Up, Left,Down,Right, } . We shall assume that each of these sets has 
a finite number of elements. At each time step t = 0, 1,2,⋯, the agent 
receives some representation of the environment’s state St ∈ S. Based on 
this state, the agent selects an action At ∈ A, this gives us the state-action 
pair (St ,At). Time is then incremented to the next time step t + 1, and 

the environment is transitioned to a new state St+1 ∈ S. At this time, the 
agent receives a numerical reward Rt+1 ∈ R for the action At taken from 
state St . Thus, the reward can be thought of as an arbitrary function f 
that maps the state-action pairs to rewards. Thus at each time step t we 
have f(St , At) = Rt+1. A trajectory showing the sequential process of 
selecting an action from a state, transitioning to a new state, and 
receiving a reward can be represented as S0,A0, R1, S1, A1, R2,S2, A2, R3,

...

3.6.1. Transition probabilities 
As both sets S and R are finite, the random variables St and Rt should 

have well-defined probability distributions. That is, all possible values of 
St and Rt should have some associated probability and depends upon the 
previous state only. For all s′ ∈ S, s ∈ S, r ∈ R and a ∈ A(s), we define the 
probability of the transitioning to state s′ with reward R from taking 
action a in state s as given in Eq (5): 

P(s′, r|s, a) = Pr{St = s′,Rt = R|St− 1 = s,At− 1 = a} (5) 

Start state: Deciding the start state is important as subsequent rec-
ommendations heavily rely on the start state. Choi et al. (Choi et al., 
2018) use Jaccard similarity to decide the start state. However, Jaccard 
ignores the true value of the voting and also may have the same value for 
many bi-clusters. Sargar (Sargar, 2020) used cosine similarity instead of 
Jaccard similarity but the obvious drawback of cosine similarity is that it 
only considers angles between voting vectors and ignores the length of 
the voting vector. We decided on the start state by computing the ITR 
similarity between the target user voting vector and the average voting 
vector of each bi-cluster (Iftikhar et al., 2020). The reason to use ITR 
similarity is that it utilizes the complete rating vector of both the target 
user and bi-cluster and also considers global perspectives like average 
values and standard deviation. 

simTRIANGLE′
(u,bic) = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

t∈T (vu,t − vbic,t)
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
t∈T vu,t

2
√

+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

t∈T vbic,t
2

√ (6)  

simurp
(u,bic) = 1 −

1
1 + exp(− |vu − vbic|.|σu − σbic|)

(7) 

where vu is the average voting of target user u, vbic is the average 
voting of a bi-cluster, σu is the standard deviation of the target user u,
and σbic is the standard deviation of a bi-cluster. 

ITRsim(u,bic) = simTRIANGLE′
(u,bic) × simurp

(u,bic) (8) 

Pit/Hole state: If an agent reaches to a state that has no similarity 
with neighbor states, then that state is termed a pit/hole state. As the 
agent is unable to move anywhere from this state. 

Goal state: Agent getting off the grid, not getting any new recom-
mendations or coming to the start state after the move. 

Number of Episodes: The number of episodes is fixed to 100. 
The maximum number of steps in each episode: The number of 

steps in each episode is constrained by the size of the grid. For our grid 
size having 36 states and 4 actions in action space, this number will be 
the number of states multiplied by the number of actions in the action 
space resulting in 144, the number of steps. 

Maximizing Return: In MDP, the agent’s goal is to maximize the 
expected discounted return of rewards (Gt) given in Eq. (9). Here, γ is a 
discount factor representing that an immediate reward is better than an 
equal-valued future reward. Thus, γ value decreases for each increase in 
time step. 

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4⋯  

Gt =
∑∞

k=0
γkRt+k+1  

Table 3 
Different possible cases for merging bi-clusters.  

Cases Overlapping Similarity Merging 

Case 1 No No No 
Case 2 Yes (But only row wise) Less than a threshold No 
Case 3 Yes (But only column wise) Less than a threshold No 
Case 4 Yes Greater than a threshold Yes  
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Fig. 4. Two candidate bi-clusters for merging.  

Fig. 5. Illustration of four possible cases of bi-clusters merging.  

