
Expert Systems With Applications 237 (2024) 121541

Available online 15 September 2023
0957-4174/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

A reinforcement learning recommender system using bi-clustering and
Markov Decision Process

Arta Iftikhar a, Mustansar Ali Ghazanfar b,*, Mubbashir Ayub a, Saad Ali Alahmari c,
Nadeem Qazi b, Julie Wall b

a Department of Software Engineering, University of Engineering and Technology, Taxila, Pakistan
b Department of Computer Science & Digital Technologies, University of East London, United Kingdom
c Department of Computer Science, AL-Imam Mohammad Ibn Saud Islamic University, Saudi Arabia

A R T I C L E I N F O

Keywords:
Reinforcement learning
Markov Decision Process
Bi-clustering
Q-learning
Policy

A B S T R A C T

Collaborative filtering (CF) recommender systems are static in nature and does not adapt well with changing user
preferences. User preferences may change after interaction with a system or after buying a product. Conventional
CF clustering algorithms only identifies the distribution of patterns and hidden correlations globally. However,
the impossibility of discovering local patterns by these algorithms, headed to the popularization of bi-clustering
algorithms. Bi-clustering algorithms can analyze all dataset dimensions simultaneously and consequently,
discover local patterns that deliver a better understanding of the underlying hidden correlations. In this paper,
we modelled the recommendation problem as a sequential decision-making problem using Markov Decision
Processes (MDP). To perform state representation for MDP, we first converted user-item votings matrix to a
binary matrix. Then we performed bi-clustering on this binary matrix to determine a subset of similar rows and
columns. A bi-cluster merging algorithm is designed to merge similar and overlapping bi-clusters. These bi-
clusters are then mapped to a squared grid (SG). RL is applied on this SG to determine best policy to give
recommendation to users. Start state is determined using Improved Triangle Similarity (ITR similarity measure.
Reward function is computed as grid state overlapping in terms of users and items in current and prospective next
state. A thorough comparative analysis was conducted, encompassing a diverse array of methodologies,
including RL-based, pure Collaborative Filtering (CF), and clustering methods. The results demonstrate that our
proposed method outperforms its competitors in terms of precision, recall, and optimal policy learning.

1. Introduction

The indispensable integration of Recommender Systems (RSs) into
our daily lives is undeniable, given their wide spread involvement in
diverse activities ranging from social network interactions to shopping
decisions and entertainment choices on streaming platforms. While the
recommendation problem was historically construed as a classification
or prediction challenge, primarily tackled through Collaborative
Filtering (CF), the landscape has progressively evolved. Contemporary
perspectives frame the recommendation dilemma as a sequential
decision-making endeavor, invoking the utilization of Markov Decision
Processes (MDP) to formulate recommendations, thus inviting the
application of Reinforcement Learning (RL) algorithms. Unlike con-
ventional methods such as CF and content-based filtering, RL exhibits

the capacity to address dynamic, sequential user-system interactions,
opening new avenues in the realm of recommendation systems.
Although the idea of using RL for recommendations is not new, but, due
to the scalability problems of traditional RL algorithms, applying RL was
not very practical (Afsar, 2022).

Currently, the recommendation problem is primarily solved using
techniques that include CF, content-based filtering, and hybrid methods.
Although these techniques are successful in providing relevant recom-
mendations, however, several problems exists in these techniques,
including absence of user engagement in generating recommendations,
cold start, sparsity, scalability, and recommendation quality (Ayub
et al., 2019; Ayub et al., 2019; Bobadilla, Ortega, Hernando, & Gutiér-
rez, 2013; Jannach, Zanker, Felfernig, & Friedrich, 2010). Adopting a
sequential recommendation perspective enables us to consider various

* Corresponding author.
E-mail addresses: arta.iftikhar@uettaxila.edu.pk (A. Iftikhar), m.ghazanfar@uel.ac.uk (M.A. Ghazanfar), mubbashir.ayub@uettaxila.edu.pk (M. Ayub),

saialahmari@imamu.edu.sa (S. Ali Alahmari), n.qazi@uel.ac.uk (N. Qazi), j.wall@uel.ac.uk (J. Wall).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2023.121541
Received 12 June 2023; Received in revised form 16 August 2023; Accepted 8 September 2023

mailto:arta.iftikhar@uettaxila.edu.pk
mailto:m.ghazanfar@uel.ac.uk
mailto:mubbashir.ayub@uettaxila.edu.pk
mailto:saialahmari@imamu.edu.sa
mailto:n.qazi@uel.ac.uk
mailto:j.wall@uel.ac.uk
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2023.121541
https://doi.org/10.1016/j.eswa.2023.121541
https://doi.org/10.1016/j.eswa.2023.121541
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.121541&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Expert Systems With Applications 237 (2024) 121541

2

facets, including prolonged user engagement and diverse forms of user-
item interactions, encompassing actions such as clicks, purchases, and
more. The current recommendation techniques fail to model these fac-
tors appropriately (Xin, Karatzoglou, Arapakis, & Jose, 2020). So,
casting the sequential recommendation problem as a RL problem is a
promising direction. Moreover, recommender systems operate within
dynamic environments characterized by shifting user preferences,
evolving item popularity, and varying item availability. In this context,
Reinforcement Learning (RL) emerges as a fitting option due to its
adaptability to dynamic settings. RL possesses the capability to learn and
adjust to changes, rendering it well-suited for comprehending such
volatile environments. Additionally, the application of RL to the
recommendation problem is driven by its adeptness in addressing the
exploration–exploitation dilemma. Unlike traditional Collaborative
Filtering (CF) RSs, which tend to exclusively exploit existing data for
recommendations, RL offers a means to effectively navigate the
exploration–exploitation dilemma.

As applying RL directly to a user-item voting database is not scalable
as it will result in a very large number of state space. So, we performed
bi-clustering on user-item voting database to group similar users and
items. Bi-clustering also helped us to maintain a finite number of state
space for MDP. The quality of these bi-clusters is measured using the
Scaled Mean Square Residual (SMSR) fitness function and these bi-
clusters are ordered in a list of descending quality values. The bi-
clusters in this list are placed in a fixed size n × n grid, using the
cantor-diagonal order traversal method. The action space contains only
four actions i.e. up, down, left and right. The start state in the recom-
mendation process (move within the grid) is determined by ITR simi-
larity measure (Iftikhar, Ghazanfar, Ayub, Mehmood, & Maqsood,
2020). The transition function is not completely deterministic and fol-
lows ∈ -greedy policy while environment learning. The ∈ -greedy policy
allows us to select a random action with uniform distribution over a set
of available actions. The reward function is measured as the overlapping
of users in the current and prospective next state using the Jaccard
similarity measure, with more overlapping resulting in a greater reward
value. If the agent is not receiving the recommendation of any new items
or gets off the grid, then this state is declared as the goal state of the
agent. The objective of the RL agent is to maximize the reward, termed
as return, which denotes how much the user is satisfied with the rec-
ommended items. The proposed method is also able to explain why users
are getting recommendations for certain or all items.

The primary contributions of our proposed approach are as follows:

1. Transforming the conventional Collaborative Filtering (CF) recom-
mendation challenge, which traditionally relies solely on historical
user preferences without adapting to evolving user tendencies, into a
sequential decision-making problem through the application of
Markov Decision Process (MDP).

2. Employing two bi-clustering algorithms, namely Bibit and BiMax, to
delineate users with akin localized traits.

3. Mapping the generated biclusters to states within the MDP frame-
work on a Squared Grid (SG).

4. Devising a bi-cluster merging algorithm to amalgamate overlapping
biclusters, thereby curbing the number of MDP states.

5. Application of Q-Learning and SARSA techniques on the SG to derive
optimal recommendations catered to individual users.

6. Evaluation is performed on two different movies dataset, MovieLens
ML-100 K and FilmTrust dataset and effectiveness of proposed
method in producing optimal policy for generating recommenda-
tions is verified.

The rest of the paper is organized as follows. Section 2 provides a
literature review; Section 3 outlines the methodology of our proposed
method; Section 4 describes the experimental procedure and evaluation
parameters; Section 5 gives experimentation results on ML-100 K and
FilmTrust datasets; while, Section 6 concludes our work and highlights

some future directions.

2. Literature review

Collaborative Filtering (CF) is one of the most widely used tech-
niques in RSs due to its simplicity and accuracy (Ekstrand, Riedl, &
Konstan, 2011). Serving as a method of personalization, it relies on the
compilation of user-provided ratings/votes associated with particular
products and services. (Chowdhury, 2010). These user votes can be
obtained through user-provided feedback. This feedback can be
collected through implicit means, such as user clicks on specific items, or
through explicit actions, where users rate objects using numerical or
starred values. Collaborative Filtering (CF) is a technique for forecasting
items for a target user. It considers community votes on items that
receive high ratings from community members sharing akin tastes with
the target user, under the assumption of the target user’s affinity for such
items. CF first constructs a user-vote database for items, using these
votes for predictions. It subsequently identifies resemblances in user
voting history and leverages fellow users’ votes to generate predictions
and recommendations. This technique has been used by Amazon,
iTunes, GroupLens system (Konstan et al., 1997) and Ringo (htt
ps://www.ringo.com), etc. and is also called people-to-people correla-
tion. One such CF method is Improved PCC weighted with RPB (IPWR),
as proposed in (Ayub et al., 2019), which deliberates user Rating Pref-
erence Behavior (RPB) while calculating the similarities among users.
User RPB is modelled as a function of cosine, taking the target user’s
average voting value and standard deviation as input values. The user
RPB is then combined with an enhanced version of standard PCC. The
results of several evaluation metrics prove the superior performance of
IPWR (Ayub et al., 2019). An enhancement to the Jaccard index was
proposed by (Lee (2017)), encompassing the incorporation of both user
vote frequencies and the tally of items co-rated by users. This augmen-
tation facilitates the computation of common items rated by two users,
regardless of the specific voting scores assigned. However, it’s essential
to acknowledge that the voting values for these shared items may span a
spectrum from normal to extreme. This adaptation has demonstrated its
efficacy in mitigating prominent drawbacks of the conventional Jaccard
index, primarily its omission of actual voting values in shared items’
assessment.

