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ABSTRACT 

Data centres are at the heart of the modern digital world; However, at the same time it 

accounts for 10% of the world electricity supply. To improve energy efficiency, 

measuring energy consumption is an important step. However, it is a challenging task, 

especially in small to medium-sized data centres. Due to the setup of such facilities, it is 

not always feasible to measure the energy consumption (e.g. due to being positioned in 

mixed use buildings).  

This research project addresses this problem by providing the tools and models to help 

estimate the energy consumption of data centres, with particular emphasis on smaller 

facilities. The work made two main novel contributions.  First, energy models along 

with a web-based user-friendly tool were developed. The tool is capable of calculating 

energy consumption of each DC equipment type to then approximate the overall energy 

consumption of the facility. This tool is available for DC managers and operators. It 

uses publicly available benchmark data as input for the calculations.    

One of the limitations of the first set of models is their reliance on pre-existing data for 

specific hardware. However, there are many ways hardware can be configured, meaning 

benchmark data was not available to all types of servers. As such, the second research 

contribution was the design of new machine learning algorithms capable of predicting 

energy consumption of servers based on a small number of features within 12% error 

rate. An open source software tool, MALEP, was also developed based on the machine 

learning algorithms to automate the prediction of the energy consumption of any 

servers, irrespective of the presence of benchmark data. The software is made available 

open source under the GNU General Public Licence and downloadable from GitHub.   

Although this work focused on servers which account for the largest part of energy 

consumption in data centres, in future, we hope to extend this work to create such 

models for storage and networking equipment. 
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Part I 

 

Introduction & Literature 
 

 

 

 

 
 

“Twenty years from now you will be more disappointed by the things that you didn’t do 

than by the ones you did do.” 

 

-   Mark Twain 
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Chapter I 

1 INTRODUCTION 

Measuring power consumption is a challenging task due to the lack of affordable 

measuring units and the inherently complex nature of infrastructure setup in the data 

centres. The way it is setup, it is not practical to switch off the centre and install 

measuring units at equipment level.  

Some of these DCs are operated in the mix of an office environment sharing the power 

supply with other operations like workstations, printers and even kitchen appliances. 

This makes it harder to isolate the actual power consumed by the DC equipment.  In 

relation to such a mixed-up environment, there is a motivational aspect as well. The 

bills may be paid for the whole setup, hence there may not be enough pressure to be 

more energy efficient. So, there is no drive for measuring the actual power utilized by 

the DC.  

 Whatever the reason, if it is not feasible to measure the power consumption physically, 

we need to consider alternative approaches. And we chose to estimate it through 

modelling and prediction. 

This research project identifies the existing attempts and limitations in modelling and 

predicting the equipment level energy consumption in data centre facilities. One major 

limitation in existing attempts is that they are focusing only on CPU energy models, not 

the overall features of servers. Lack of availability of these models in the form of 

enterprise tools for data centre operators to model and quantify their equipment level 

consumption is another limitation. 

We investigated how best to address the limitations in the existing models and 

techniques. As a result, we developed models which are capable of assisting the data 

centre operators, managers and other stakeholders. The models help to calculate both 

total and break down energy consumption of IT and infrastructure. They also help in 

calculating other benchmarking matrices like PUE. This information enables DC 

stakeholders to make informed and effective decisions in energy efficiency of their 

respective portfolios. Analysis and details of the improved models are discussed in 

chapter 3. 
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We then built a complete web tool to implement models discussed in chapter 3 and 

integrated it as a new module into the existing Eureca application. Data centre operators 

can login to the Eureca application and create their energy portfolio. They can then use 

the new component to calculate the energy consumption of each equipment category 

and the total number. The new tool implementation and evaluation details are presented 

in chapter 6. 

The models discussed above rely on some input parameters like fully utilized and 

idle power consumption of each individual equipment. While it is not difficult to find 

out this information for standard specifications, more often than not, data centres use 

custom built equipment. It is not realistically possible to find out or calculate those 

consumption values for such specifications. This challenge presented us the research 

question of how to predict the power consumption of servers using publicly available 

and reliable data. While it would be beneficial to apply this prediction into all sorts of 

equipment, we only focused on servers to perform our analysis, implementation and 

result benchmarking. The main reason for choosing only servers was because they are 

by far the biggest energy consuming IT equipment in a data centre facility. Also, 

compared to other equipment like storage or network, it is very common for servers to 

be built with custom specifications. 

We looked into a number of approaches of solving this problem, but machine 

learning looked to be the best technique. The main reason was the availability of 

reliable data for known specifications in the public domain.  Machine learning is very 

much data driven and renowned for its ability in predictions with the existing data to 

feed training models. 

A general overview of related Machine Learning techniques followed by 

comprehensive model analysis using Multi Linear Regression and Deep Learning are 

presented in chapter 4 and 5. 

The best way to evaluate models is by implementing   a proof of concept application. 

So, we built an open-source enterprise tool, incorporating the ML regression and deep 

learning models. We called it MALEP (Machine Learning Energy Predictor) and made 

it available to download from a well-known public code sharing repository GitHub 

under https://github.com/jayasanjeewa/MaLEP 

Implementation details of the MALEP tool is discussed in chapter 7. The models 

were thoroughly evaluated by using multiple scenarios with real-world test data. We 
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achieved the predicted energy consumption with 12% of error percentage in the best-

case scenarios. 

The conclusion and the future work are discussed at the end. 

 

1.1 Context & Motivation 

With more and more devices connected to the internet, services offered over the internet 

are increasingly becoming affordable. This is mainly due to the fact that these services 

are provided by the shared resources which are hosted in data centres. When the 

resources are shared, the cost of the services tends to be low.  

Data centres provide scalable infrastructure solutions at an affordable price for both 

organizations and individuals. While they enable complex and distributed computer 

systems to become highly available (HA), they also simplify the platform solution 

capability.  

Being one of the highest energy consumers to power the infrastructure and processing 

capability, a major challenge data centres are facing today is improving their energy 

efficiency.  57% of computers in the US are housed in small data centres [Cheung, 2014]. 

Most of the big data centres are usually operated by corporate companies.  For them 

energy efficiency is the main objective in achieving operational cost saving targets.  Small 

to medium-size operators are isolated and not so motivated in achieving a high level of 

efficiency.   

Among all other factors, the most important aspect in making these DCs more energy 

efficient is measuring the energy consumption. Without being able to measure actual 

consumption, it is hard to find out where to look for improvements.    

 

So, the question becomes if all data centres are capable of measuring their energy 

consumption? 

The simple answer is “no”. 

 Due to the high complexity of the setup, measuring the energy consumption of the DC is 

not a straightforward process, especially for small to mid-sized operators.  
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While the high cost of measuring hardware technology is the main reason, regulations 

and data security are some other reasons which contribute to make energy consumption 

measuring a challenging piece of work. These reasons are again more of a challenge for 

smaller to medium-sized data centres. 

 

In this project we researched how to identify models to profile the energy consumption 

for each category like servers, storage and networking devices.  We then built a proof of 

concept tool to implement and test those models and then to validate the results.   