Fig. 6. Bi-cluster merging example.  
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RUt+1 =
|Ust∩Ust+1 |

|Ust ∪ Ust+1 |

RIt+1 =
|Ust∩Ust+1 |

|Ust ∪ Ust+1 |

Rt+1 = RUt+1 +RIt+1 (9) 

A reward (Rt+1) is computed using Jaccard similarity. Reward 
(RUt+1) depends on the number of overlapping users in states st and st+1 

and reward (RIt+1) depends on the number of overlapping items in states 
st and st+1. More overlapping in both states results in a better reward 
value, minor overlapping gives a low reward and no overlapping results 
in zero rewards. If an agent chooses an action that leads to the same 
current state, then the reward will be zero. Both types of rewards 
(RUt+1andRIt+1) are then combined into a single-valued reward (Rt+1). 
This overcomes the inherent drawback of CF, which at any one time can 
use only user-based CF or item-based CF. Finally, the agent’s objective is 
to move to a state that gives better reward value which in turn will result 
in maximum return Gt. Our proposed methodology is given in Fig. 7. 

Optimal policy π*(s) learning: In RL, we define a policy π(s) that 
tells us to perform which action a ∈ A in a particular state s ∈ S. RL helps 
us to find the optimal policy π*(s), that maximizes the expected return 
Gt . We shall learn the optimal policy π*(s) by a state-action value 
function Qπ(s,a), which indicates that the expected value of the return Gt 
obtained from episodes starting from a certain state s can be expressed as 
Eq. (10): 

Qπ(s, a) = Eπ{Gt|st = s, at = a} = Eπ{
∑∞

k=0
γkRt+k|st = s, at = a} (10) 

At the start, the agent has no idea of the environment, so it starts an 
exploration of the environment. As soon as the agent’s learning of the 
environment (exploration) increases, the agent starts exploiting the 

environment. Exploration is a dilemma in which an agent to improve its 
current knowledge about each action in such a way that increases his 
long-term benefit. Improving knowledge in this way increases the ac-
curacy of the estimated action-values for agent thus enabling the agent 
to take more informed decisions at some later time. Exploitation is a 
dilemma in which agent chooses the greedy action to get the most 
reward by exploiting the agent’s current action-value estimates. But by 
being greedy in terms of action-value estimates, may result in reduced 
reward, thus resulting in a sub-optimal behavior of the agent. When an 
agent explores, it gets more accurate estimates of action-values. And 
when it exploits, it might get more reward. It cannot, however, choose to 
do both simultaneously, which is also called the explor-
ation–exploitation dilemma. To balance exploration and exploitation, 
we used ∈ -greedy method (Sutton & Barto, 1998b). ∈ -Greedy is a 
simple method to balance exploration and exploitation by choosing 
between exploration and exploitation randomly. The ∈ -greedy, where 
∈ denotes to the probability of choosing to explore, exploits most of the 
time with a small chance of exploring. Mathematical working of ∈
-greedy algorithm is given in Eq. (11). 

Actionattime(t) =
{

maxQt(a)withprobability1− ∈

anyactionawithprobability ∈
(11) 

To learn optimal policy, Q-learning, is used. Q-learning is an off- 
policy approach, which aim to determine best action from current 
state and thus accomplishing it’s own set of rules to determine optimal 
policy. Internally, Q-learning, builds a Q-table containing all possible 
states and actions as shown in Table 4. Initially, values of all actions in a 
state are set to zero. Then agent start it’s movement while balancing 
exploration and exploitation and updates value of each action in Q-table 
using Eq. (12). 

Q(s, a) = Q(s, a)+α*(R+Υ*max(Q(s′ , a′) ) − Q(s, a)) (12) 

In Eq. (12) Q(s, a) represents the expected reward for taking 

Fig. 7. Flow diagram of the proposed methodology.  
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action a in state s. The actual reward received for that action is refer-
enced by R while s′ refers to the next state. The learning rate is α and γ is 
the discount factor.The highest expected reward for all possible 
actions a ′ in state s′ is represented by max(Q(s′, a′)). Learning rate α gives 
us the probility of how value of Q(s, a) will be updated in Eq. (12). If α is 
zero then Q(s, a) will be updated based upon past experience and if α is 
one then Q(s, a) will be updated based upon current situation. Discount 
factor γ gives us the option how reward will be accounted towards policy 
selection. If γ is zero then only current rewards are accounted and if is γ 
one then only future rewards will also be taken into account. Eq. (12) is 
used to update value of each action for each state in Q-table (Table 5). 