Another heuristic-based similarity measure method, simultaneously
embodies Proximity Significance Singularity (PSS) measures along with
a modified Jaccard similarity (Liu, Hu, Mian, Tian, & Zhu, 2014).
Traditional PIP similarity (Ahn, 2008) faces serious shortcomings, for
instance, it is not normalized and cannot be combined with other sim-
ilarity measures. The enhanced metric by Liu et al. (2014) integrates
Jaccard features, encompassing both absolute voting values and the
relative prevalence of shared votes, leading to improved accuracy in
predictions. Moreover, the similarity is determined not only by consid-
ering the local context only but also by the global preferences of user
behaviour. This formalization implies building a similarity measure with
a non-linear function based on the initial PIP similarity, which is mainly
linear. This new similarity measure, named NHSM (Ahn, 2008), is
normalized and can be easily combined with other similarity measures.
Besides, this novel similarity measure effectively overcomes the short-
comings and drawbacks of traditional systems (Ahn, 2008). ITR simi-
larity measure (Iftikhar et al., 2020) models the voting vectors of two
users and their resultant vector as a triangular shape and then computes
the triangle similarity between them. The effectiveness and robustness
of IPWR and ITR were vetted in (Fkih, 2022).

Clustering is an unsupervised classification method that groups ob-
jects based on similarity, forming distinct clusters where objects within
each cluster are more alike than those in other clusters. It deals with
finding patterns in an unlabeled dataset. Some of the most prominent
application areas of clustering are machine learning, pattern recogni-
tion, image analysis, outlier detection and bioinformatics (Prakash,
Korostenskaja, Lee, Baumgartner, Castillo, & Bagci, 2017). Clustering is

A. Iftikhar et al.

https://www.ringo.com
https://www.ringo.com

Expert Systems With Applications 237 (2024) 121541

3

quite often performed in daily life, such as arranging documents into
folders based on similarity. Clustering is frequently applied in different
fields of science like audio forensics (Malik, 2013), computer vision
(RaviPrakash et al., 2020), data mining (Costa & Roda, 2011), bioin-
formatics (Prakash et al., 2017), stock market trend prediction (Liu &
Malik, 2014), and smart cities (Ejaz & Anpalagan, 2019a, 2019b;
Hammad & Ludlow, 2016).

Sarwar et al. (Sarwar, Karypis, Konstan, & Riedl, 2002) proposed an
algorithm that used the clustering approach to reduce the data into a
low-dimensional space and argued that it could overcome scalability
and sparsity problems. This approach divides the user-item voting ma-
trix into K non-overlapping partitions, using a variant of the K-Means
clustering algorithm, called the Bisecting K-Means clustering algorithm.
To identify neighbors for an active user, the process involves examining
the cluster containing the active user and then generating recommen-
dations by selecting the most-similarity users (i.e., neighbors) from
within that cluster. Khalid et al. (Khalid, Ghazanfar, Azam, Aldhafiri, &
Zahra, 2017) proposed a one-pass clustering algorithm (SPOP) that
maintains good accuracy and scales well with the arrival of new data in
the case of a dynamic environment. This overcame the drawbacks of the
K-Means clustering algorithm and claimed to increase the accuracy of
RS. In SPOP, users are allocated to distinct hyperspheres according to
their distances, with the primary metric being PCC using default votes.
When a new hypersphere is created, its radius is set as the average radius
of all existing hyperspheres. A training model is built incrementally by
sequentially processing new data. The radius of hyperspheres is changed
dynamically after a defined number of data points. This proposed K-
Means clustering-based RS resolves the scalability issues of traditional
RSs. The basic K-Means clustering algorithm selects the initial centroid
randomly and the performance of clustering results heavily depends on
the selection of these centroids. Zahra et al. (Zahra et al., 2015) proposed
improved centroid selection in K-Means-based RSs, which can save cost
as well as improve the performance of the system. Their proposed
centroid selection methods also improved the accuracy of the system
and have the potential to exploit underlying data correlation structures.
Conventional clustering algorithms discover global correlations which
may not be always desirable. We need such clustering algorithms that
can discover local correlations and bi-clustering algorithms can help us
here.

Reinforcement Learning (RL) is an algorithmic paradigm enabling
machines to learn without any a priori knowledge. By engaging in
repeated interactions with the environment and responding to rewards
and penalties, RL systems determine optimal policies to achieve objec-
tives (Li, Wang, & Gandomi, 2021). This iterative and multi-objective
approach is often structured as episodes, with each iteration represent-
ing an episode (Li, Wang, Dong, Yeh, & Li, 2021). Many algorithms have
been proposed to solve a RL problem and they can be generally divided
into tabular and approximate methods. In tabular methods, RL value
functions are denoted as tables. Tabular methods are used when we have
a small size of action and state space, hence, finding the exact optimal
policy can be determined in a small amount of time. The most popular
tabular methods consist of Dynamic Programming (DP), Monte Carlo
(MC), and Temporal Difference (TD). DP methods assume a perfect
model of the environment and use a value function to search for good
policies. Two important algorithms from this class are policy iteration
(Bohnenberger & Jameson, 2001; Mahmood & Ricci, 2007) and value
iteration (Mahmood & Ricci, 2009). Contrary to DP methods, MC
methods only need a sample sequence of states, actions, and rewards
from the environment, which could be real or simulated. Monte Carlo
Tree Search (MCTS) (Vodopivec, Samothrakis, & Ster, 2017) is an
important algorithm from this family. Finally, TD methods are a mixture
of MC and DP and do not require a model of the environment, instead,
they can bootstrap, having the ability to update estimates based on other
estimates (Sutton & Barto, 1998a). From this family, an off-policy
method, Q-learning (Watkins, 1989) is very famous. While SARSA
(Rojanavasu, Srinil, & Pinngern, 2005), an on-policy method, is also

very famous. Since the size of the state space can be enormous in RL,
function approximation methods try to discover a good approximate
solution which can be identified with limited computational resources.
In such methods, a useful tactic is to generalize from previous experi-
ences to unseen states. Many techniques have been proposed for func-
tion approximation, including artificial neural networks. Value
Penalized Q-learning (VPQ) is proposed in (Gao, Xu, Zhou, Li, Wang,
Yuan, & Zhao, 2022), that penalizes the unstable Q-values in the
regression target using uncertainty-aware weights. This resulted in a
conservative Q-function without the need of estimating the behavior
policy. This approach is appropriate for RSs having a large number of
items.

To the best of our knowledge, Webwatcher (Joachims, Freitag, &
Mitchell, 1997) was the first to use RL to enhance the recommendation
accuracy of RSs. Webwatcher modelled the web page recommendation
problem as an RL problem and used Q-learning to enhance the accuracy
of their basic web RS. Their basic web RS was using TF-IDF, to recom-
mend pages similar to the past interest of the user. Taghipour, Kardan
and Ghidary (Taghipour, Kardan, & Ghidary, 2007) extended this hint to
recommend personalized web pages to the users by grabbing the state
dimensionality problem. They used the N-gram model from the web
usage mining literature (Mobasher, Cooley, & Srivastava, 2000) and a
sliding window to represent states. (Srivihok & Sukonmanee, 2005)
proposed an RL-based tourism recommendation system, composed of
two main modules. A personalization learner is used to learn the dy-
namic and static information of users and a personalization ranking
module to produce recommendations using Q-learning. Although their
work was novel it was not clear how they handled large state and action
spaces. In addition, how rewards were generated and how they are
assigned was also unclear. (Mahmood, Mujtaba, & Venturini, 2014),
proposed an RL-based conversational RS where Q-learning was used to
optimize the policy. To minimize state and action space manageably
they used a parametric value. In (Hu, Shi, & Liu, 2017), researchers
proposed a state compression model to solve the large dimensionality
problem of state space. Their idea was to cluster songs based on similar
user preferences and then replace songs with song clusters in the
learning phase. A web-based RS was presented by Rojanavasu, Srinil and
Pinngern (Rojanavasu et al., 2005). This system was composed of two
main modules; the global module is responsible for learning global
trends like trending products, while the local module is focused on
tracking each user’s needs. The system uses a weighted combination of
both modules to determine what to recommend next. This system suffers
from the scalability problem as it was not made clear how they keep
track of all users on a global level. Intayoad, Kamyod and Temdee
(Intayoad, Kamyod, & Temdee, 2018) used RL for online clustering, to
provide a learning path to students based on their specific needs and
characteristics. To minimize the large state space they used an N-gram
model. Choi et al. (Choi, Ha, Hwang, Kim, Ha, & Yoon, 2018) proposed a
greedy-based algorithm using both Q-learning and SARSA. They used
the BiMax (Prelić et al., 2006) and Bibit (Rodriguez-Baena, Perez-Pulido,
& Aguilar− Ruiz, 2011) binary clustering algorithms to model the state
spaces for MDP. The recommendation problem is modelled as a grid
world game problem. However, most of the details of their work are
hidden as they did not explain how they transformed binary clusters to
state spaces in the grid world and in which order transformation was
applied as setting the optimized state spaces is crucial to solving MDP.
To select the start state, they computed the Jaccard similarity of the
target user with all state spaces. The grid world state having maximum
similarity is selected as the start space and the action space used
involved up, down, left and right actions. Only two evaluation param-
eters precision and recall were applied to ML-100K dataset. Scalarized
Multi-Objective Reinforcement Learning (SMORL) was presented in
(Stamenkovic, Karatzoglou, Arapakis, Xin, & Katevas, 2022) to solve
multi-objective recommendation tasks. These multi-objectives involve
diversity, novelty and accuracy evaluation parameters. These parame-
ters are somewhat contradictory as increasing diversity and novelty

A. Iftikhar et al.

Expert Systems With Applications 237 (2024) 121541

4

decreases accuracy. The SMORL method acts as a regularizer for
bringing appropriate properties into the recommendation model, thus
accomplishing a balance between accuracy, diversity and novelty of
recommendations. In this work they concluded that combined optimi-
zation of these three contradicting objectives is crucial for improving
metrics that are tightly correlated with user satisfaction. Work in (Ge,
Zhao, Yu, Paul, Hu, Hsieh, & Zhang, 2022) applied pareto concept to
solve fairness-utility tradeoff of recommender systems using RL.