 

Servers are the biggest energy consumers in DCs and typically accounts for about 56% 

of total power consumption [Pelley et al, 2009].   The total energy consumption models 

we developed and implemented for servers need some input parameters which are not 

straight forward to find out. Idle and fully utilized server power consumption are such 

attributes. 

Usually these standard energy consumption rates for well-known specifications are 

published and available online. However, most of the time servers in the DCs are not into 

these well-known specs, hence it is very difficult to know their energy consumption rates.  

 

So, we directed the research into predicting the energy consumption of the servers by 

leveraging machine learning techniques.  

 

We developed a second tool MALEP, to train ML model on published server 

specifications and then to predict the energy consumption for new or unknown 

specifications.   

1.2 Research Questions 

        The biggest challenge of this project is the lack of knowledge on the actual power 

consumption on small to mid-sized data centres.  So, the first step is identifying the 

existing attempts on this front. Analysis on such research work helps the understanding 

of the research context as well as identifying the drawbacks of them to decide where to 

direct our research.  
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If for any reason, it is not feasible to physically measure the power consumption, how can 

we estimate it? The research work on developing required models and algorithms in 

helping this approximation plays an integral role in this. 

 

Having identified the models, how can they be made available for the real-world data 

centre stakeholders to calculate their respective consumption. 

 

In line with that, table 1 lists the research questions which are investigated in this project.   

 

RQ1 what are the current measures & methods used to measure 

energy consumption? 

RQ2 How can we estimate the energy consumption in data centres 

without physically measuring it? 

RQ3 How can we automate the energy calculation process? 

Table 1 : Research Questions 

 
This thesis proposes an approach to formally answering these research questions. 

1.3 Research Contributions 

The main contribution of this research is a novel approach to measuring the energy 

consumption in the data centre facilities. 

 

First by modelling the variables of each equipment types and equations for estimating 

the total energy consumption. Then for idle and utilized power consumption of servers, 

AI algorithms were extensively leveraged to predict each aspect of consumption. Each 

new research contribution is as below. 

 

 

1. Models for approximately calculating equipment category level and the total 

energy consumption in data centres. 
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2. A web tool implementing above models and equations for data centre operators 

and managers to calculate the energy consumption in their DCs. The tool also 

provides them the capability of estimating the potential energy efficiency of any 

changes to the equipment profile.   

 

3. A set of AI algorithms based on linear regression, deep learning and neural 

networks in predicting the energy consumption of servers with uncommon 

specifications. 

 

4. Open Source Product: MALEP, A tool developed by using modern architectural 

patterns and technology to incorporate models and algorithms.  

 

1.4 Thesis Outline 

This thesis is organized into nine chapters. A specific aspect of the research work is 

discussed and presented in each chapter.   

 

Figure 1 illustrates the general overview of the structure: 
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Figure 1: Structure of the Thesis 

 

Chapter 1 presents the insights into the research background, motivation and research 

questions. It also highlights individual research contributions.  

 

 Chapter 2 presents the literature review on existing attempts of measuring the energy 

consumption. We searched several information sources for primary research and 

extracted key information, along with metadata. A background on terminology and 

concepts with an example is provided in the latter part of this chapter. 

 

Chapter 3 starts with an analysis on power consumption, outlining the equipment 

types, along with the attributes studied under this research. It describes the energy 

model calculator for each type of data centre equipment.  Under each section, the 

related equation and variable definitions are also presented.  

9. Conclusion and Future Work

8. Evaluation of MALEP Model Evaluation

7. MALEP Tool Implementation

6. Calculation Model Implmentation

5. Deep Learning to Predict Server Energy Consumption

4. Linear Regression to Predict Server Energy Consumption

3. Model Based Estimation

2. Literature Review

1. Introduction



9 
 

 

Chapter 4 starts with the research questions related to machine learning and 

justification on why AI and ML were chosen to solve some of the research problems.  

We then discuss the related ML techniques. Moving onto the model analysis, details 

on different types of regression models applied with examples presented.  At the end, 

we discuss how we leveraged ML to successfully predict the energy consumption of 

servers and how they were executed on the test data. 

 

Chapter 5 As seen in chapter 4, the results in predicting server energy consumption 

using linear regression models can be further improved.  So, we turned the focus into 

deep learning and discussing the basics of the DL and why DL was chosen for 

predicting server energy consumption. Model analysis including feature selection 

decisions are also presented at the latter part of the chapter. 

 

Chapter 6 focuses on   the implementation and evaluation of the energy calculator web 

tool. Discussion on the design patterns and the technology stack chosen is followed by 

the application workflow design.  

 

Chapter 7 discusses the details of the MALEP tool implementation by outlining the 

architecture and the technology. How Python and related libraries were used to 

develop neural network models as a pluggable prediction engine is discussed with the 

illustrations. We then explain how we designed and developed the out of the box 

integration for external application. Microservices and the related restful web services 

we built for the integration are explained with usage examples. The other usage 

channels like desktop client and the web-based tool offering is also discussed with 

examples.  

 

Chapter 8 evaluates MALEP using a wide variety of scenarios. Analysis on the 

evaluation results on regression and deep learning models, followed by a results 

comparison for both regression and deep learning models are detailed. We present the 

conclusions drawn based on the result analysis at the end.  

 

Chapter 9 concludes the research work.  Both short term and long-term future work 

are discussed. 
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1.5 Research Workflow 

We first reviewed the existing work and then extracted the results. The extracted 

features were analysed and synthesized for better understanding of the research 

problems.  Details and critical summary on the existing literate review are presented. A 

detailed analysis was carried out to fine-tune the research questions and to guide the 

research towards addressing the refined research questions.  

  

The next stage was to study the existing modes and understand how to align our 

research to come up with new models in estimating the energy consumption of each 

equipment type in the data centres.  

 

After carrying out a gap analysis on the existing approaches, we proposed improved 

new models. They were implemented and evaluated using real world benchmark data. 

At the model evaluation stage, it was evident that some of the model attribute values 

like idle and utilized power consumption not available for most of the server models in 

the data centres. To address this problem, we directed researched into artificial 

intelligence and machine learning.  

 

Both linear regression and deep learning models were studied, analysed and the 

implemented as enterprise applications. Those models were evaluated using publicly 

available benchmark data to test the efficiency of the MLL models.  

 

Figure 2 shows the research methodology as in a workflow diagramme.  

 

 

Figure 2 :Research methodology workflow 

  

Litereture 
Review Model Analysis Finalising 

Models
Implementation Evaluation
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Chapter II 

2 LITERATURE REVIEW       

2.1 Introduction  

This chapter has the details on the review of existing literature in both academia and 

the industry in the context of estimating energy consumption in data centres. Firstly, basic 

terminology is explained, followed by the context and the existing work related to this 

research. Details on energy efficiency matrices and how they are utilized to benchmark 

the results are also explained. 