Table 5 shows an insight of different action probabilities (Q values) 
for each state at some time t0. This table is build and updated by the 
agent while visiting each state and balancing exploration vs exploitation 
dilemma as given in Eq. (11). Initially, agents explore more and exploits 
less. As soon as this table going to build on, agent’s exploitation in-
creases and exploration decreases. Eq. (11) gives the agent a probability 
to choose which action on given state. Q value at that given state and 
action is updated using Eq. (12). Agent performs a number of episodes to 
build and update this table. In Table 5, suppose the environment is 
deterministic and suppose determined start state (using Eq. (8)) of agent 
is B1 then agent will take the action with the highest probability, 0.902 
(Right), among all other action probabilities and will land in to state B3 
of Fig. 3 (c). In state B3 the agent will take action down, having a 
probability of 0.535, and will land in the next state B5. In this way, the 
agent will continue its move until it reaches a goal state (having no 
change in the set of recommended items) or to a pit/hole state. 

Q-learning to solve a reinforcement learning problem is considered 
as an off-policy method. In off-policy methods, RL agent learns the value 
of Q(s, a) using the actions derived from another policy. Another, good 
alternative to Q-learning to solve reinforcement learning problem is 
State-Action-Reward-State-Action(SARSA). SARSA is an on-policy 
method as in on-policy methods, RL agent learns the value Q(s, a) by 
the actions derived from the current policy. Value update rule is slightly 
different from Q-learning and is given in Eq. (13). 

Q(s, a) = Q(s, a)+ α*(R+Υ*Q(s′ , a′) ) − Q(s, a)) (13) 

where Q(s, a) represents the expected reward for taking action a in 
state s. The actual reward received for that action is referenced 
by R while s′ refers to the next state and a′ refers to the next action. 
Internally, SARSA also uses same Q-table for optimal policy learning. 

4. Experimentation procedure 

Detailed experimentation procedure is given in this section. 

4.1. Experimentation and dataset description 

We used the Movie Lens ML-100 k and FilmTrust datasets for 
experimentation purposes. ML-100 k dataset is comprised of 100,000 
votes given by 943 users on 1,682 distinct movies. The input space be-
comes too large for the RL agent to work upon if we directly apply it to 
the original user-item voting matrix, containing 943 rows and 1682 
columns, therefore we applied bi-clustering on our matrix to reduce the 
input dataset dimensions. Among many bi-clustering algorithms, we 
have used BiMax (Prelić et al., 2006) and Bibit (Rodriguez-Baena et al., 
2011), the most famous. The Bibit (Rodriguez-Baena et al., 2011) al-
gorithm takes two input parameters, the minimum number of rows 
(mnr) and minimum number of columns (mnc). Initially, the value of mnr 
is set to 4 and mnc is set to 3 (as per (Rodriguez-Baena et al., 2011)) and 
the algorithm was applied to the ML-100 k dataset. This resulted in 
197,231 bi-clusters, a very large number. Through experimental inves-
tigation of these parameters, we fine-tuned the values of mnr and mnc to 
70 and 10, respectively, which resulted in 40 bi-clusters. The proposed 
grid size was set to 6 × 6 and for that bi-cluster merging (as proposed in 
Section 3.5) was applied to fit the grid size, resulting in 36 bi-clusters. Bi- 
clusters generated using BiMax were also merged to fit the size of the 
grid. These 36 bi-clusters contain 28,901 movie votings only. Below is 
the placement of sorted bi-clusters on the 6 × 6 grid using cantor- 
diagonal traversal method, as presented in Fig. 3(c).  

B0 B1 B5 B7 B13 B17 

B2 B4 B6 B15 B14 B27 

B3 B8 B9 B21 B16 B32 

B10 B11 B20 B22 B31 B29 

B12 B19 B24 B25 B26 B30 

B18 B23 B33 B28 B34 B36  

The FilmTrust dataset is comprised of 35,497 votes given by 1,508 users 
on 2,071 distinct movies. Again, for the Bibit bi-clustering algorithm 
(Rodriguez-Baena et al., 2011), through experimental investigation, the 
values of mnr and mnc were fine-tuned to 110 and 49, respectively, 
resulting in 41 bi-clusters. The proposed grid size was set to 6 × 6 and bi- 
cluster merging was applied to fit the bi-clusters to the grid size, 
resulting in 36 bi-clusters. Bi-clusters generated using BiMax were also 
merged to fit the size of the grid. Below is the placement of the sorted bi- 
clusters on a 6 × 6 grid using the cantor-diagonal traversal method, as 
presented in Fig. 3(c) for the FilmTrust dataset.  