(Shani, Heckerman, Brafman, & Boutilier, 2005) were the first one to
model the recommendation problem as an MDP problem. They sug-
gested that traditional recommendation generation systems are static
and do not adapt to evolving trends. They proved that the recommen-
dation generation problem can be modelled as a sequential optimization
problem and thus MDPs can be used more appropriately to model the
recommendation generation problem. They solved MDP using a DP
approach. Since the model parameters of an MDP-based recommender
are unknown and deployment on a real system is very costly, they
proposed a predictive model that can provide the initial parameters for
MDP. They tested their proposed method on an Israeli online bookstore.
A music recommender system proposed by Liebman, Saar-Tsechansky
and Stone (Liebman, Saar-Tsechansky, & Stone, 2014) is based on RL.
To minimize dimensions, each song is represented as a vector of spectral
auditory descriptors, including overall loudness, rhythmic properties,
the spectral fingerprint of the song and sound changing over time. The
reward function is modelled as the song transition pattern and the lis-
tener’s preference over individual songs. This system, called DJ-MC, was
composed of two main units; a learning unit responsible for initializa-
tion, playing songs and getting feedback from the user, and a planning
unit responsible for recommending the best song to the user. To reduce
the song space, K-Means clustering was used. To solve the top-N
recommendation problem (Zou, Xia, Ding, Yin, Song, & Liu, 2019),
proposed a method, called Div-FMCTS, which worked in two cyclic
stages. In the first cycle, optimal top-N recommendations are heuristi-
cally searched in the item space using the MCTS algorithm and those
found are generalized using neural networks. To overcome the large
item space problem of two methods, problem decomposition and
structured pruning are used. Gated recurring units are used to encode
the user preference information into states. Lu and Yang (Lu & Yang,
2016) presented an RL-based RS that uses fitted-Q for policy optimiza-
tion. They reported the Recurrent Deterioration phenomenon of RSs
where an RS suffers from performance degradation when it is trained
based on user feedback from previous recommendations.

In our study, bi-clustering was employed to group similar items and
users within a subset of a user-item voting matrix. These clusters were
subsequently mapped onto an n × n squared grid, where each grid cell/
state corresponded to a specific bi-cluster. The sequencing of bi-cluster
mapping onto the grid was deliberate, as it dictated the user/agent
movement on these grid cells/states. A similarity metric was computed
between all bi-clusters, guiding their arrangement on the grid so that
more similar bi-clusters were positioned in closer proximity. When bi-
clusters exceeded the grid size, merging was employed to condense
their count. Conversely, if the bi-cluster count was lower than the grid
size, substantial bi-clusters were decomposed into sub-clusters. The ef-
ficacy of our proposed approach was assessed using publicly available
datasets, namely ML-100K and FilmTrust datasets. Comprehensive
elaboration of our methodology is presented in the subsequent sections.

3. Methodology

Our proposed method consists of several steps, all of which are
explained in the coming subsections.

3.1. Generating binarized data

The user-item votings matrix constitutes a fundamental component
within recommendation systems, capturing user preferences and their

corresponding votes. This matrix encompasses two distinct value cate-
gories. The first entails the voting values, signifying users’ evaluations of
items, often adhering to a predefined scale, conventionally spanning
from 1 to 5. The second category delineates instances where users opt
not to provide ratings for specific items, denoted as “Ø”. In order to
establish a binary matrix from this voting matrix, a transformative
process is initiated. This entails the conversion of individual user voting
values into binary equivalents, specifically 0 or 1, facilitated through a
thresholding mechanism. A voting value of 1 is used as a threshold. This
leads to a value of 1 in the binary matrix if the corresponding vote is
above or equals the voting value of 1 and will be zero if the voting value
is below 1 implying item is noted voted by the user. This is mathemat-
ically expressed in Eq. (1),

v =

{
1if va,j ≥ 1

0ifuserdidn′tratedj(Ø)
(1)

where va,j denotes that user a voted value v on a certain item j. Median
vote value of the dataset’s voting scale or dataset’s overall average value
can also be used a threshold value. But it will result in information loss as
an item having low vote value and an unseen item vote value both be-
comes zero making them non-discriminative. Tables 1 and 2 show an
example user-item voting matrix and the corresponding binary matrix
achieved using Eq. (1).

3.2. Bi-Clustering binary data

Clustering is a prominent technique for revealing pattern distribu-
tions and hidden correlations within extensive datasets. Notably, K-
Means, a Partitional clustering approach, associates users with singular
clusters based on their complete item sets. In contrast, bi-clustering
enables users to belong to multiple bi-clusters simultaneously, each
characterized by distinct item sets. The emergence of bi-clustering al-
gorithms is driven by the challenge of discovering localized patterns
using conventional clustering methods. These algorithms offer the
unique ability to analyze all dataset dimensions concurrently, extracting
intricate local patterns that enhance our understanding of underlying
correlations. BiMax (Prelić et al., 2006) and Bibit (Rodriguez-Baena
et al., 2011) are two binary or bi-clustering algorithms designed to work
in the field of bioinformatics. In bioinformatics, the binary values 0 and
1 may correspond to gene and protein features respectively.

In this study, we employ both the BiMax and Bibit bi-clustering al-
gorithms for the explicit purpose of enhancing product/movie recom-
mendation. Both BiMax and Bibit algorithms are tailored to the task of
bi-clustering binary matrix elements with a value of 1. BiMax adopts a
divide-and-conquer approach, iteratively partitioning the binary matrix
in a checkerboard pattern. Conversely, Bibit identifies patterns through
the combination of any two rows within the binary matrix. Notably,
both BiMax and Bibit algorithms yield dual lists for each cluster: the first
list comprises indices of the rows encompassed by the cluster, while the
second list comprises indices of the columns integrated within the
cluster. The result of applying BiMax and Bibit algorithms on Table 2 is
shown in Figs. 1 and 2. Both figures contain three colors, white corre-
sponds to 0 s in the binary matrix, grey corresponds to 1 s in the binary
matrix and black also corresponds to 1 in the binary matrix. The black 1
s are identified as a bi-cluster by the corresponding bi-clustering algo-
rithm. On the other hand, the grey 1’s doesn’t belong to any bi-cluster

Table 1
Example user-item votings matrix.

Item1 Item2 Item3 Item4

User1 5 Ø 5 1
User2 5 Ø Ø 1
User3 4 4 5 1
User4 4 Ø 5 5
User5 1 2 Ø 5

A. Iftikhar et al.

Expert Systems With Applications 237 (2024) 121541

5

and white 0’s also doesn’t belong to any bi-cluster. As the Bibit algo-
rithm requires that we should input the size of the minimum number of
rows and columns that we desire in the bi-cluster. For Table 2 we set the
minimum value of rows and columns to two. Hence we can see that the
identified bi-cluster contains two rows and three columns.

Fig. 1(a) shows that the BiMax algorithm identified a bi-cluster at
cells {(user1, item1), (user1, item3), (user3, item1), (user3, item3)} of
Table 2. To make resulting bi-cluster contiguous, rows and columns of
the binary matrix (Table 2) are shuffled, thus producing a bi-cluster that
is easy to view. Fig. 2(a) shows a contiguous bi-cluster formed by per-
forming rows and columns shuffling on Fig. 1 (a). In Fig. 2(a), row2 (user
2) and row3 (user 3) of Table 2 are shuffled, and column2 (item2) and
column3 (item3) are shuffled. Fig. 2(b) shows that the Bibit algorithm
identified a bi-cluster at cells {(user3, item1), (user3, item2), (user3,
item4), (user5, item1), (user5, item2), (user5, item4)} of Table 2. Fig. 2
(b) shows a contiguous bi-cluster formed by performing rows and col-
umns shuffling on Fig. 2 (a). In Fig. 2(b), row3 (user 3) and row4 (user 4)
are shuffled of Table 2, and column3 (item3) and column4 (item4) are

shuffled.

3.3. Measuring the quality of bi-clusters

Numerous quality measurement functions have been proposed by
researchers to quantitatively assess the quality of bi-clusters. These
include Variance (VAR) (Hartigan, 1972), Mean Square Residue (MSR)
(Cheng & Church, 2000), Scaling Mean Square Residue (SMSR)
(Mukhopadhyay, Maulik, & Bandyopadhyay, 2009), Relevance Index
(RI) (Yip, Cheung, & Ng, 2004) and correlation-based measures, such as
PCC. In this work, we are using the SMSR fitness function as a quality
measure of bi-clusters. SMSR is based on MSR, and the mathematical
detail of MSR is given below in Eq. (2):

MSR(B) =
1

|I|.|J|

∑|I|

i=1

∑|J|

j=1
(bij − biJ − bIj + bIJ)

2 (2)

where B denotes a bi-cluster consisting of I rows and J columns, bij de-
notes the bi-cluster value at the ith row and jth column. biJ denotes the
row mean of each row i, bIj denotes the column mean of each column j
and bIJ denotes the overall mean of bi-cluster B. MSR measures the
coherence of rows and columns in bi-cluster B. A low value of MSR in-
dicates better quality of bi-cluster B, conversely, a high value indicates
poor quality. A value of 0 indicates a perfect bi-cluster, indicating that
all rows fluctuate in the same way under the experimental conditions.
But ideally, such bi-clusters are hard to meet. However, MSR only cap-
ture shifting variance and not the scaling variance. So we need a mea-

Table 2
Binary form of Table 1.

Item1 Item2 Item3 Item4

User1 1 0 1 1
User2 1 0 0 1
User3 1 1 1 1
User4 1 0 1 1
User5 1 1 0 1

Fig. 1. (a) One bi-cluster created from the values in Table 2 using the BiMax algorithm (b) One bi-cluster created from Table 2 using the Bibit algorithm.

Fig. 2. Contiguous Bi-cluster formed by performing rows and columns shuffling (a) BiMax (b) Bibit.

A. Iftikhar et al.

Expert Systems With Applications 237 (2024) 121541

6

sure that is able to capture both scaling and shifting variance. Mukho-
padhyay et al. (Mukhopadhyay et al., 2009) developed SMSR to identify
scaling patterns within the bi-cluster. Identification of a scaling pattern
within the bi-cluster leads us to the usage of SMSR as a fitness function
for the quality measure of our bi-clusters. SMSR is mathematically given
in Eq. (3):

SMSR(B) =
1

|I|.|J|

∑|I|

i=1

∑|J|

j=1

(biJ × biJ − bij × bIJ)
2

b2
iJ×b2

Ij
(3)

The values of SMSR(B) are scaled in the range of 0 to 1 as compared
to MSR which is not scaled from 0 to 1. So we applied SMSR on our
generated bi-clusters to generate a sorted list of bi-clusters according to
their quality values.

3.4. Placement of bi-clusters in a square grid

Following the generation and subsequent sorting of bi-clusters based
on their SMSR values, the subsequent step involves establishing a RL
environment to facilitate our recommendation agent in generating
personalized recommendations. Our RL environment consists of a
Square Grid (SG) of size n× n. The placement of sorted bi-clusters onto
the designated Square Grid (SG) presents a pivotal task. Yet, this
endeavor is not without its challenges, encompassing three notable
challenges.

We shall.