The main purpose of this section is to present our effort in identifying and rationalizing 

the existing research in the area of energy consumption measuring in data centres, in 

particular at the equipment level.  Due to the inherent complexity in the equipment 

organization and setup, realistically it is very difficult to measure the consumption 

physically.  So, our attention was directed towards the publications in the area of energy 

consumption modelling and estimation.  

 

2.2 Problem Statement 

With more and more devices connected to the internet, services offered over the 

internet are increasingly becoming affordable. It was in 2008 that the number of devices 

connected to the Internet exceeded number of people living in the world [Evans, 2011]. 

These devices may not necessarily be computers, smartphones or tablets. They even 

include monitoring devices which are attached to the farm animals. [Avgerinou, 2017] 

discusses the details of a survey of data centres with their PUE values. 

There is an increasingly big demand for the cloud hosted services and infrastructure 

on the cloud. These cloud-based services provide infrastructure, platform and application 

software which are much cheaper than running them on your own. The facilities where 

these services are hosted are called data centres. Depending on the size, they run a number 

of pieces of IT equipment like computer servers, storages, network equipment and need 

the infrastructure services like cooling mechanisms which are used to control the heat 



12 
 

within the facility. There are some other utility services like lighting which also fall into 

the category of infrastructure. 

Data centres and server room facilities are the backbone of digital economy. They 

provide the digital infrastructure and the connectivity for public, corporate and small 

business users. Opting for such services enables business users to focus on solving their 

business problems rather than spending time and effort on basic technical work like 

platform set up and maintenance. 

Pooling and sharing the IT resources has enabled the data centres to provide their 

service at an increasingly affordable price. They also employ software-based sharing 

techniques like virtualization and offer cloud-based solutions for infrastructure, services 

and application. 

Server rooms in a data centre usually consist of computer servers, storage devices, 

network equipment and cooling mechanisms such as air conditioners. Depending on the 

utilization strategy, the power consumption of each category varies. 

All of this equipment is powered by electricity. Even in small and mid-sized 

enterprises (SMEs), the power and cooling of data centre equipment can easily cost tens 

or hundreds of thousands of dollars a year. Data centres are energy hungry and it is 

estimated that 20% of the budget of a typical DC is on energy consumption [Infosys]. 

The carbon footprint created by data centres is a major concern and the total of the 

entire world is believed to be more than the total aviation industry [Bashroush, 2016]. In 

2013, US data centres consumed an estimated 91 billion kilowatt-hours of electricity 

which is equivalent to the production of 34 large coal-fired power stations. This was 

expected to increase to 140 billion annually in 2020 [14]. About 2% of the global CO2 

emission is by data centres and the overall IT sector, [Avgerinou, 2017] which is a big 

concern. With the ever-increasing demand for IT processing power worldwide, this trend 

will only move upwards. 

Data centres consume extreme amounts of high energy, so their environmental 

footprint is considerably high. So, it is very important to identify the areas to improve 

efficiency and reduce power consumption 

However not every data centre is large scale and well-equipped with monitoring 

provisions. Small to medium data centres have not got the capability to measure their 

individual energy consumption and environmental footprint. 
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In some industries, economic and environmental pressure forces the small players to 

integrate with large data centres which are already equipped with measuring the 

consumption and applying the efficiencies. However, due to various reasons, this trend is 

not happening in other areas where operating small data centres is still the best practical 

solution. That is why it is very important to research on improving efficiency on smaller 

to mid-sized data centres. 

A number of initiatives are already in place to improve the efficiency of the server 

room facilities. More energy efficient cooling units and energy saving building design are 

some of the examples 

In the process of improving energy efficiency, measuring the energy consumption of 

a data centre is the fundamental requirement. Large data centres use modern measuring 

equipment but most of the time, this is not feasible for small to mid-sized data centres due 

to various reasons. While the unaffordable cost of those measuring units is the main 

reason, things like un-supported infrastructure and unadaptable legacy infrastructure are 

some of the other reasons. 

One solution to overcome this barrier is to look into alternative ways.  Estimating via 

the modelling energy consumption is one way of doing it. This research mainly focuses 

on modelling energy consumption and testing, validating them to measure small to mid-

sized data centres. 

2.3 Survey 

To examine the existing work on this area, we conducted a survey on published 

literature measuring the data centre energy consumption. After finalizing the keywords, 

a search on the well-known research information sources was performed. The retrieved 

results were put through a filtering process to select only the relevant ones and then 

analysis was carried out on. At the end, conclusions were made based on the outcome of 

analysis.   

 

Figure 3 below presents the steps of the literature survey: 
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Figure 3 - Literature survey steps 

 

2.3.1 Keywords and search queries 

The quality and the relevance of the results of a survey depend on the keywords. The 

list of keywords used in the search queries are listed below. 

- Data centre  

- Energy Consumption OR Energy Usage 

- Estimation OR Modelling OR Predicting 

 

2.3.2 Information Sources 

We searched in the well-known information sources for published literature. Table 2 

lists down the information sources used. 

 

Source Reference 

IEEE Explore https://ieeexplore.ieee.org 

Google Scholar https://scholar.google.com 

ACM Digital Library https://dl.acm.org 

Semantic Scholar http://semanticscholar.org 

Table 2 :  Information Sources 

 

Keyword 
Search

Results 
Filtering

Result 
Analysis Conclusion
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2.3.3 Exclusion Criteria 

To study more relevant and related work, a filtering of the results was carried out by 

applying an exclusion criterion on the results obtained by the search. Table 3 lists down 

the exclusion criteria. 

 

Criteria 

Number 

Criteria 

1 Publication year outside of 1990 and 2017 

2 Publication not in English 

3 Publication is too short or too long 

 threshold was set as 

- No less than 2500 words 

- No more than 7000 words 

4 No Concise abstract, summary, conclusion. 

Otherwise it is hard to understand the models, or the techniques applied 

in measuring or estimating the consumption. 

Table 3 : Exclusion Criteria 

 Not many researches before 1990 have been published, mainly due to the internet was 

not available during that time. 2017 was the year this review was conducted, hence why 

the upper limit. Due to the practical reasons, the language chosen of this research was 

English, so any publication not in English was excluded. When the publication is too 

short, it is not easy to draw any conclusion out of it. On the hand, when it is too long, it 

is equally difficult to read all of it. Abstract, summary or the conclusion are the areas 

where the publication is summarised. When such areas are not concise or clear, it is 

difficult to understand the context, or the research methodologies applied.  
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2.4 Results Analysis 

2.4.1 Filtered Results 

Table 4 lists down the filtered results after applying the exclusion criteria  

 

Reference Title Author Year Source 

R1 Accurately Predicting the Energy Consumption of Your Data Centre P. Bemis 2012 Google Scholar 

R2 Measuring and Analyzing Energy Consumption of the Data Centre  T. Makris 2017 Semantic Scholar 

R3 Power prediction for Intel XScale/spl reg/ processors using performance 

monitoring unit events 

G. Contreras,  

M. Martonosi 

2005 IEEE Explorer 

R4 Complete System Power Estimation Using Processor Performance Events W.L Bircher, 

L.K John 

2012 IEEE Explorer 

R5 Full-System Power Analysis and Modelling for Server Environments D. Economou et 

al. 