B0 B1 B5 B6 B14 B17 

B2 B4 B8 B15 B16 B26 

B3 B7 B12 B13 B21 B27 

B9 B11 B19 B25 B23 B38 

B10 B18 B24 B36 B31 B32 

B20 B22 B34 B30 B29 B28  

All code was written in Python using Pycharm community edition as IDE 
and executed on a core-i5 Dell laptop with 8-GB RAM. For the 2D grid 
environment creation, OpenAI gym is used. 

4.2. Methods used for comparison 

We compared our proposed method with the following RL and non- 
RL methods:  

• RLRS1 (Sargar, 2020): Sargar applied RL on bi-clusters placed on an 
n × n square grid, using a filtering mechanism to filter out good- 
quality bi-clusters, leaving out poor-quality clusters. Leaving poor- 
quality bi-clusters results in information loss and affects 

Table 4 
Snapshot of Q-Table at time t0 for Q-Learning.   

Actions 
States Left Right Up Down 

B1 0 0 0 0 
B2 0 0 0 0 
B3 0 0 0 0 
B4 0 0 0 0 
…. 0 0 0 0 
Bn 0 0 0 0  

Table 5 
Snapshot of Q-Table at a later time for Q-Learning.   

Actions 

States Left Right Up Down 

B1 0.735 0.902 0.663 0.814 
B2 0.625 0.125 0.25 0.333 
B3 0 0 0 0.535 
B4 0.485 0.628 0.663 0.714 
B5 0.175 0.345 0.082 0.05 
…. …. …. …. …. 
B36 0.284 0.045 0.764 0.902  
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recommendation accuracy. The start state was determined using 
Cosine similarity. The reward was based only on the overlapping of 
users in both bi-clusters.  

• IPWR (Pure CF method) (Ayub et al., 2019): Ayub et al. used this 
method to recommend items to users. The similarity was computed 
by improving the PCC measure to include both user and item aver-
ages. The improved PCC was then combined with the user’s RPB.  

• ITR (Pure CF method) (Iftikhar et al., 2020): In this method from 
Iftikhar et al., the similarity of two users are computed by repre-
senting user voting vectors in the form of a triangle. The computed 
triangle similarity is combined with the voting preferences of users 
(URP).  

• S1 (Partitional Clustering method) (Zahra et al., 2015): In this 
method twenty-one different methods were suggested to choose the 
initial centroids of clusters by manipulating the underlying data 
correlation structure. We only selected method 1 out of twenty-one 
methods, namely S1 of this research paper. The S1 method chooses 
k users uniformly at random as initial centroids.  

• SPOP (Partitional Clustering method) (Khalid et al., 2017): Khalid 
et al., assigned users to different hyperspheres by computing the 
distance from the centre of the hypersphere. The distance measuring 
approach used was Pearson correlation with default votes. Assuming 
default votes for non-voted items is just an approximation and not a 
good choice. As users may not be willing to vote for items whose vote 
values are approximated. 

4.3. Evaluation metrics 

In this section, we will discuss the evaluation metrics chosen to assess 
our proposed method, selected based on their common usage in evalu-
ating recommendation algorithms. (Silveira et al., 2019).  

• Latency: The time taken by the algorithm to generate suggestions/ 
recommendations.  

• The return earned in each episode: The agent performs a fixed 
number of 100 episodes to reach the goal state. Some of these epi-
sodes may be successful and some may be unsuccessful. In either 
case, the agent earns some positive reward or no reward. These re-
wards are accumulated for each episode and show how quickly or 
slowly the agent is learning from its experience while interacting 
with the environment.  

• The number of steps taken in each episode: By starting the 
movement from the start state, the agent wants to reach a goal state. 
The number of steps taken by the agent to reach the goal state in each 
episode is recorded. The objective is to reach the goal state by taking 
fewer steps.  

• ∈-greedy value to balance exploration and exploitation: At the 
start, the agent has no idea of the environment, so the ∈ -greedy 
algorithm is used to balance exploration and exploitation. The ∈
-greedy start value is set to 0.9 and the final value is set to 0.1, with a 
decay of 0.999. A start value of 0.9 indicates that at the start, the 
agent explores the environment and as the agent’s learning increase 
with the execution of each episode, exploitation is increased and 
exploration is decreased.  