• Challenge#1: What if the number of bi-clusters are greater than the
size of SG? For example, if the size of the SG is 3 × 3 = 9 and the
number of bi-clusters are greater than 9. To solve this, we propose

• bi-cluster merging.
• Challenge#2: What if the number of bi-clusters is smaller than the

size of SG? For example, if the size of the square grid is 3 × 3 = 9 and
the number of bi-clusters is smaller than 9. To solve this, we propose
a decomposition of the poor-quality bi-clusters using the same bi-
clustering algorithm that is used to generate bi-clusters.

• Challenge#3:What should be the placement of bi-clusters in the SG?
The placement of bi-clusters in the SG should follow two principles:
o Principle#1: Bi-clusters having closed SMSR values should be

close to each other on the SG.
o Principle#2: Bi-clusters having a large difference in SMSR values

should be furthest from each other on SG.

Space-filling curves provide us with the base to satisfy the two
principles stated above. Space-filling curves are curves that can visit all
possible points in the multidimensional space, in our case the n × n
square grid. Suppose we have bi-clusters in the range of 1 to 36 =
{B1,B2,B3,⋯..B36}and the grid size is 6× 6. Four methods are given by
Candan and Sapino (Candan & Sapino, 2010) to position one-
dimensional data on a two-dimensional grid. These methods include
row order traversal, column order traversal, cantor diagonal and row
prime order traversal. How these methods will place different bi-clusters
in each grid cell is illustrated in Fig. 3. Placement of data on a grid
having dimension n × n is given by Eq. (4):

Cπ order(v→) =
∑m

i=1
v→[π(i)] × (2n)

m− i (4)

For a 2D grid, π(1) corresponds to the first dimension and π(2) cor-
responds to the second dimension. In this way, we can find cell (1, 0) in
the 6 × 6 grid that will contain which bi-cluster in row-order traversing.
For example, Croworder(1,0) = 1× 61 + 0× 60 = 6 = B7. While in col-
umn order traversal cell (1, 0) will contain B2 and in cantor-diagonal
traversal grid cell (1,0) will also contain B2. One common thing in all
three types of traversals is that the best bi-cluster (bi-cluster with the
lowest SMSR value) is at the first position and the worst bi-cluster is at
the last position. More complex grid positions like the Hilbert curve and
Z-order traversal are also available but they will make our method more
computationally intensive.

3.5. Bi-cluster merging

To adapt bi-clusters to the dimensions of the squared grid, a process

Fig. 3. (a) Row order traversal of 6 × 6 grid. (b) Column order traversal of 6 ×6 grid. (c) Cantor-diagonal traversal of 6 × 6 grid. (d) Row prime order traversal of
6 × 6 grid.

A. Iftikhar et al.

Expert Systems With Applications 237 (2024) 121541

7

of merging bi-clusters was employed, specifically targeting those bi-
clusters with lower SMSR quality function values. Such bi-clusters of
inferior quality were consolidated with higher-quality counterparts. To
achieve this, an analysis was conducted to assess the extent of overlap
and similarity between the less optimal bi-clusters and their more
favorable counterparts. This assessment encompassed evaluating the
degree of user and item overlap within both the lower-quality and
higher-quality bi-clusters.. The similarity of both bi-clusters is measured
using ITR similarity (Iftikhar et al., 2020). A detailed description of ITR
similarity is given in section 3.6. ITR similarity first computes triangle ′
similarity between column-wise average voting vectors of both bi-
clusters and then computes the User Ratings Preferences (URP) be-
tween both bi-clusters. To obtain the average and standard deviation
values required for URP, column-wise average voting vectors of both bi-
clusters are computed and then the average voting value and the stan-
dard deviation is computed for this average voting vector. Table 3 pre-
sents different cases of bi-cluster merging.

Suppose we have two bi-clusters, Bi-cluster1 and Bi-cluster 2, as
shown in Fig. 4, and we want to perform a merging of these two bi-
clusters. Fig. 5 pictorially show four merging cases for these two bi-
clusters.

3.5.1. Example of bi-cluster merging
Fig. 6 presents an example of bi-cluster merging for bi-clusters 1 and

2. Where, rows of merged bi-cluster corresponds to union set of users of
both bi-clusters 1 and 2 and columns corresponds to union set of items of
both bi-clusters 1 and 2.

• Bi-cluster1 Users={U4, U6, U7}
• Bi-cluster2 Users={U6, U7, U8}
• Bi-cluster1 Items={I1, I2, I3}
• Bi-cluster2 Items={I3, I4, I5}
• Users overlapping in both Bi-clusters ={ U6, U7}
• Items overlapping in both Bi-clusters ={ I3}
• Union set of users in both bi-clusters={U4, U6, U7, U8}
• Item set of items in both bi-clusters={I1, I2, I3, I4, I5}
• Merged Bi-cluster Users={U4, U6, U7, U8}
• Merged Bi-cluster Items={I1, I2, I3, I4, I5}

In order to obtain a merged bicluster we used a very simple tech-
nique. We make union set of users and items in both bi-clusters 1 and 2.
As these union set of users and items are subset of user and item set of
actual user-item voting database and rows of merged bi-cluster should
correspond to union set of users and columns of merged bi-cluster should
correspond to union set of items. So, to generate a merged bi-cluster we
extracted each user and item corresponding value from actual user-item
voting database.

3.6. MDP notation

In an MDP, we have a set of states S, a set of actions A, and a set of
rewards R. The state space S = {B1,B2,B3,B4⋯Bn, } and the action space
A = {Up, Left,Down,Right, } . We shall assume that each of these sets has
a finite number of elements. At each time step t = 0, 1,2,⋯, the agent
receives some representation of the environment’s state St ∈ S. Based on
this state, the agent selects an action At ∈ A, this gives us the state-action
pair (St ,At). Time is then incremented to the next time step t + 1, and

the environment is transitioned to a new state St+1 ∈ S. At this time, the
agent receives a numerical reward Rt+1 ∈ R for the action At taken from
state St . Thus, the reward can be thought of as an arbitrary function f
that maps the state-action pairs to rewards. Thus at each time step t we
have f(St , At) = Rt+1. A trajectory showing the sequential process of
selecting an action from a state, transitioning to a new state, and
receiving a reward can be represented as S0,A0, R1, S1, A1, R2,S2, A2, R3,

...

3.6.1. Transition probabilities
As both sets S and R are finite, the random variables St and Rt should

have well-defined probability distributions. That is, all possible values of
St and Rt should have some associated probability and depends upon the
previous state only. For all s′ ∈ S, s ∈ S, r ∈ R and a ∈ A(s), we define the
probability of the transitioning to state s′ with reward R from taking
action a in state s as given in Eq (5):

P(s′, r|s, a) = Pr{St = s′,Rt = R|St− 1 = s,At− 1 = a} (5)

Start state: Deciding the start state is important as subsequent rec-
ommendations heavily rely on the start state. Choi et al. (Choi et al.,
2018) use Jaccard similarity to decide the start state. However, Jaccard
ignores the true value of the voting and also may have the same value for
many bi-clusters. Sargar (Sargar, 2020) used cosine similarity instead of
Jaccard similarity but the obvious drawback of cosine similarity is that it
only considers angles between voting vectors and ignores the length of
the voting vector. We decided on the start state by computing the ITR
similarity between the target user voting vector and the average voting
vector of each bi-cluster (Iftikhar et al., 2020). The reason to use ITR
similarity is that it utilizes the complete rating vector of both the target
user and bi-cluster and also considers global perspectives like average
values and standard deviation.

simTRIANGLE′
(u,bic) = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

t∈T (vu,t − vbic,t)
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
t∈T vu,t

2
√

+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

t∈T vbic,t
2

√ (6)

simurp
(u,bic) = 1 −

1
1 + exp(− |vu − vbic|.|σu − σbic|)

(7)

where vu is the average voting of target user u, vbic is the average
voting of a bi-cluster, σu is the standard deviation of the target user u,
and σbic is the standard deviation of a bi-cluster.

ITRsim(u,bic) = simTRIANGLE′
(u,bic) × simurp

(u,bic) (8)

Pit/Hole state: If an agent reaches to a state that has no similarity
with neighbor states, then that state is termed a pit/hole state. As the
agent is unable to move anywhere from this state.

Goal state: Agent getting off the grid, not getting any new recom-
mendations or coming to the start state after the move.

Number of Episodes: The number of episodes is fixed to 100.
The maximum number of steps in each episode: The number of

steps in each episode is constrained by the size of the grid. For our grid
size having 36 states and 4 actions in action space, this number will be
the number of states multiplied by the number of actions in the action
space resulting in 144, the number of steps.

Maximizing Return: In MDP, the agent’s goal is to maximize the
expected discounted return of rewards (Gt) given in Eq. (9). Here, γ is a
discount factor representing that an immediate reward is better than an
equal-valued future reward. Thus, γ value decreases for each increase in
time step.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4⋯

Gt =
∑∞

k=0
γkRt+k+1

Table 3
Different possible cases for merging bi-clusters.

Cases Overlapping Similarity Merging

Case 1 No No No
Case 2 Yes (But only row wise) Less than a threshold No
Case 3 Yes (But only column wise) Less than a threshold No
Case 4 Yes Greater than a threshold Yes

A. Iftikhar et al.

Expert Systems With Applications 237 (2024) 121541

8

Fig. 4. Two candidate bi-clusters for merging.

Fig. 5. Illustration of four possible cases of bi-clusters merging.

Fig. 6. Bi-cluster merging example.

A. Iftikhar et al.

Expert Systems With Applications 237 (2024) 121541

9

RUt+1 =
|Ust∩Ust+1 |

|Ust ∪ Ust+1 |

RIt+1 =
|Ust∩Ust+1 |

|Ust ∪ Ust+1 |

Rt+1 = RUt+1 +RIt+1 (9)

A reward (Rt+1) is computed using Jaccard similarity. Reward
(RUt+1) depends on the number of overlapping users in states st and st+1

and reward (RIt+1) depends on the number of overlapping items in states
st and st+1. More overlapping in both states results in a better reward
value, minor overlapping gives a low reward and no overlapping results
in zero rewards. If an agent chooses an action that leads to the same
current state, then the reward will be zero. Both types of rewards
(RUt+1andRIt+1) are then combined into a single-valued reward (Rt+1).
This overcomes the inherent drawback of CF, which at any one time can
use only user-based CF or item-based CF. Finally, the agent’s objective is
to move to a state that gives better reward value which in turn will result
in maximum return Gt. Our proposed methodology is given in Fig. 7.