2006 Semantic Scholar 

R6 Analysis of an Energy Proportional Data Centre R. Lent 2015 ACM DL 
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R7 Run-time Energy Consumption Estimation Based on Workload in Server 

Systems 

Lewis et.al 2008 ACM DL 

R8 Real Time Power Estimation and Thread Scheduling via Performance 

Counters 

 

K.Sing, M. 

Bhadauria 

2009 ACM DL 

R9 Run-time modelling and estimation of operating system power consumption 

 

T. Li, L.K. John 2003 ACM DL 

R10 RAPL: Memory power estimation and capping 

 

H. David et al. 2010 IEEE Explorer 

R11 Energy Conservation in Heterogeneous Server Clusters 

 

T. Heath et al 2005 ACM DL 

R12 Measuring Server Energy Proportionality 

 

C. Hsu 2015 ACM DL 

R13 Power monitors: a framework for system-level power estimation using 

heterogeneous power models 

T. Bansal et al. 2005 IEEE Explorer 
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R14 A Methodology to Predict the Power Consumption of Servers in Data 

Centres 

 

R. Basmadjian et 

al. 

2011 ACM DL 

R15 Distributed dynamic speed scaling  

 

R Stanojevic, R 

Shorten 

2010 Google Scholar 

R16 Cutting the Electric Bill for Internet-Scale Systems    Qureshi et al. 2009 ACM DL 

R17 D-Pro: Dynamic Data Center Operations with Demand-Responsive 

Electricity Prices in Smart Grid 

P Wang et al. 2012 IEEE Explorer 

R18  A Comparison of High-Level Full-System Power Models S Rivoire et al 2008 ACM DL 

R19 Minimizing Electricity Cost: Optimization of Distributed Internet Data 

Centers in a Multi-Electricity-Market Environment 

L Rao  2010 IEEE Explorer 

R20 Server selection for carbon emission control Doyle et al. 2011 Google Scholar 

Table 4 results breakdown: Search Results 
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2.4.2 Results breakdown  

Table 5 lists the number of results retrieved.  

 

Information Source Number of results 

IEEE Explore 6 

Semantic Scholar 2 

ACM Digital Library 9 

Google Scholar 3 

Table 5 : Results breakdown 

Pie chart below visualises the results: 
 

 

Figure 4:Results Breakdown 

 
 
 
 
 

2.5 Detailed Analysis on Related Work 

We studied the literate retrieved in the survey (section 2.3) and other related work. As a 

result of that effort we present the analysis on them below. 

6

2
9

3

Breakdown of Results

IEEE Explore Semantic Scholar ACM Digital Library Google Scholar
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Measuring actual energy consumption is the most important aspect of analysis on 

energy footprint. Measuring involves both energy available and consumed. One way of 

doing this is by modelling resource usage in both hardware and software level. 

[Noureddine, Rouvoy and Seinturier, 2013] is a review of such energy measurement 

approaches. 

 

System-level metrics are used in modelling processor power consumption by considering 

the correlation between power consumption and application execution. [Bircher and John, 

2007] 

 

Hardware support for virtualization is another aspect as it is a major mechanism used in 

data centres to deliver low-cost services. Virtualization helps to deliver abstract 

independent server units by utilizing the same hardware underneath. How to measure 

and apply the energy efficiencies in this area is discussed in detail in [Newcombe, Data 

centre energy efficiency metrics] 

 

When it comes to measuring the energy consumption of software applications, it is broken 

into Active, Waiting and Idle consumption. A software application is not used 24 X 7 

even though it may have a non-functional requirement to make it available all the time. 

Analysis of energy efficiency in a software application is discussed in [Noureddine, 

Islam, and Bashroush, 2016] 

 

Using hardware performance counters to estimate run time energy consumption is 

discussed in [Lewis, Ghosh, and Tzeng, 2008]. Data centres usually over-provision the 

power supply to deal with unexpected scenarios. This results in under-utilization in 

capacity. Due to this, it is important to quantitatively identify the relationship between 

power consumption and system-level thermal load to optimize the power capacity. 

 

IT equipment utilization percentage is identified as an important aspect of energy 

efficiency. When a piece of equipment is highly utilized, it runs at a higher energy 

efficiency rate. 

 

Green Grid is a non-profit consortium (www.thegreengrid.org) that works to improve IT 

and data centre resource efficiency around the world.  They have developed a number of 
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metrics to help with achieving this. ICT Capacity and Utilization Metrics [Green Grid 

ICT-Capacity-and-Utilization-Metrics, 2017] is one of them and it deals with ICT device 

utilization. 

 

Data centre maturity model [The Green Grid Data Centre Maturity Model, 2011] by 

Green Grid introduces capability descriptors to help data centre users to benchmark 

current performance. This helps to identify the improvements and innovations to 

achieve higher efficiencies. 

 

A lot of work has been done in the area of how to reduce the energy consumption while 

offering the same computation power in the data centre. 

 

Electricity cost per computational unit varies from one geographical location to another. 

The option of exploiting this for advantageous purposes using distributed systems is 

discussed in [Qureshi et al., 2009]. One option explained is the usage of modern 

distributed systems to get the most computations done in the data centres where 

electricity is cheaper. How to optimize a distance-constrained energy price is another 

aspect discussed in it and conclude that even existing system may be able to save 

millions of dollars a year in electricality costs. The model the systems energy 

consumption of clusters as being proportional and near linear. 

 

An algorithmic approach to run processors at dynamic speed scaling is discussed in 

[Stanojevic and Shorten, 2010]. They propose low-overhead fully decentralized 

algorithms which adjust the processor speed based on the load to solve the problem of 

non-linear relationship between energy consumption and the performance. Simulations 

based evaluation is used to measure the efficiency of the optimal solution. The adoption 

of these algorithms indicates a possible cost reduction between 10 – 40%. 

 

An algorithm which formulates the electricity of the cloud as a flow network to 

minimize energy cost is presented in [Rao et al., 2010]. 

 

An algorithm which uses corrected marginal cost algorithms to minimize electricity cost 

is presented in [Wang, 2012]. 
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An algorithm which minimizes the costs function of the carbon intensity and average 

job time is presented in [Doyle, O’Mahony, and Shorten, 2011]. They used a traffic 

generator to simulate the performance of the algorithms. Their results imply that carbon 

emission can be reduced little effect on the performance. 

 

[Giuliani et al, 2011] presents the details of how they attempted to estimate the power 

consumption of data centre servers and storage. They decomposed the design process 

into multiple modelling phases and the best case error rate of the models evaluations 

was 2%.  

[G. Contreras and M. Martonosi, 2005] predicts server and memory power consumption 

by using performance counters and events in the processor core. They apply a linear 

regression method to leverage the models.  

[Rivoire, 2008] compares the full system power models based on resource utilization. 

Their focus is on models enabling specific energy efficiency optimization on specific 

machines, from laptops to servers. Their model evaluation using wide variety of 

benchmark machines present some useful information on machine whose dynamic 

power consumption is not dominated by the CPU and also the ones with built in power-

managed CPUs. 