• Precision: Precision is measured as the percentage of overlapped 
items/movies of test users and items/movies recommended by the 
proposed method to the total set of items/movies recommended by 
the proposed method. 

Precision =
|IT∩IP|

|IP|
(14)    

• Recall: Recall is measured as percentage of overlapped items/ 
movies of test users and items/movies recommended by the pro-
posed method to the total set of items/movies available in the test 
set. 

Recall =
|IT∩IP|

|IT |
(15)    

• F-measure: F-measure, also known as the F1 score, is the harmonic 
mean of both precision and recall. A high value of F-measure in-
dicates better model response and performance. 

Fmeasure = 2 ×
Precision × Recall
Precision + Recall

(16)    

• Item Coverage: Indicates the extent to which items/movies in test 
set are accurately recommended by the proposed method. 

ItemCoverage =
|IT |

|IP|
(17)  

5. Results & analysis 

This section is divided into two subsections: Section 5.1 discusses 
results from the ML-100 K dataset, and Section 5.2 presents results from 
the FilmTrust dataset.. The value of learning rate α is set to 0.5 and 
value of discount factor γ is set to 0.95. Reason for 0.5 value of α is that 
we want to give equal importance to both current and past experience in 
Eq. (12), (13). Value of discount factor γ is set to 0.95 implying we are 
giving 95% importance to future rewards for updating value of Q(s, a) in 
Eq. (12), (13), and only 05% importance to current rewards. 

5.1. Latency 

A random user was selected, and policy learning, policy extraction, 
and recommendation generation times were recorded. The algorithm 
was executed 10 times, and the average outcomes are reported. In the 
policy learning phase, the algorithm was iterated for 100 episodes, 
capturing the return acquired in each episode within the Q-table. Sub-
sequently, during policy extraction, the Q-table was scrutinized to 
extract the optimal policy.. In applying the policy step, the learned 
optimal policy is applied to generate recommendations. We observed 
the following for the ML-100 K dataset:  

• Average policy learning time for a single user: 0.05 sec  
• Average policy extraction time for a single user: 0.01 sec  
• Average applying policy time and getting recommendation for a 

single user: 0.03 

We observed the following for the FilmTrust dataset:  

• Average policy learning time for a single user: 0.07 sec  
• Average policy extraction time for a single user: 0.01 sec  
• Average applying policy time and getting recommendation for a 

single user: 0.03 

Policy extraction and policy application times exhibit comparable 
durations across both datasets. However, the policy learning time di-
verges between the two datasets. This variance can be attributed to the 
differential sizes of the bi-clusters within the FilmTrust dataset, which 
are notably larger compared to those in the ML-100 K dataset. 

5.2. Return earned in each episode 

In the context of the ML-100 K dataset, distinct returns were acquired 
by the agent in each episode, as illustrated in Fig. 8(a). This return 
ranges from 20 to 120 for different episodes. A low return indicates that 
the agent’s movement is terminated in the early stages. A high return 
value indicates that the agent moved to many different states before 
reaching the goal state. But on average we can observe that the agent is 
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receiving 20 to 40 rewards per episode. From episodes 40 to 100, the 
lowest fluctuation in reward is observed. 

In the context of the FilmTrust dataset, the agent garnered diverse 
returns for each episode, evident from Fig. 8(b). This spectrum of returns 
spans from 5 to 140 across varying episodes. On average, the agent 
seems to receive rewards ranging between 20 and 50 per episode. 
Notably, episodes 60 to 100 exhibit the least volatility in reward 
fluctuations. 

5.3. Number of steps taken in each episode 

Fig. 9(a) reveals a notable trend within the ML-100 K dataset, where 
a substantial portion of episodes encompassed approximately fifty steps. 
This signifies that the agent navigated through around fifty bi-clusters 
before reaching the goal state. Episodes exhibited a minimum of ten 
steps and a maximum of 80 steps. Particularly, in the initial episodes 
spanning from 1 to 15, the occurrence of maximum steps is evident. 
When juxtaposed with Fig. 11, a distinct pattern emerges, indicating 
that the agent predominantly visits a higher number of states at the 
outset. As a consequence, it can be deduced that both the return and the 
number of steps to access diverse states are notably higher in the early 
stages.. Analyzing Fig. 9(b) for the FilmTrust dataset, we observe that 
the majority of episodes span approximately thirty steps, signifying the 
exploration of thirty bi-clusters prior to reaching the goal state. Episodes 

range from a minimum of ten to a maximum of 140 steps. Initial epi-
sodes, 1 to 18, exhibit maximum steps. Notably, episodes 60 to 100 show 
a reduced minimum step count, indicating intensified initial state 
exploration, subsequently leading to decreased return and step counts as 
agent learning progresses. 