Optimal policy π*(s) learning: In RL, we define a policy π(s) that
tells us to perform which action a ∈ A in a particular state s ∈ S. RL helps
us to find the optimal policy π*(s), that maximizes the expected return
Gt . We shall learn the optimal policy π*(s) by a state-action value
function Qπ(s,a), which indicates that the expected value of the return Gt
obtained from episodes starting from a certain state s can be expressed as
Eq. (10):

Qπ(s, a) = Eπ{Gt|st = s, at = a} = Eπ{
∑∞

k=0
γkRt+k|st = s, at = a} (10)

At the start, the agent has no idea of the environment, so it starts an
exploration of the environment. As soon as the agent’s learning of the
environment (exploration) increases, the agent starts exploiting the

environment. Exploration is a dilemma in which an agent to improve its
current knowledge about each action in such a way that increases his
long-term benefit. Improving knowledge in this way increases the ac-
curacy of the estimated action-values for agent thus enabling the agent
to take more informed decisions at some later time. Exploitation is a
dilemma in which agent chooses the greedy action to get the most
reward by exploiting the agent’s current action-value estimates. But by
being greedy in terms of action-value estimates, may result in reduced
reward, thus resulting in a sub-optimal behavior of the agent. When an
agent explores, it gets more accurate estimates of action-values. And
when it exploits, it might get more reward. It cannot, however, choose to
do both simultaneously, which is also called the explor-
ation–exploitation dilemma. To balance exploration and exploitation,
we used ∈ -greedy method (Sutton & Barto, 1998b). ∈ -Greedy is a
simple method to balance exploration and exploitation by choosing
between exploration and exploitation randomly. The ∈ -greedy, where
∈ denotes to the probability of choosing to explore, exploits most of the
time with a small chance of exploring. Mathematical working of ∈
-greedy algorithm is given in Eq. (11).

Actionattime(t) =
{

maxQt(a)withprobability1− ∈

anyactionawithprobability ∈
(11)

To learn optimal policy, Q-learning, is used. Q-learning is an off-
policy approach, which aim to determine best action from current
state and thus accomplishing it’s own set of rules to determine optimal
policy. Internally, Q-learning, builds a Q-table containing all possible
states and actions as shown in Table 4. Initially, values of all actions in a
state are set to zero. Then agent start it’s movement while balancing
exploration and exploitation and updates value of each action in Q-table
using Eq. (12).

Q(s, a) = Q(s, a)+α*(R+Υ*max(Q(s′ , a′)) − Q(s, a)) (12)

In Eq. (12) Q(s, a) represents the expected reward for taking

Fig. 7. Flow diagram of the proposed methodology.

A. Iftikhar et al.

Expert Systems With Applications 237 (2024) 121541

10

action a in state s. The actual reward received for that action is refer-
enced by R while s′ refers to the next state. The learning rate is α and γ is
the discount factor.The highest expected reward for all possible
actions a ′ in state s′ is represented by max(Q(s′, a′)). Learning rate α gives
us the probility of how value of Q(s, a) will be updated in Eq. (12). If α is
zero then Q(s, a) will be updated based upon past experience and if α is
one then Q(s, a) will be updated based upon current situation. Discount
factor γ gives us the option how reward will be accounted towards policy
selection. If γ is zero then only current rewards are accounted and if is γ
one then only future rewards will also be taken into account. Eq. (12) is
used to update value of each action for each state in Q-table (Table 5).

Table 5 shows an insight of different action probabilities (Q values)
for each state at some time t0. This table is build and updated by the
agent while visiting each state and balancing exploration vs exploitation
dilemma as given in Eq. (11). Initially, agents explore more and exploits
less. As soon as this table going to build on, agent’s exploitation in-
creases and exploration decreases. Eq. (11) gives the agent a probability
to choose which action on given state. Q value at that given state and
action is updated using Eq. (12). Agent performs a number of episodes to
build and update this table. In Table 5, suppose the environment is
deterministic and suppose determined start state (using Eq. (8)) of agent
is B1 then agent will take the action with the highest probability, 0.902
(Right), among all other action probabilities and will land in to state B3
of Fig. 3 (c). In state B3 the agent will take action down, having a
probability of 0.535, and will land in the next state B5. In this way, the
agent will continue its move until it reaches a goal state (having no
change in the set of recommended items) or to a pit/hole state.

Q-learning to solve a reinforcement learning problem is considered
as an off-policy method. In off-policy methods, RL agent learns the value
of Q(s, a) using the actions derived from another policy. Another, good
alternative to Q-learning to solve reinforcement learning problem is
State-Action-Reward-State-Action(SARSA). SARSA is an on-policy
method as in on-policy methods, RL agent learns the value Q(s, a) by
the actions derived from the current policy. Value update rule is slightly
different from Q-learning and is given in Eq. (13).

Q(s, a) = Q(s, a)+ α*(R+Υ*Q(s′ , a′)) − Q(s, a)) (13)

where Q(s, a) represents the expected reward for taking action a in
state s. The actual reward received for that action is referenced
by R while s′ refers to the next state and a′ refers to the next action.
Internally, SARSA also uses same Q-table for optimal policy learning.

4. Experimentation procedure

Detailed experimentation procedure is given in this section.

4.1. Experimentation and dataset description

We used the Movie Lens ML-100 k and FilmTrust datasets for
experimentation purposes. ML-100 k dataset is comprised of 100,000
votes given by 943 users on 1,682 distinct movies. The input space be-
comes too large for the RL agent to work upon if we directly apply it to
the original user-item voting matrix, containing 943 rows and 1682
columns, therefore we applied bi-clustering on our matrix to reduce the
input dataset dimensions. Among many bi-clustering algorithms, we
have used BiMax (Prelić et al., 2006) and Bibit (Rodriguez-Baena et al.,
2011), the most famous. The Bibit (Rodriguez-Baena et al., 2011) al-
gorithm takes two input parameters, the minimum number of rows
(mnr) and minimum number of columns (mnc). Initially, the value of mnr
is set to 4 and mnc is set to 3 (as per (Rodriguez-Baena et al., 2011)) and
the algorithm was applied to the ML-100 k dataset. This resulted in
197,231 bi-clusters, a very large number. Through experimental inves-
tigation of these parameters, we fine-tuned the values of mnr and mnc to
70 and 10, respectively, which resulted in 40 bi-clusters. The proposed
grid size was set to 6 × 6 and for that bi-cluster merging (as proposed in
Section 3.5) was applied to fit the grid size, resulting in 36 bi-clusters. Bi-
clusters generated using BiMax were also merged to fit the size of the
grid. These 36 bi-clusters contain 28,901 movie votings only. Below is
the placement of sorted bi-clusters on the 6 × 6 grid using cantor-
diagonal traversal method, as presented in Fig. 3(c).

B0 B1 B5 B7 B13 B17

B2 B4 B6 B15 B14 B27

B3 B8 B9 B21 B16 B32

B10 B11 B20 B22 B31 B29

B12 B19 B24 B25 B26 B30

B18 B23 B33 B28 B34 B36

The FilmTrust dataset is comprised of 35,497 votes given by 1,508 users
on 2,071 distinct movies. Again, for the Bibit bi-clustering algorithm
(Rodriguez-Baena et al., 2011), through experimental investigation, the
values of mnr and mnc were fine-tuned to 110 and 49, respectively,
resulting in 41 bi-clusters. The proposed grid size was set to 6 × 6 and bi-
cluster merging was applied to fit the bi-clusters to the grid size,
resulting in 36 bi-clusters. Bi-clusters generated using BiMax were also
merged to fit the size of the grid. Below is the placement of the sorted bi-
clusters on a 6 × 6 grid using the cantor-diagonal traversal method, as
presented in Fig. 3(c) for the FilmTrust dataset.

B0 B1 B5 B6 B14 B17

B2 B4 B8 B15 B16 B26

B3 B7 B12 B13 B21 B27

B9 B11 B19 B25 B23 B38

B10 B18 B24 B36 B31 B32

B20 B22 B34 B30 B29 B28

All code was written in Python using Pycharm community edition as IDE
and executed on a core-i5 Dell laptop with 8-GB RAM. For the 2D grid
environment creation, OpenAI gym is used.

4.2. Methods used for comparison

We compared our proposed method with the following RL and non-
RL methods:

• RLRS1 (Sargar, 2020): Sargar applied RL on bi-clusters placed on an
n × n square grid, using a filtering mechanism to filter out good-
quality bi-clusters, leaving out poor-quality clusters. Leaving poor-
quality bi-clusters results in information loss and affects

Table 4
Snapshot of Q-Table at time t0 for Q-Learning.

Actions
States Left Right Up Down

B1 0 0 0 0
B2 0 0 0 0
B3 0 0 0 0
B4 0 0 0 0
…. 0 0 0 0
Bn 0 0 0 0

Table 5
Snapshot of Q-Table at a later time for Q-Learning.

Actions

States Left Right Up Down

B1 0.735 0.902 0.663 0.814
B2 0.625 0.125 0.25 0.333
B3 0 0 0 0.535
B4 0.485 0.628 0.663 0.714
B5 0.175 0.345 0.082 0.05
…. …. …. …. ….
B36 0.284 0.045 0.764 0.902

A. Iftikhar et al.

Expert Systems With Applications 237 (2024) 121541

11

recommendation accuracy. The start state was determined using
Cosine similarity. The reward was based only on the overlapping of
users in both bi-clusters.

• IPWR (Pure CF method) (Ayub et al., 2019): Ayub et al. used this
method to recommend items to users. The similarity was computed
by improving the PCC measure to include both user and item aver-
ages. The improved PCC was then combined with the user’s RPB.

• ITR (Pure CF method) (Iftikhar et al., 2020): In this method from
Iftikhar et al., the similarity of two users are computed by repre-
senting user voting vectors in the form of a triangle. The computed
triangle similarity is combined with the voting preferences of users
(URP).

• S1 (Partitional Clustering method) (Zahra et al., 2015): In this
method twenty-one different methods were suggested to choose the
initial centroids of clusters by manipulating the underlying data
correlation structure. We only selected method 1 out of twenty-one
methods, namely S1 of this research paper. The S1 method chooses
k users uniformly at random as initial centroids.

• SPOP (Partitional Clustering method) (Khalid et al., 2017): Khalid
et al., assigned users to different hyperspheres by computing the
distance from the centre of the hypersphere. The distance measuring
approach used was Pearson correlation with default votes. Assuming
default votes for non-voted items is just an approximation and not a
good choice. As users may not be willing to vote for items whose vote
values are approximated.

4.3. Evaluation metrics

In this section, we will discuss the evaluation metrics chosen to assess
our proposed method, selected based on their common usage in evalu-
ating recommendation algorithms. (Silveira et al., 2019).