[Fan et. al, 2007] modelled the power usage by analysing the CPU utilization in a large-

scale server cluster. They studied the characteristics of up to 15 thousand servers and 

presents the results. By using their modelling framework to estimate the potential of 

power management schemes, they conclude that even in nine-tuned application, there is 

a considerable gap (up to 16%) between achieved and triracial peak power usage.  

 [Heath et al., 2005] built a heterogeneous server cluster to measure the power 

consumption using request distribution analytical models they developed. They have 

also modelled resource utilization using the time it takes to send a request to another 

node to determine maximum throughput and power.  

[Kadayif at al., 2001] used software utility-based virtual energy counters to estimate the 

energy consumption of equipment that could even be used at a very low level like 

registers, memory, and address buses.  
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[Joseph & Martonosi, 2001] proposed usage of hardware performance counters as 

proxies to estimate the energy consumption of processors. They also employed a 

sampling-based approach to measuring signal transition activity within the processors, 

which is a good indicator of energy consumption.   

[Ranganathan, 2006] generated customizable power utilization models on servers which 

can then be applied to others by using software simulators. 

[T. Li, L.K. John, 2003] presents power models for the run-time operating system. They 

managed to achieve an error percentage within 1% of their cumulative OS-level energy 

consumption models.  

 

[H. David, 2010] used a new approach to measure memory power consumption and 

utilized it to improve efficiency. The propose new power measuring and power limiting 

algorithms for main memory. Their evaluation shows that the algorithms are capable of 

achieving 40% less performance impact, compared to other baseline power limiting 

models. 

 

Carbon emission is one of the biggest problems faced by humankind. It is a major 

contributor to many environmental issues including global warming. 

The carbon footprint which is also called the carbon dioxide emissions coefficient is the 

measurement of greenhouse gas including CO2 by an activity. The activity in question 

related to this research is the operation of a data centre. The carbon footprint of a data 

centre can be defined as the carbon emission of the electricity consumed by the data 

centre [Bouley, 2012]. The US Environmental protection Agency (EPA) has set a target 

of reducing the carbon footprint by 20% for government data centres. In Europe, all 

countries of European Union have agreed to reduce the carbon emission level of 1990 

by 8% in 2012 [Bouley, 2012]. 

 

The location of a data centre plays a major role in the carbon footprint. As an example, 

a data centre located in an area where power is generated in more environmentally 

friendly ways would generate a smaller carbon footprint, compared to a similar size data 

centre located in an area where most of the power is generated using coal-fired stations. 

Iceland is a good example of the former case where most of the power comes from 

renewable energy sources. 
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2.6 Critical Analysis Summary 

Based on our survey results, there has been a significant amount of research published 

on estimating the data centre energy consumption. However, most research focused on 

CPU counter-based approximation.  

Main drawback of [G. Contreras and M. Martonosi, 2005] is that their models work for 

CPUs but are not accurate enough for predicting memory power consumption. That’s 

because there being no direct relationship between CPU performance events and 

memory utilization. Also, the models are not abstract enough to be extended to other 

components beyond CPU and memory.  

The drawback of [Fan et. al, 2007] approach is that it is more leaned toward the CPU 

utilization. Hence it did not take other server features like memory and age into account. 

The assumption of all the components are linearly independent in [Rivoire, 2008] and 

restricts the generation of complex models. Further to that their calibration suit being 

based towards the idle case produces worst-case errors at the model evaluation using 

high utilization benchmark data. 

 The limitation of [Heath et al., 2005] is that it can only be applied to clustered servers, 

but most servers in data centres are not formed as clusters.   

 Due to heavy reliance on simulated OS level parameters, [T. Li, L.K. John, 2003] 

models cannot be applied to the broader range of equipment power consumption 

estimations.  

 

The limitation of [H. David, 2010] is that it does not cover the other energy 

consumption aspects. 

 

[Stanojevic and Shorten, 2010] evaluated the algorithms only on synthetic scenarios. It 

lacks the dynamic speed scaling algorithms testing using realistic traffic models.    
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2.7 Summary 

What motivated us to carry out this particular PhD research is discussed at the top of 

this chapter. The research questions we have directed the research upon and how this 

thesis is organized is provided next. 

  

We reviewed and presented the existing literature on estimation and prediction of 

energy consumption in data centres. Details on matrices used to benchmark energy 

efficiencies in DCs is also discussed with some example use case scenarios.  

 

To address this area, we decided to direct our research towards equipment level 

modelling and machine relearning algorithms-based approximation by utilizing existing 

data from reliable sources.  
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Part II 

 

Analysis and Modelling 
 

 

 

 

 

“A man is a success if he gets up in the morning and gets to bed at night, and in 

between he does what he wants to do.” 

                                                 -Bob Dylan 
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                                                      Chapter III 

3 MODEL BASED ESTIMATION  

3.1 Introduction 

This chapter provides an overview of the basic concepts and comprehensive model 

analysis on estimating the energy consumption of each data centre equipment type.  

3.2 Background on Energy Consumption 

Energy consumption in data centres can be categorized into two stages. 

 

1. Initial setup: First installation of the equipment and facility. This includes 

installing servers, air conditioners, and building racks 

2. Operation of the data centre: Running the facility and IT resources 

 

The focus of this research is only on the operational aspect. 

 

Total energy consumption of the data centre includes the wastage during the power 

transmission from the generators to the point of use. Due to the difficulty of measuring 

losses during the transmission, this research focuses only on measuring power 

consumption within the data centre facility. 

 

Measuring the total and equipment level energy consumption paves the ways for making 

informed decisions on energy efficiency.  

 

As in equation 1, the total energy consumption is the summation of the total 

consumption of computation, Communication, and Infrastructure. 

 

!	#$%&' = !	)$*+,%&%-$.&' +

																																				!	)$**,.-0&%-$. + !	1.23&4%3,0%,35  

Equation 1:Total DC Energy Consumption 
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Computation is mainly the servers with processing, memory and input/output handling. 

Communication is network devices which provide the connectivity between servers.  

Cooling systems like air conditioners and lighting in the premises fall into infrastructure. 

 

Processors level power management needs to be taken into account in measuring 

computational power consumption. Different products employ different power 

management techniques and use multiple voltage domains for cores, cache and memory. 

 

Data centres run “always-on” mode. Even when no processing taking place, all the 

equipment is still kept on active idle mode. This has both advantages and disadvantages. 

The biggest advantage of this strategy is relatively less overheads. It is because no 

application process, boot-up or warming-up is required as they are already up and 

running. These overheads can easily be overcome with a good strategic design model.  

The disadvantage is obviously the wastage of power to run the equipment when they are 

not being utilized. 

When measuring the server energy consumption, both utilized and idle power should be 

taken into account. 

Storage devices and main memory are the highest power consumers after processors. 

Given that system components interact with each other, focusing on the individual unit 

may not be the best approach from the system standpoint. 