5.4. ∈ -greedy value to balance exploration and exploitation 

Within the context of the ML-100 K dataset, Fig. 10(a) aptly portrays 
the agent’s progressive grasp of the environment, aligning with the rise 
in episode count. The initial ∈ -greedy value is set to 0.9, indicating that 
at the start, the agent will explore more. The final ∈ -greedy value is set 
to 0.1 with a decay rate of 0.099. A decaying curve indicates the agent’s 
learning. At the start, when the agent has no idea of the environment it 
will explore the environment, but in subsequent episodes, when the 
agent becomes familiar with the environment, it will start exploiting the 
environment. Fig. 10(b) shows that the agent’s learning of the envi-
ronment is increasing with the increase in the number of episodes. 
Initial ∈ -greedy value is set to 0.9 indicating that in start agent will 
explore more. Final ∈ -greedy value is set to 0.1 with the decay rate of 
0.099. A decaying curve indicates agent’s learning. In its initial stages, 
the agent, driven by limited environmental awareness, engages in 
exploratory actions. Subsequent episodes witness a transition toward 
exploitation as the agent’s comprehension evolves. A notable point of 

Fig. 8. Earned return in each episode, over 100 episodes for a single user on each dataset.  

Fig. 9. Number of steps taken for each episode over 100 episodes for a single user on each dataset.  
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inflection is observed at the 75th episode for the ML-100 K dataset and at 
the 80th episode for the FilmTrust dataset, where the agent’s learning 
curve begins to plateau. Consequently, we can see that the agent’s 
learning is faster with the ML-100 K dataset and slower with the Film-
Trust dataset. 

5.5. Precision, Recall, Fmeasure and item coverage results 

Table 6 presents the results obtained from competitor methods on 
the ML-100 K dataset. The proposed method and RLRS1 does not present 
results for the MAE and RMSE evaluation measures as the current 
methodology does not predict votings, it only predicts items/movies. 
The precision results of IPWR and ITR are better than all the other 
methods. The recall and Fmeasure results are best for our proposed 
method. It can be also observed that for proposed method, precision, 
recall and F-measure results of SARSA are better than Q-learning 
implementation, while Q-learning implementation possess higher item 
coverage than SARSA. Item coverage of our proposed method is not very 
good in comparison to non-RL methods. This phenomenon can be 
attributed to the agent’s inclination to approach states exhibiting higher 
degrees of similarity, while concurrently disregarding states character-
ized by lower similarity ratios.. These low similarity states may contain 
items that are not present in high similarity states, thus resulting in a 
reduced item coverage. 

Table 7 presents the results for the FilmTrust dataset.. The precision 
results of IPWR and ITR are better than SPOP and S1. The Precision, 
Recall and Fmeasure results are best for the proposed method using 
SARSA implementation. On this dataset, proposed method results using 
SARSA are better than Q-learning approach. The proposed method’s 
item coverage closely aligns with that of non-RL methods, exhibiting 
negligible disparities. This may be due to the fact of the agent moving 
towards states that have higher similarity and ignoring states having 
lower similarity. These low similar states may contain items that are not 
present in high similar states thus resulting in a reduced item coverage. 

5.6. Impact of random policies on performance 

To determine the effectiveness of the learned optimal policy, we 
defined random policies and measure their performance with the 
learned optimal policy. 

5.6.1. ML-100 K dataset 
We performed experiments with the ML-100 K dataset to measure 

the impact of five random policies having the same policy size for a 
single random user. These five random policies are given in Table 8 
along with the learned policy (policy*). All policies have the same size 
and all policies in this case have the same start state (21). The action 
space has the following values: Up = 0, Left = 1, Down = 2 and Right =
3. Policy* denotes the agent’s learned policy using the proposed method. 
It can be observed from Fig. 11, that Policy* has a higher return and 
Fmeasure value as compared to the other policies. This shows the su-
periority of our proposed method and the good learning capability of the 
agent. 