• Latency: The time taken by the algorithm to generate suggestions/
recommendations.

• The return earned in each episode: The agent performs a fixed
number of 100 episodes to reach the goal state. Some of these epi-
sodes may be successful and some may be unsuccessful. In either
case, the agent earns some positive reward or no reward. These re-
wards are accumulated for each episode and show how quickly or
slowly the agent is learning from its experience while interacting
with the environment.

• The number of steps taken in each episode: By starting the
movement from the start state, the agent wants to reach a goal state.
The number of steps taken by the agent to reach the goal state in each
episode is recorded. The objective is to reach the goal state by taking
fewer steps.

• ∈-greedy value to balance exploration and exploitation: At the
start, the agent has no idea of the environment, so the ∈ -greedy
algorithm is used to balance exploration and exploitation. The ∈
-greedy start value is set to 0.9 and the final value is set to 0.1, with a
decay of 0.999. A start value of 0.9 indicates that at the start, the
agent explores the environment and as the agent’s learning increase
with the execution of each episode, exploitation is increased and
exploration is decreased.

• Precision: Precision is measured as the percentage of overlapped
items/movies of test users and items/movies recommended by the
proposed method to the total set of items/movies recommended by
the proposed method.

Precision =
|IT∩IP|

|IP|
(14)

• Recall: Recall is measured as percentage of overlapped items/
movies of test users and items/movies recommended by the pro-
posed method to the total set of items/movies available in the test
set.

Recall =
|IT∩IP|

|IT |
(15)

• F-measure: F-measure, also known as the F1 score, is the harmonic
mean of both precision and recall. A high value of F-measure in-
dicates better model response and performance.

Fmeasure = 2 ×
Precision × Recall
Precision + Recall

(16)

• Item Coverage: Indicates the extent to which items/movies in test
set are accurately recommended by the proposed method.

ItemCoverage =
|IT |

|IP|
(17)

5. Results & analysis

This section is divided into two subsections: Section 5.1 discusses
results from the ML-100 K dataset, and Section 5.2 presents results from
the FilmTrust dataset.. The value of learning rate α is set to 0.5 and
value of discount factor γ is set to 0.95. Reason for 0.5 value of α is that
we want to give equal importance to both current and past experience in
Eq. (12), (13). Value of discount factor γ is set to 0.95 implying we are
giving 95% importance to future rewards for updating value of Q(s, a) in
Eq. (12), (13), and only 05% importance to current rewards.

5.1. Latency

A random user was selected, and policy learning, policy extraction,
and recommendation generation times were recorded. The algorithm
was executed 10 times, and the average outcomes are reported. In the
policy learning phase, the algorithm was iterated for 100 episodes,
capturing the return acquired in each episode within the Q-table. Sub-
sequently, during policy extraction, the Q-table was scrutinized to
extract the optimal policy.. In applying the policy step, the learned
optimal policy is applied to generate recommendations. We observed
the following for the ML-100 K dataset:

• Average policy learning time for a single user: 0.05 sec
• Average policy extraction time for a single user: 0.01 sec
• Average applying policy time and getting recommendation for a

single user: 0.03

We observed the following for the FilmTrust dataset:

• Average policy learning time for a single user: 0.07 sec
• Average policy extraction time for a single user: 0.01 sec
• Average applying policy time and getting recommendation for a

single user: 0.03

Policy extraction and policy application times exhibit comparable
durations across both datasets. However, the policy learning time di-
verges between the two datasets. This variance can be attributed to the
differential sizes of the bi-clusters within the FilmTrust dataset, which
are notably larger compared to those in the ML-100 K dataset.

5.2. Return earned in each episode

In the context of the ML-100 K dataset, distinct returns were acquired
by the agent in each episode, as illustrated in Fig. 8(a). This return
ranges from 20 to 120 for different episodes. A low return indicates that
the agent’s movement is terminated in the early stages. A high return
value indicates that the agent moved to many different states before
reaching the goal state. But on average we can observe that the agent is

A. Iftikhar et al.

Expert Systems With Applications 237 (2024) 121541

12

receiving 20 to 40 rewards per episode. From episodes 40 to 100, the
lowest fluctuation in reward is observed.

In the context of the FilmTrust dataset, the agent garnered diverse
returns for each episode, evident from Fig. 8(b). This spectrum of returns
spans from 5 to 140 across varying episodes. On average, the agent
seems to receive rewards ranging between 20 and 50 per episode.
Notably, episodes 60 to 100 exhibit the least volatility in reward
fluctuations.

5.3. Number of steps taken in each episode

Fig. 9(a) reveals a notable trend within the ML-100 K dataset, where
a substantial portion of episodes encompassed approximately fifty steps.
This signifies that the agent navigated through around fifty bi-clusters
before reaching the goal state. Episodes exhibited a minimum of ten
steps and a maximum of 80 steps. Particularly, in the initial episodes
spanning from 1 to 15, the occurrence of maximum steps is evident.
When juxtaposed with Fig. 11, a distinct pattern emerges, indicating
that the agent predominantly visits a higher number of states at the
outset. As a consequence, it can be deduced that both the return and the
number of steps to access diverse states are notably higher in the early
stages.. Analyzing Fig. 9(b) for the FilmTrust dataset, we observe that
the majority of episodes span approximately thirty steps, signifying the
exploration of thirty bi-clusters prior to reaching the goal state. Episodes

range from a minimum of ten to a maximum of 140 steps. Initial epi-
sodes, 1 to 18, exhibit maximum steps. Notably, episodes 60 to 100 show
a reduced minimum step count, indicating intensified initial state
exploration, subsequently leading to decreased return and step counts as
agent learning progresses.

5.4. ∈ -greedy value to balance exploration and exploitation

Within the context of the ML-100 K dataset, Fig. 10(a) aptly portrays
the agent’s progressive grasp of the environment, aligning with the rise
in episode count. The initial ∈ -greedy value is set to 0.9, indicating that
at the start, the agent will explore more. The final ∈ -greedy value is set
to 0.1 with a decay rate of 0.099. A decaying curve indicates the agent’s
learning. At the start, when the agent has no idea of the environment it
will explore the environment, but in subsequent episodes, when the
agent becomes familiar with the environment, it will start exploiting the
environment. Fig. 10(b) shows that the agent’s learning of the envi-
ronment is increasing with the increase in the number of episodes.
Initial ∈ -greedy value is set to 0.9 indicating that in start agent will
explore more. Final ∈ -greedy value is set to 0.1 with the decay rate of
0.099. A decaying curve indicates agent’s learning. In its initial stages,
the agent, driven by limited environmental awareness, engages in
exploratory actions. Subsequent episodes witness a transition toward
exploitation as the agent’s comprehension evolves. A notable point of

Fig. 8. Earned return in each episode, over 100 episodes for a single user on each dataset.

Fig. 9. Number of steps taken for each episode over 100 episodes for a single user on each dataset.

A. Iftikhar et al.

Expert Systems With Applications 237 (2024) 121541

13

inflection is observed at the 75th episode for the ML-100 K dataset and at
the 80th episode for the FilmTrust dataset, where the agent’s learning
curve begins to plateau. Consequently, we can see that the agent’s
learning is faster with the ML-100 K dataset and slower with the Film-
Trust dataset.

5.5. Precision, Recall, Fmeasure and item coverage results

Table 6 presents the results obtained from competitor methods on
the ML-100 K dataset. The proposed method and RLRS1 does not present
results for the MAE and RMSE evaluation measures as the current
methodology does not predict votings, it only predicts items/movies.
The precision results of IPWR and ITR are better than all the other
methods. The recall and Fmeasure results are best for our proposed
method. It can be also observed that for proposed method, precision,
recall and F-measure results of SARSA are better than Q-learning
implementation, while Q-learning implementation possess higher item
coverage than SARSA. Item coverage of our proposed method is not very
good in comparison to non-RL methods. This phenomenon can be
attributed to the agent’s inclination to approach states exhibiting higher
degrees of similarity, while concurrently disregarding states character-
ized by lower similarity ratios.. These low similarity states may contain
items that are not present in high similarity states, thus resulting in a
reduced item coverage.

Table 7 presents the results for the FilmTrust dataset.. The precision
results of IPWR and ITR are better than SPOP and S1. The Precision,
Recall and Fmeasure results are best for the proposed method using
SARSA implementation. On this dataset, proposed method results using
SARSA are better than Q-learning approach. The proposed method’s
item coverage closely aligns with that of non-RL methods, exhibiting
negligible disparities. This may be due to the fact of the agent moving
towards states that have higher similarity and ignoring states having
lower similarity. These low similar states may contain items that are not
present in high similar states thus resulting in a reduced item coverage.

5.6. Impact of random policies on performance

To determine the effectiveness of the learned optimal policy, we
defined random policies and measure their performance with the
learned optimal policy.

5.6.1. ML-100 K dataset
We performed experiments with the ML-100 K dataset to measure

the impact of five random policies having the same policy size for a
single random user. These five random policies are given in Table 8
along with the learned policy (policy*). All policies have the same size
and all policies in this case have the same start state (21). The action
space has the following values: Up = 0, Left = 1, Down = 2 and Right =
3. Policy* denotes the agent’s learned policy using the proposed method.
It can be observed from Fig. 11, that Policy* has a higher return and
Fmeasure value as compared to the other policies. This shows the su-
periority of our proposed method and the good learning capability of the
agent.

We also performed experiments to measure the impact of five
random policies having the same policy size for a random user, but with
different start states for each policy. The start states are 10, 18, 35, 0 and
15 for each random defined policy, respectively. The results in Fig. 12
show that for the five policies, the return value is lower in comparison to
the return value of the proposed method (Policy* in Fig. 11). This in-
dicates that the selection of start states for our proposed algorithm has a
good impact on agent earning of rewards/return.

5.6.2. FilmTrust dataset
Various experiments were performed to measure the impact of five

random policies having the same policy size for a single random user.
These five random policies are shown in Table 9. Moreover, all policies
in this case have same start state (17). Action space have following
values, Up = 0, Left = 1, Down = 2 and Right = 3. Policy* denotes
agent’s learned policy using proposed method. It can be observed from

Fig. 10. ∈ -greedy value while agent is learning the environment for both datasets.

Table 6
Evaluation parameters results of proposed method in conjunction with comparison methods.