3.3 Energy Efficiency Metrics 

There are two major areas of data centre energy consumption. They are as below: 

 

1. Information Technology (IT): The energy used by IT equipment. Examples are 
servers, storage, and networking equipment. 

 

2. Infrastructure: The power consumed by the infrastructure equipment like air 
conditioners and lighting. 

  

Several matrices have been proposed to identify the energy efficiency in data centre 

facilities. The one from the green grid is one of the most popular matrices. 
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3.3.1 The Green Grid Benchmarking Standards 

The Green Grid (www.thegreengrid.org) is a leading trade association in Information 

Technology that consists of IT professionals. They are actively working on improving 

data centre energy efficiency. In line with this objective, they have proposed two major 

benchmarking standards of DC energy efficiency, which have been adopted by the 

broader research community and the industry. The two matrices are as below: 

 

3.3.1.1 Power Usage Effectiveness (PUE) 

 
PUE is an indicator of a data centre deficiency, introduced by the Green Grid 

[greengrid.org] 

It is an excellent indication to see if a particular data centre needs any improvement in 

the process or the technology. Figure 5 shows how the total power coming into DC is 

consumed by IT and Non-IT equipment. 

 

 

Figure 5:Energy usage in DC 

So, the PUE is defined as in equation 2 
 
 

67!	 = 	
#$%&'	5.5389	0$.4,*5:	;9	&	:&%&	05.%53
#$%&'	5.5389	0$.4,*5:	;9	1#	5<,-+*5.%

	 

Equation 2:PUE 

IT EquipmentsInfrastructurePower IN

Total Power

UPS

Servers

Storage

Cooling
Lighting

Network
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The ideal but non-realistic PUE value is 1 which means all power in the facility is 

consumed by IT and non-infrastructure equipment like cooling fans, air conditioners, or 

light bulbs used in DC. Also, no energy loss at all in the transmission, conversion or 

consumption. 

In a real-world scenario, a value around 2 is considered to be an average case for a data 

centre, meaning that about 50% of the energy used for non-IT equipment like coolers. A 

value between 1 and 1.5 is considered as efficient.  

 

Case Study 

Below is an example: 

 Let us assume the total energy used by the DC is 100MW and a breakdown of each 

aspect as in table 6. 

 
 Equipment type Example 

consumption (MW) 

Total (MW) 

IT Servers 25 40 

Storage 10 

Network devices 5 

Infrastructure Air Conditioners 35 60 

Cooing Fans 10 

UPS 10 

Lights 5 

Table 6:Energy Consumption Example 

 
 These example figures are visualized in a pie chart in figure 6 below: 
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Figure 6:Breakdown of Consumption 

 
applying the equation above, we get the PUE as below: 

 
 
 
 
 
 
 
 

 
Drawbacks of PUE 
 

Even though PUE is an excellent matrix for benchmarking data centre efficiency, there 

are a few drawbacks. Major one is that some environmental factors can have an impact 

on PUE. As an example, in the summer months, PUE can be low compared to colder 

months as more energy is spent on air conditioners and other cooling equipment [P. 

Bemis, 2012] 

3.3.1.2 Data Centre Infrastructure Efficiency (DCiE)  

This is also introduced by the Green grid.  

DCIE is the reciprocal of Power Usage Efficiency (PUE). 

 

 DCiE  = 1/ PUE 

Equation 3:DCiE 

 
PUE = Total Energy / IT Energy 

                   = 100 / 40 

                    = 2.5 
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3.4 Power Consumption Analysis 

Understanding the basic concepts around DC energy consumption is an integral part of 

model development. Details on each equipment category and associated variables of the 

total power consumption models are discussed in this section. 

3.4.1 Categorization  

We studied the energy consumption in data centres under the equipment categories 

listed under the subsections below. This is due to the differences in characteristics of each 

category and parameters associated with them. That helped us to come up with component 

level models which contribute to the total energy consumption. 

3.4.1.1 Server  

     Servers provide the vital computation and processing power but not-surprisingly 

require a significant amount of energy. Servers consume power not only when they are 

utilized but when in idle mode as well. Idle power consumption can be considerably high 

as much as 50% of the fully utilization power [L. Barroso, U. Hölzle, 2007] and that is a 

major factor when analysing server power consumption. Due to the relatively high-power 

consumption during idle mode, it is important to keep the server utilization at a higher 

percentage to improve the efficiency of a data centre.  

3.4.1.2 Storage  

Data is stored on hard drives and they contain a number of disks inside. There are two 

common types of hard drives named - HDD (Hard Disk Drive) and SSD (Solid State 

Drive). SSD offers faster read/write operations and low latency but at the same time are 

more expensive compared to HDD.  

The power consumption of a storage disk depends on the number of disks it contains. 

 

3.4.1.3 Network 

    Network equipment provides the connectivity between computer devices, mainly the 

servers. This equipment (normally network switches) contains a number of ports. The 

energy consumption of a network switch is related to the number of ports it 

has. Compared to other equipment, network devices utilize less energy. 
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3.4.1.4 UPS 

   A UPS is a piece of infrastructure equipment which helps to provide regulated power 

supply. Unlike other types of devices, a UPS is designed and built to run at a higher level 

of utilization and are hardly switched off as the data centre needs to be powered all the 

time. 

 

3.4.1.5 Cooling 

   The server room generates huge amount of heat. Equipment like air conditioners and 

cooling fans are used to keep the server room temperature down. 

 

Cooling is usually the biggest power consuming aspect. Servers and storage come next.  

The next sections provide analysis details on the consumption of each equipment type. 

3.5 Variable Definition 

We defined the main variables which are identical to each piece of equipment They are 

listed as below: 

  

• Idle Power consumption 

Most IT equipment is not switched off or hibernated while not being utilized. They are 

ready to serve the next request as soon as it arrives. Hence, they consume power even in 

this idle status.  

 

• Fully Utilized Power consumption 

Equipment that consumes the most power when it is fully loaded. The technical term for 

this status is “fully utilized”. This variable defines the energy consumption when 

particular equipment is under 100% utilization.  

  

• Utilization percentage 

How much of average percentage a piece of equipment is in non-idle mode. The range 

of values is between 0 and 1. As an example, this value for a UPS is 1 or very close to 

that. 
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• The efficiency of the equipment 

No equipment uses the full power it consumes in the main operation. There is always 

wastage and a common example is in the form of generating heat. This variable defines 

the percentage of power used for the actual utilization of equipment (inverse of the 

wastage).  

  

• Country of the data centre  

The country where a particular data centre is located. That plays a significant role as the 

cost of electricity is different from one country to another.  

Also depending on the geographical location of the country, energy consumption for 

cooling may vary. As an example, less energy is required on cooling in a colder country 

such as Iceland.  

  

• Cost of electricity unit of the country 

Cost of electricity varies from country to country. This variable is for the country where 

the data centre is located.  

 

3.6 Models 

Using the variables as described above, we came up with energy consumption model for 

each category as discussed in detail below: 

 

 3.6.1 Server 

In a data centre, the servers belong to different server types and specifications.  