We also performed experiments to measure the impact of five 
random policies having the same policy size for a random user, but with 
different start states for each policy. The start states are 10, 18, 35, 0 and 
15 for each random defined policy, respectively. The results in Fig. 12 
show that for the five policies, the return value is lower in comparison to 
the return value of the proposed method (Policy* in Fig. 11). This in-
dicates that the selection of start states for our proposed algorithm has a 
good impact on agent earning of rewards/return. 

5.6.2. FilmTrust dataset 
Various experiments were performed to measure the impact of five 

random policies having the same policy size for a single random user. 
These five random policies are shown in Table 9. Moreover, all policies 
in this case have same start state (17). Action space have following 
values, Up = 0, Left = 1, Down = 2 and Right = 3. Policy* denotes 
agent’s learned policy using proposed method. It can be observed from 

Fig. 10. ∈ -greedy value while agent is learning the environment for both datasets.  

Table 6 
Evaluation parameters results of proposed method in conjunction with comparison methods.   

IPWR ITR SPOP S1 RLRS1 Proposed (Q-learning) Proposed (SARSA) 

MAE 0.814 0.825 0.991 1.015 — — — 
RMSE 1.029 1.039 1.245 1.315 — — — 
Precision 0.615 0.616 0.477 0.491 0.425 0.481 0.522 
Recall 0.349 0.336 0.412 0.405 0.691 0.775 0.758 
Fmeasure 0.411 0.402 0.404 0.410 0.518 0.581 0.619 
Item Coverage 100 100 92.6 95.2 68.89 76.97 71.70  
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Fig. 13, that Policy* have higher return and Fmeasure value as compared 
to other policies. This shows superiority of the proposed method and 
good learning capability of agent. 

Further experiments are performed to measure the impact of five 
random policies having same policy size for a random user, but with 
different start state for each policy. Start state is 10, 15, 20, 25 and 30 for 
each random defined policy, respectively. Results shown in Fig. 14 
shows that for five policies return value is lower as compared to the 
return value of proposed method (Policy* in Fig. 13). This indicates that 
selection of start state by the proposed algorithm have good impact on 
agent earning of rewards/return. 

5.7. Impact of the number of episodes on the evaluation measures 

In this section, we shall present the impact of the number of episodes 
on both datasets for different evaluation measures. 

5.7.1. ML-100 K dataset 
Fig. 15 shows the impact of increased episodes on the evaluation 

measures. Overall, all evaluations measures show a sinusoidal effect 
with increased episodes. Fig. 16 indicates that increased episodes have a 
direct impact on the reward earned by the agent. For each episode, the 
reward increases except at episodes 70 and 100. After 40 episodes, the 
average number of steps taken to reach the goal remains constant. 
Consequently, it can be inferred that the step count per episode remains 
relatively consistent, and beyond the 40-episode threshold, the agent 

repeats the same steps, leading to revisits to identical states. 

5.7.2. FilmTrust dataset 
In the context of the FilmTrust dataset, Fig. 17 illustrates the influ-

ence of heightened episodes on the evaluation outcomes. Notably, 
augmented episodes exhibit negligible effects on Precision and F- 

Table 7 
Results on FilmTrust dataset.   

IPWR ITR SPOP S1 RLRS1 Proposed (Q-learning) Proposed (SARSA) 

MAE 0.637 0.625 0.655 0.635 — — — 
RMSE 0.993 0.83 0.86 0.83 — — — 
Precision 0.605 0.62 0.55 0.54 0.725 0.759 0.781 
Recall 0.545 0.51 0.494 0.515 0.849 0.939 0.958 
Fmeasure 0.578 0.57 0.519 0.526 0.765 0.796 0.801 
Item Coverage 98.2 99.63 96.1 96.1 89.07 95.07 96.21  

Table 8 
Five random defined policies.  

Policy name Policy values 

Policy* [3,0,0,1,3,1,3,1,3,1] 
Policy1 [0,1,3,2,1,0,1,2,3,1] 
Policy2 [3,2,1,2,3,0,1,2,2,2] 
Policy3 [0,0,1,1,1,2,2,3,1,0] 
Policy4 [1,1,1,1,1,2,2,2,2,2] 
Policy5 [0,1,0,1,0,3,2,3,2,3]  

Fig. 11. Evaluation results for five different random policies, in comparison to the learned policy (policy*), with the same start state of (21) for each policy.  

Fig. 12. Evaluation results for five different random policies, in comparison to 
the learned policy (policy*), with different start states for each policy. 