IPWR ITR SPOP S1 RLRS1 Proposed (Q-learning) Proposed (SARSA)

MAE 0.814 0.825 0.991 1.015 — — —
RMSE 1.029 1.039 1.245 1.315 — — —
Precision 0.615 0.616 0.477 0.491 0.425 0.481 0.522
Recall 0.349 0.336 0.412 0.405 0.691 0.775 0.758
Fmeasure 0.411 0.402 0.404 0.410 0.518 0.581 0.619
Item Coverage 100 100 92.6 95.2 68.89 76.97 71.70

A. Iftikhar et al.

Expert Systems With Applications 237 (2024) 121541

14

Fig. 13, that Policy* have higher return and Fmeasure value as compared
to other policies. This shows superiority of the proposed method and
good learning capability of agent.

Further experiments are performed to measure the impact of five
random policies having same policy size for a random user, but with
different start state for each policy. Start state is 10, 15, 20, 25 and 30 for
each random defined policy, respectively. Results shown in Fig. 14
shows that for five policies return value is lower as compared to the
return value of proposed method (Policy* in Fig. 13). This indicates that
selection of start state by the proposed algorithm have good impact on
agent earning of rewards/return.

5.7. Impact of the number of episodes on the evaluation measures

In this section, we shall present the impact of the number of episodes
on both datasets for different evaluation measures.

5.7.1. ML-100 K dataset
Fig. 15 shows the impact of increased episodes on the evaluation

measures. Overall, all evaluations measures show a sinusoidal effect
with increased episodes. Fig. 16 indicates that increased episodes have a
direct impact on the reward earned by the agent. For each episode, the
reward increases except at episodes 70 and 100. After 40 episodes, the
average number of steps taken to reach the goal remains constant.
Consequently, it can be inferred that the step count per episode remains
relatively consistent, and beyond the 40-episode threshold, the agent

repeats the same steps, leading to revisits to identical states.

5.7.2. FilmTrust dataset
In the context of the FilmTrust dataset, Fig. 17 illustrates the influ-

ence of heightened episodes on the evaluation outcomes. Notably,
augmented episodes exhibit negligible effects on Precision and F-

Table 7
Results on FilmTrust dataset.

IPWR ITR SPOP S1 RLRS1 Proposed (Q-learning) Proposed (SARSA)

MAE 0.637 0.625 0.655 0.635 — — —
RMSE 0.993 0.83 0.86 0.83 — — —
Precision 0.605 0.62 0.55 0.54 0.725 0.759 0.781
Recall 0.545 0.51 0.494 0.515 0.849 0.939 0.958
Fmeasure 0.578 0.57 0.519 0.526 0.765 0.796 0.801
Item Coverage 98.2 99.63 96.1 96.1 89.07 95.07 96.21

Table 8
Five random defined policies.

Policy name Policy values

Policy* [3,0,0,1,3,1,3,1,3,1]
Policy1 [0,1,3,2,1,0,1,2,3,1]
Policy2 [3,2,1,2,3,0,1,2,2,2]
Policy3 [0,0,1,1,1,2,2,3,1,0]
Policy4 [1,1,1,1,1,2,2,2,2,2]
Policy5 [0,1,0,1,0,3,2,3,2,3]

Fig. 11. Evaluation results for five different random policies, in comparison to the learned policy (policy*), with the same start state of (21) for each policy.

Fig. 12. Evaluation results for five different random policies, in comparison to
the learned policy (policy*), with different start states for each policy.

Table 9
Five random defined policies for the FilmTrust dataset.

Policy name Policy values

Policy* [0,2,0,2,0,2,0,2,0,2]
Policy1 [0,1,3,2,2,1,1,2,0,1]
Policy2 [1,2,3,2,3,1,1,2,2,2]
Policy3 [1,1,0,0,3,2,2,3,1,0]
Policy4 [1,1,1,1,1,2,2,2,2,2]
Policy5 [0,1,0,1,0,3,2,3,2,3]

A. Iftikhar et al.

Expert Systems With Applications 237 (2024) 121541

15

Fig. 13. Evaluation results of learned policy (policy*) vs random policies.

Fig. 14. Evaluation measures results for five different random policies.

Fig. 15. Impact of increasing number of episodes on the evaluation measures.

A. Iftikhar et al.

Expert Systems With Applications 237 (2024) 121541

16

measure, while eliciting some impact on Recall and Coverage. Fig. 18
indicates the impact of increased episodes on the total reward earned,
the average number of steps taken in an episode and the percentage of
episodes finished successfully. It can be seen that the percentage of ep-
isodes finishing successfully in the starting episodes is low and increases
as the number of episodes’ increases.

In aggregate, around 30 to 35% of episodes conclude successfully at a
goal state. The findings unveil that initial episodes exhibit higher return
values, indicative of extensive state exploration by the agent. However,
this heightened exploration may not necessarily translate to significant
improvements in the recommendation process. Delving into the count of
steps taken per episode, the initial stages reveal a reduced step count.
This phenomenon could stem from the agent’s initial lack of familiarity
with the environment, potentially leading to encounters with less
favorable states. As the agent’s understanding of the environment
deepens through escalated exploration, the number of steps taken in
each episode increases correspondingly.

6. Conclusions and future work

The exponential surge in online data has led to a burgeoning market
for Recommender Systems (RSs), accentuating the demand for more
precise and contextually sensitive RSs. To address this need, we have
reformulated the RS challenge within the framework of Markov Decision
Process (MDP), seeking to enhance accuracy and contextual relevance.
Biclustering originated from the field of bioinformatics for binding
similar rows and columns together. We used biclustering for binding
similar rows and columns of user-item votings matrix. These biclusters
are then placed on SG to model an RL environment for our recommen-
dation problem. Placement of biclusters on SG is of utmost importance
for solving RL problem.

In current work, we used cantor-diagonal traversal method for
placement of biclusters on SG. A more accurate placement method can
be designed, in which nearby biclusters are more similar to each other,
while biclusters at farther grid position should be more dissimilar. For
this purpose, advance grid positioning methods like Hilbert curve or Z-

Fig. 16. Impact of increasing number of episodes on Return. The average number of steps taken in each episode and the percentage of episodes finished successfully.

Fig. 17. Impact of increasing number of episodes on evaluation measures.

A. Iftikhar et al.

Expert Systems With Applications 237 (2024) 121541

17

order traversal are suggested. In this work, we used Jaccard measure to
compute rewards. Reward value can be same for different states, thus
making agent indecisive about where to move. A more accurate reward
measuring function that may consider demographic information of users
and movies can also be designed. In this work, we used SMSR as a fitness
function to measure quality of biclusters. SMSR is not able to identify a
perfect correlation among rows or columns of a bi-cluster. A correlation
based fitness function such as PCC can be more effective as it does not
emphasize on specific magnitudes like SMSR and considers both positive
and negative correlations. Action space is limited to only four actions;
action space can be increased to include diagonal movement. In current
work, to make user-item votings matrix binary, missing votings are
replaced with a value of zero, while available voting values are replaced
with one. Thus making low and high voting values indiscriminative. A
tri-clustering algorithm can be modelled to handle this situation. This
may change overall scenario like position of tri-clusters on the squared
grid, a new fitness function that should be able to measure quality of tri-
clusters. We evaluated our proposed method on MovieLens and Film-
Trust datasets and it is observed that our proposed method out-
performed competitor methods that include RL methods, pure CF
methods and clustering methods. Also our algorithm achieved a better
start state that yields an optimal policy to achieve the goal.

As a potential avenue for future research, contextual reinforcement
learning could be extended within the existing RL framework to
encompass contextual information encompassing user demographics,
social networking information, temporal context, and item characteris-
tics. This extension has the potential to yield recommendations that are
both highly personalized and contextually relevant, thereby enriching
the user experience.

7. Funding information

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

CRediT authorship contribution statement

Arta Iftikhar: Conceptualization. Mustansar Ali Ghazanfar: Su-
pervision, Data curation. Mubbashir Ayub: Conceptualization, Meth-
odology, Software, Visualization, Investigation, Writing – review &
editing. Saad Ali Alahmari: Writing – review & editing. Nadeem Qazi:
Software, Validation. Julie Wall: Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Afsar, M. M. (2022). Personalized recommendation using reinforcement learning
(Unpublished doctoral thesis). Calgary, AB: University of Calgary.

Ahn, H. J. (2008). A new similarity measure for collaborative filtering to alleviate the
new user cold-starting problem. Information Sciences, 178(1), 37–51.

Ayub, M., Ghazanfar, M. A., Mehmood, Z., Alyoubi, K. H., & Alfakeeh, A. S. (2019).
Unifying user similarity and social trust to generate powerful recommendations for
smart cities using collaborating filtering-based recommender systems. Soft
Computing, 1–24.

Ayub, M., Ghazanfar, M. A., Mehmood, Z., Saba, T., Alharbey, R., Munshi, A. M., &
Alrige, M. A. J. P.o. (2019). Modeling user rating preference behavior to improve the
performance of the collaborative filtering based recommender systems. PLoS One, 14
(8), e0220129.

Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems
survey. Knowledge-based Systems, 46, 109–132.

Bohnenberger, T., & Jameson, A. (2001). When policies are better than plans: Decision-
theoretic planning of recommendation sequences. Paper presented at the Proceedings of
the 6th international conference on Intelligent user interfaces.

Candan, K. S., & Sapino, M. L. (2010). Data management for multimedia retrieval.
Cambridge University Press.

Cheng, Y., & Church, G. M. (2000). Biclustering of expression data. In intelligent systems
for molecular biology. In: Menlo Park: AAAI Press.

Choi, S., Ha, H., Hwang, U., Kim, C., Ha, J.-W., & Yoon, S. (2018). Reinforcement
learning based recommender system using biclustering technique. arXiv preprint
arXiv:1801.05532.

Chowdhury, G. G. (2010). Introduction to modern information retrieval: Facet publishing.
Costa, A., & Roda, F. (2011). Recommender systems by means of information retrieval. In:

Paper presented at the Proceedings of the International Conference on Web
Intelligence, Mining and Semantics.

Ejaz, W., & Anpalagan, A. (2019a). Communication technologies and protocols for
internet of things. In Internet of things for smart cities (pp. 17–30). Springer.

Ejaz, W., & Anpalagan, A. (2019b). Internet of things for smart cities: Overview and key
challenges. Internet of Things for Smart Cities, 1–15.

Ekstrand, M. D., Riedl, J. T., & Konstan, J. A. (2011). Collaborative filtering recommender
systems. Now Publishers Inc.

Fkih, F. (2022). Similarity measures for Collaborative Filtering-based Recommender
Systems: Review and experimental comparison. Journal of King Saud University-
Computer and Information Sciences, 34(9), 7645–7669.