To work out the total energy consumption of servers, for each server type we need to 

calculate two components and add them together. The first component is the product of 

fully utilized power and the utilization percentage. The second, is the product of idle 

power consumption and the idle percentage (1- utilization percentage). Adding up both 

components gives us the total energy consumption of one server of that particular server 

type. Multiplying that number by the number of servers of that type is the total energy 

consumption of that server type. 
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The summation (Σ) of the consumption of individual server type is the total energy 

consumption of all servers in the data centre. The model is shown below: 

 

 !(!.5389) =? (@2,. + @-(A −	,.	)
C

.DA
)	%. 

Equation 4:Total Server Energy 

The descriptions of the parameters are in the below table: 

Parameter Description 

N number of server types 

n given server type 

t number of servers of each type 

tn number of servers in type n 

Ef energy consumption when fully utilised. This can be taken from 

performance benchmarking sources like spec.org 

Ei power consumption when idle. This can also be found in the 

benchmarking sources. 

un utilization percentage of server type n. Values are between 0 and 1. This 

can be measured for time intervals and calculate the average.  

 

 

3.6.2 Storage 

The storage equipment has a power rating associated with it. The same is for the servers. 

The power consumption for each storage type is first calculated, and then they are all   

added up. Storage has a number of drives and each drive has an individual power rate. 
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The power consumption of a storage unit is the total of all its drives. The model below 

gives total Energy of the storage devices: 

 

 !(4%$3&85) = ∑ 	C
.DA 6.,.:.%. 

Equation 5 : Total Storage Energy 

 
Parameter descriptions as below: 

Parameter Description 

N number of storage types 

n given storage type 

Pn power rating of a given drive type 

un average utilization percentage of the drive type n 

dn number of such drives 

tn number of storage units of type n 

 

3.6.3 Network 

Network units also come with a power rating. These can be found in the manufacture’s 

manual. The total energy of networking is given by the model below: 

 

!(.5%F$3G) = ? 	
C

.DA

6.,.%. 

Equation 6 : Total Network Energy 

 

Parameter descriptions as below: 
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Parameter Description 

N number of network types 

n given network type 

Pn Power rating of a given network type 

un utilization percentage of network type n 

tn number of network units of type n 

 

3.6.4 UPS 

A UPS is used in the data centres to provide uninterrupted power supply, in the event of 

an outage of the mains power supply. They are always associated with efficiency as a 

considerable amount of power is lost in the conversion process inside. So, in addition to 

other parameters, the power consumption model has to take efficiency into account as 

well. The below model gives the total energy of a UPS:  

  

!(76H) = ? 	
C

.DA

	(
6.,.	
5. 		I6.,.	)	%.

 

Equation 7:Total UPS Energy 

Parameter descriptions as below: 

Parameter Description 

N number of ups device types 

n given UPS type 

Pn power rating of a given ups device type 

un utilization percentage of ups device type n 

tn number of CPU devices of type n 

en efficiency of the UPS type n 
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3.6.5 Cooling 

The coolers may not always be used. As an example, on a very cold day, the cooling unit 

may not be turned off during the entire day. Due to that, the utilization percentage plays 

an important role in the model. Total energy of cooling is given by the below model: 

 

 

!(0$$'-.8) = ? 	
C

.DA

6.,.%. 

 

Equation 8 : Total Cooling Energy 

Parameter descriptions as below: 

 

Parameter Description 

N number of cooling equipment types 

n given cooling unit type 

Pn power rating of a given cooling equipment type 

un utilization percentage of cooling type n 

tn number of cooling units of type n 

 

3.4.6 Total Power Consumption 

Total energy consumption for the whole data centre can then be represented as below: 

 

!	#$%&' = !	453J53 + !	H%$3&85 + !	C5%F$3G + !	76H +

																					!	)$$'-.8 

Equation 9:Total Energy of all equipment 
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3.7 Example  

Below is an example which uses the result of surveying a small sized data centre. The 

source of the data is the Eureca project. Eureca project (www.dceureca.eu) is a research 

group founded to help European public sector data centres stakeholders to improve the 

digital platform procurement process. The help is available in the form of training, 

consultation and knowledge sharing.  The primary objective of the project is to make 

the data centres more environment friendly by increasing the efficiency. 

 All equipment in the DC is listed with the quantity and then grouped into each 

category. The models from the previous sections were executed using the surveyed data. 

Individual data for each category and the calculated results are shown below: 

 
Server Energy 
 

Quantity Equipment 

Power Rating 

100% utilised 

Power Rating 

idle 

Utilisation 

(0-1) 

 

3 Cisco UCSC210 M2 301 125 0.2 

 

4 HP Proliant DL360  258 172 0.4 

 

2 Dell PowerEdge 2850  258 172 0.4 

 
 
 

Server Power Consumption = ? (@2,. + @-(A −	,.	))	
C

.DA
%. 

 
               = ((301 * 0.2) + 125 * (1-0.2)) * 3 + ((258 * 0.4 + 172 * (1- 0.4)) * 4 + 

                      ((258 * 0.4 + 172 * (1- 0.4)) * 2 

 

           = 1719 watts 
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Storage Energy 
 

Quantity Equipment 

Drive rating 

(Watts) 

Number of 

drives 

Utilisation 

(0-1) 

 

 

1 EMC VNXe3300 450 1 0.8 

 

 

1 

Quantum Scalar i40 

Tape Library  180 1 1 

 

Storage Power Consumption = ∑ 	C
.DA 6.,.:.%. 

                         
= 450 * 0.8 * 1 * 1 + 180 * 1 * 1 * 1 

= 675 watts 

 
Network Energy 
 
Quantity Port OR Net Equip Power Rating (Watts) Utilisation (0-1) 

 

 

2 

Cisco C2960G 

iSCSISwitches 120 1 

 
 

Network Power Consumption = ∑ 	C
.DA 6.,.%. 

 

                                             = 120 * 1 * 2 

                                             = 240 watts 
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Cooling Energy 
 

Quantity Equipment 

Power 
Rating 
(Watts) Utilisation (0-1) 

 
 
2 

TOSHIBA Air Conditioner RAV-
SM566KRT-E 5500 1 

 
 
1 Daikin Inverter - FTKS60BVMB 5500 1 
 
 
Applying the calculation model, 
 

Cooling Power Consumption = ∑ 	C
.DA 6.,. 

 
                          = 5500 * 1 *2 + 5500 * 1 * 1  

                          = 1650 watts 

 
UPS Energy 
 

Quantity Equipment 

UPS Rating 

(Watts) 

Utilisation 

(0-1) 

UPS 

Efficiency 

 

2 APC Smart-UPS 3000 2700 0.5 0.93 

 

1 APC Smart-UPS 6000 4200 0.5 0.93 

 

2 APC Smart-UPS 2200 1920 0.5 0.93 

 

2 APC Smart-UPS 1000 700 0.5 0.93 

Applying the calculation model, 
 

UPS Energy consumption = ∑ 	C
.DA 	(

6.,.	