Table 9 
Five random defined policies for the FilmTrust dataset.  

Policy name Policy values 

Policy* [0,2,0,2,0,2,0,2,0,2] 
Policy1 [0,1,3,2,2,1,1,2,0,1] 
Policy2 [1,2,3,2,3,1,1,2,2,2] 
Policy3 [1,1,0,0,3,2,2,3,1,0] 
Policy4 [1,1,1,1,1,2,2,2,2,2] 
Policy5 [0,1,0,1,0,3,2,3,2,3]  
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Fig. 13. Evaluation results of learned policy (policy*) vs random policies.  

Fig. 14. Evaluation measures results for five different random policies.  

Fig. 15. Impact of increasing number of episodes on the evaluation measures.  
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measure, while eliciting some impact on Recall and Coverage. Fig. 18 
indicates the impact of increased episodes on the total reward earned, 
the average number of steps taken in an episode and the percentage of 
episodes finished successfully. It can be seen that the percentage of ep-
isodes finishing successfully in the starting episodes is low and increases 
as the number of episodes’ increases. 

In aggregate, around 30 to 35% of episodes conclude successfully at a 
goal state. The findings unveil that initial episodes exhibit higher return 
values, indicative of extensive state exploration by the agent. However, 
this heightened exploration may not necessarily translate to significant 
improvements in the recommendation process. Delving into the count of 
steps taken per episode, the initial stages reveal a reduced step count. 
This phenomenon could stem from the agent’s initial lack of familiarity 
with the environment, potentially leading to encounters with less 
favorable states. As the agent’s understanding of the environment 
deepens through escalated exploration, the number of steps taken in 
each episode increases correspondingly. 

6. Conclusions and future work 

The exponential surge in online data has led to a burgeoning market 
for Recommender Systems (RSs), accentuating the demand for more 
precise and contextually sensitive RSs. To address this need, we have 
reformulated the RS challenge within the framework of Markov Decision 
Process (MDP), seeking to enhance accuracy and contextual relevance. 
Biclustering originated from the field of bioinformatics for binding 
similar rows and columns together. We used biclustering for binding 
similar rows and columns of user-item votings matrix. These biclusters 
are then placed on SG to model an RL environment for our recommen-
dation problem. Placement of biclusters on SG is of utmost importance 
for solving RL problem. 

In current work, we used cantor-diagonal traversal method for 
placement of biclusters on SG. A more accurate placement method can 
be designed, in which nearby biclusters are more similar to each other, 
while biclusters at farther grid position should be more dissimilar. For 
this purpose, advance grid positioning methods like Hilbert curve or Z- 

Fig. 16. Impact of increasing number of episodes on Return. The average number of steps taken in each episode and the percentage of episodes finished successfully.  

Fig. 17. Impact of increasing number of episodes on evaluation measures.  
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order traversal are suggested. In this work, we used Jaccard measure to 
compute rewards. Reward value can be same for different states, thus 
making agent indecisive about where to move. A more accurate reward 
measuring function that may consider demographic information of users 
and movies can also be designed. In this work, we used SMSR as a fitness 
function to measure quality of biclusters. SMSR is not able to identify a 
perfect correlation among rows or columns of a bi-cluster. A correlation 
based fitness function such as PCC can be more effective as it does not 
emphasize on specific magnitudes like SMSR and considers both positive 
and negative correlations. Action space is limited to only four actions; 
action space can be increased to include diagonal movement. In current 
work, to make user-item votings matrix binary, missing votings are 
replaced with a value of zero, while available voting values are replaced 
with one. Thus making low and high voting values indiscriminative. A 
tri-clustering algorithm can be modelled to handle this situation. This 
may change overall scenario like position of tri-clusters on the squared 
grid, a new fitness function that should be able to measure quality of tri- 
clusters. We evaluated our proposed method on MovieLens and Film-
Trust datasets and it is observed that our proposed method out-
performed competitor methods that include RL methods, pure CF 
methods and clustering methods. Also our algorithm achieved a better 
start state that yields an optimal policy to achieve the goal. 

As a potential avenue for future research, contextual reinforcement 
learning could be extended within the existing RL framework to 
encompass contextual information encompassing user demographics, 
social networking information, temporal context, and item characteris-
tics. This extension has the potential to yield recommendations that are 
both highly personalized and contextually relevant, thereby enriching 
the user experience. 
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