Gao, C., Xu, K., Zhou, K., Li, L., Wang, X., Yuan, B., & Zhao, P. (2022). Value penalized Q-
learning for recommender systems. Paper presented at the Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information
Retrieval.

Ge, Y., Zhao, X., Yu, L., Paul, S., Hu, D., Hsieh, C.-C., & Zhang, Y. (2022). Toward Pareto
efficient fairness-utility trade-off in recommendation through reinforcement learning.
Paper presented at the Proceedings of the fifteenth ACM international conference on
web search and data mining.

Hammad, R., & Ludlow, D. (2016). Towards a smart learning environment for smart city
governance. Paper presented at the Proceedings of the 9th international conference
on utility and cloud computing.

Fig. 18. Impact of number of episodes on Return, steps and successful episodes.

A. Iftikhar et al.

http://refhub.elsevier.com/S0957-4174(23)02043-2/h0005
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0005
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0010
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0010
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0015
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0015
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0015
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0015
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0020
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0020
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0020
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0020
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0025
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0025
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0035
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0035
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0060
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0060
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0065
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0065
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0070
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0070
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0075
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0075
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0075

Expert Systems With Applications 237 (2024) 121541

18

Hartigan, J. A. (1972). Direct clustering of a data matrix. Journal of the American
Statistical Association, 67(337), 123–129.

Hu, B., Shi, C., & Liu, J. (2017). Playlist recommendation based on reinforcement learning.
Paper presented at the International Conference on Intelligence Science.

Iftikhar, A., Ghazanfar, M. A., Ayub, M., Mehmood, Z., & Maqsood, M. (2020). An
improved product recommendation method for collaborative filtering. IEEE Access,
8, 123841–123857.

Intayoad, W., Kamyod, C., & Temdee, P. (2018). Reinforcement learning for online learning
recommendation system. Paper presented at the 2018 Global Wireless Summit (GWS).

Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender systems: An
introduction. Cambridge University Press.

Joachims, T., Freitag, D., & Mitchell, T. (1997). Webwatcher: A tour guide for the world
wide web. Paper presented at the IJCAI (1).

Khalid, A., Ghazanfar, M. A., Azam, M. A., Aldhafiri, Y. F., & Zahra, S. (2017). Scalable
and practical One-Pass clustering algorithm for recommender system. Intelligent Data
Analysis, 21(2), 279–310.

Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., & Riedl, J. (1997).
GroupLens: Applying collaborative filtering to Usenet news. Communications of the
ACM, 40(3), 77–87.

Lee, S. (2017). Improving jaccard index for measuring similarity in collaborative filtering.
Paper presented at the International Conference on Information Science and
Applications.

Li, W., Wang, G.-G., & Gandomi, A. H. J. A. o. C. M. i. E. (2021). A survey of learning-
based intelligent optimization algorithms. 28, 3781–3799.

Li, G., Wang, G.-G., Dong, J., Yeh, W.-C., & Li, K. J. I. s. (2021). DLEA: A dynamic
learning evolution algorithm for many-objective optimization. 574, 567–589.

Liebman, E., Saar-Tsechansky, M., & Stone, P. (2014). Dj-mc: A reinforcement-learning
agent for music playlist recommendation. arXiv preprint arXiv:1401.1880.

Liu, C., & Malik, H. (2014). A new investment strategy based on data mining and neural
networks. Paper presented at the 2014 International Joint Conference on Neural
Networks (IJCNN).

Liu, H., Hu, Z., Mian, A., Tian, H., & Zhu, X. (2014). A new user similarity model to
improve the accuracy of collaborative filtering. Knowledge-based Systems, 56,
156–166.

Lu, Z., & Yang, Q. (2016). Partially observable markov decision process for recommender
systems. arXiv preprint arXiv:1608.07793.

Mahmood, T., & Ricci, F. (2007). Learning and adaptivity in interactive recommender
systems. Paper presented at the Proceedings of the ninth international conference on
Electronic commerce.

Mahmood, T., & Ricci, F. (2009). Improving recommender systems with adaptive
conversational strategies. Paper presented at the Proceedings of the 20th ACM
conference on Hypertext and hypermedia.

Mahmood, T., Mujtaba, G., & Venturini, A. (2014). Dynamic personalization in
conversational recommender systems. Information Systems and e-Business
Management, 12(2), 213–238.

Malik, H. (2013). Acoustic environment identification and its applications to audio
forensics. IEEE Transactions on Information Forensics and Security, 8(11), 1827–1837.

Mobasher, B., Cooley, R., & Srivastava, J. (2000). Automatic personalization based on
web usage mining. Communications of the ACM, 43(8), 142–151.

Mukhopadhyay, A., Maulik, U., & Bandyopadhyay, S. (2009). A novel coherence measure
for discovering scaling biclusters from gene expression data. Journal of Bioinformatics
and Computational Biology, 7(05), 853–868.

Prakash, H. R., Korostenskaja, M., Lee, K., Baumgartner, J., Castillo, E., & Bagci, U.
(2017). Automatic response assessment in regions of language cortex in epilepsy patients

using ECoG-based functional mapping and machine learning. Paper presented at the
2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W., …
Zitzler, E. (2006). A systematic comparison and evaluation of biclustering methods
for gene expression data. Bioinformatics, 22(9), 1122–1129.

RaviPrakash, H., Korostenskaja, M., Castillo, E. M., Lee, K. H., Salinas, C. M.,
Baumgartner, J., … Bagci, U. (2020). Deep Learning provides exceptional accuracy
to ECoG-based Functional Language Mapping for epilepsy surgery. Frontiers in
Neuroscience, 14, 409.

Rodriguez-Baena, D. S., Perez-Pulido, A. J., & Aguilar− Ruiz, J. S. (2011). A biclustering
algorithm for extracting bit-patterns from binary datasets. Bioinformatics, 27(19),
2738–2745.

Rojanavasu, P., Srinil, P., & Pinngern, O. (2005). New recommendation system using
reinforcement learning. Special Issue of the Intl. J. Computer, the Internet and
Management, 13(SP 3).

Sargar, R. B. (2020). Recommender system using reinforcement learning. Arizona State
University.

Sarwar, B. M., Karypis, G., Konstan, J., & Riedl, J. (2002). Recommender systems for large-
scale e-commerce: Scalable neighborhood formation using clustering. Paper presented at
the Proceedings of the fifth international conference on computer and information
technology.

Shani, G., Heckerman, D., Brafman, R. I., & Boutilier, C. (2005). An MDP-based
recommender system. Journal of Machine Learning Research, 6(9).

Silveira, T., Zhang, M., Lin, X., Liu, Y., Ma, S. J. I. J. o. M. L., & Cybernetics. (2019). How
good your recommender system is? A survey on evaluations in recommendation. 10,
813–831.

Srivihok, A., & Sukonmanee, P. (2005). E-commerce intelligent agent: personalization travel
support agent using Q Learning. Paper presented at the Proceedings of the 7th
international conference on Electronic commerce.

Stamenkovic, D., Karatzoglou, A., Arapakis, I., Xin, X., & Katevas, K. (2022). Choosing the
best of both worlds: Diverse and novel recommendations through multi-objective
reinforcement learning. Paper presented at the Proceedings of the Fifteenth ACM
International Conference on Web Search and Data Mining.

Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning: Book.
Sutton, R. S., & Barto, A. G. (1998a). Introduction to reinforcement learning, 135. MIT press

Cambridge.
Taghipour, N., Kardan, A., & Ghidary, S. S. (2007). Usage-based web recommendations: a

reinforcement learning approach. Paper presented at the Proceedings of the 2007 ACM
conference on Recommender systems.

Vodopivec, T., Samothrakis, S., & Ster, B. (2017). On monte carlo tree search and
reinforcement learning. Journal of Artificial Intelligence Research, 60, 881–936.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. Doctoral Thesis, King’s
College.

Xin, X., Karatzoglou, A., Arapakis, I., & Jose, J. M. (2020). Self-supervised reinforcement
learning for recommender systems. Paper presented at the Proceedings of the 43rd
International ACM SIGIR conference on research and development in Information
Retrieval.

Yip, K. Y., Cheung, D. W., & Ng, M. K. (2004). Harp: A practical projected clustering
algorithm. IEEE Transactions on Knowledge and Data Engineering, 16(11), 1387–1397.

Zahra, S., Ghazanfar, M. A., Khalid, A., Azam, M. A., Naeem, U., & Prugel-Bennett, A.
(2015). Novel centroid selection approaches for KMeans-clustering based
recommender systems. Information sciences, 320, 156–189.

Zou, L., Xia, L., Ding, Z., Yin, D., Song, J., & Liu, W. (2019). Reinforcement learning to
diversify top-n recommendation. Paper presented at the International Conference on
Database Systems for Advanced Applications.

A. Iftikhar et al.

http://refhub.elsevier.com/S0957-4174(23)02043-2/h0095
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0095
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0105
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0105
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0105
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0115
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0115
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0125
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0125
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0125
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0130
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0130
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0130
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0160
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0160
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0160
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0180
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0180
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0180
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0185
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0185
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0190
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0190
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0195
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0195
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0195
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0205
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0205
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0205
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0210
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0210
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0210
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0210
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0215
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0215
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0215
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0225
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0225
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0235
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0235
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0260
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0260
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0270
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0270
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0285
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0285
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0290
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0290
http://refhub.elsevier.com/S0957-4174(23)02043-2/h0290

	A reinforcement learning recommender system using bi-clustering and Markov Decision Process
	1 Introduction
	2 Literature review
	3 Methodology
	3.1 Generating binarized data
	3.2 Bi-Clustering binary data
	3.3 Measuring the quality of bi-clusters
	3.4 Placement of bi-clusters in a square grid
	3.5 Bi-cluster merging
	3.5.1 Example of bi-cluster merging

	3.6 MDP notation
	3.6.1 Transition probabilities

	4 Experimentation procedure
	4.1 Experimentation and dataset description
	4.2 Methods used for comparison
	4.3 Evaluation metrics

	5 Results & analysis
	5.1 Latency
	5.2 Return earned in each episode
	5.3 Number of steps taken in each episode
	5.4 ∈ -greedy value to balance exploration and exploitation
	5.5 Precision, Recall, Fmeasure and item coverage results
	5.6 Impact of random policies on performance
	5.6.1 ML-100 K dataset
	5.6.2 FilmTrust dataset

	5.7 Impact of the number of episodes on the evaluation measures
	5.7.1 ML-100 K dataset
	5.7.2 FilmTrust dataset

	6 Conclusions and future work
	7 Funding information
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References