5. 		I6.,.	)	%. 
 



42 
 

 = (2700 * 0.5 / 0.93) – 2700 * 0.5 * 2  
     + (4200 * 0.5 / 0.93) – 4200 * 0.5 * 1  

      + (1920 * 0.5 / 0.93) – 1920 * 0.5 * 1 

     + (700 * 0.5 / 0.93) – 700 * 0.5 * 1 

 
 = 558.39 watts 
 
Total Consumption of the DC 
 

Total energy consumption = energy consumption of (servers + storage           + 
network + UPS + Cooling) 

 
= 1719 + 675 + 240 + 1650 + 558.39 watts 

= 4842.39 watts 

 
 

3.8 Energy Snapshots 

The lack of ability to see the impact of potential improvements to the equipment 

portfolio is a big challenge faced by DC managers. To make effective decisions and 

justify the cost associated with them, they need to be able to preview the impact of such 

improvements. Previewing the impacts of the changes would help them to identify 

opportunities for energy savings and areas for improvement. 

 

To fill that gap, we propose the concept of Energy Snapshots. These snapshots help 

them to compare between different states of their portfolio by making virtual changes to 

them.   

There are two types of snapshots as below: 

  

Baseline – The initial energy profile of the data centre. That takes all the parameter 

values for each equipment type and feeds the models to calculate the total energy 

consumption. These initial snapshots are used as the baseline to compare against future 

improvements.  

 

Comparison – A new image is constructed after a change of parameter values and their 

associated total consumption by executing the models. The profile is in fact a collection 

of data model objects which reflect the current state of the data centre equipment 

portfolio. 
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Figure 7 depicts how Comparison and Baseline snapshots are organized to provide 

useful insights into potential energy efficiency improvements. 

	

 

Figure 7:Snapshot organization 

 
Details on how these energy snapshots were implemented and calculations carried out 

are discussed in chapter 6. Evaluation details using real-world data is also presented 

there. 

The tool which helps to compare the snapshots provides the DC stakeholders with a 

powerful platform to benchmark their current energy consumption and the real impact 

of changes. That also provides an opportunity to decide on the next step and helps to 

define goals for improvements. 

 

Figure 8 below summarises how the energy snapshots can be used to plan and evaluate 

a potential improvement. 
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Figure 8:Workflow of Snapshots 

 
 
 

3.9 Conclusion 

We discussed how the calculation models are used to estimate energy consumption. 

Firstly, by identifying the common and quantifiable attributes of the data centre 

equipment. Then we presented analysis on how those individual variables factor into the 

total energy consumption of each piece of equipment. As a result, unique models and 

equations were derived. We discussed how to estimate the energy consumption using 

those models and equations without having to physically measure them. This is one of 

the major research questions we undertook. 

 

We then proposed the snapshot concept and how it can be used to plan and compare the 

change of a potential improvement. 

 

How these models were implemented by a tool and evaluated using test data are 

discussed in chapter 6.  

  

Plan an 
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Evaluate the 
target state
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the change in  
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Chapter IV 

4 MALEP v1: LINEAR 
REGRESSION PREDICTIONS  

                            

4.1 Introduction 

Why machine learning is considered and chosen in this research is the initial discussion 

of this chapter. The introduction of related ML techniques and why they are relevant to 

this particular research is also discussed. The comprehensive analysis to find suitable 

models and details on how machine learning was leveraged to predict energy 

consumption in data centres is also presented with research evidences.  

Below are the areas which we led our research to predict the energy consumption using 

ML. Those come under main research questions mentioned in chapter 1.  

 
• What is the available ML offering?  

• How to select the best ML method? 

• How to choose training data set for the ML model? 

• How to validate prediction using test input data? 

4.2 Why Machine Learning in this research 

We implemented the models and equations presented in chapter 3 in a highly user-

interactive tool. The tool enables the stakeholders of a data centre to set up the overall 

energy consumption profile by providing known input details. The tool is designed in 

such a way that it offers alternative options if particular information is unknown or 

unavailable. 

Once the parameter values are provided, the system executes the calculation models to 

estimate energy consumption. The estimated values, along with user input details, are 

stored in the system. When the user logs back into the system later on, they can amend 

the details and re-run the models to generate the new estimations. 
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4.2.1 Idle and fully utilized power consumption  

Finding required parameter values for the parameters for all other equipment models is 

not difficult. It is because most of them can be found in the user manuals or on the 

manufacturer’s website. However, this is not the case for servers.  

Idle and fully utilized power consumption are such examples where it cannot be found 

in the manuals. 

 

 However, there are organizations that carry out comprehensive benchmark testing to 

calculate those figures on servers for specifications from well-known vendors. Standard 

Performance Specification Corporation (SPEC) is one such organization. They carry out 

rigours benchmark testing and publish the results regularly on their website(spec.org) 

Hence that information is publicly available. 

  

But there is real challenge of using that data. Such published data is for known 

specifications. However, most of the server specifications found in the data centres are 

custom built ones. Hence the power consumption for such specifications are not 

available on the publish data from SPEC. 

 

To overcome this problem, we decided that we need to estimate or predict the idle and 

fully utilized power consumption for the DC servers. Given that data is available for 

common specifications, the decision was made to go for data analytical prediction. 

 After careful consideration, we chose machine learning as the prediction technique.  

4.3 Related Machine Learning Techniques 

Machine learning is a subcategory of artificial intelligence which addresses the question 

of how to build computers that improve automatically through experience. ML is one of 

today's most rapidly growing technical fields. It is at the intersection of computer science 

and the statistics and the core of artificial intelligence and data science [Jordan & 

Mitchell, 2015]  

Although ML appears to be a modern and more recent development, it has been a popular 

research area since the 1970s. This academic topic has picked up the pace recently, thanks 

to the rapid increase in the memory and processing power of the computers.  
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The high availability of big data in all scientific and statistical fields has also heavily 

contributed to its recent popularity.  

Even though ML is usually considered as a computer science area, it is a multidisciplinary 

field. Fields like mathematics and statistics are equally applied in ML model 

development, training and evaluation.   

Figure 9 depicts the essential elements and the workflow of Machine Learning.  

 

 

Figure 9:Machine Learning Workflow 

 

At the heart of the process is the training data which is required to train the models. Most 

of the time, some sort of data cleansing is required to standardise this training data to 

leave out the anomalies and align to a suitable format.  

 

Depending on the nature of the training data, a suitable ML algorithm needs to be selected. 

More details on the ML algorithms are discussed later. Then the models are constructed 

on the back of training data, based on the chosen algorithm.   
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The next phase is the prediction where the trained models are applied on new input data 

which are not part of the training dataset, to predict the likeliest outcome. Finally, the 

predicted outcome is evaluated.  

The whole cycle can be applied multiple times for better results. 

 

Machine Learning is subcategorized into two major areas, namely supervised & 

unsupervised learning. Figure 10 is a representation of these categorizations in the context 

of this research.  

 

 

 

Figure 10:ML categorization 
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 4.3.1 Unsupervised Learning 

Unsupervised learning is the process of analysing a data set where the predicted 

outcome is unknown. Some deep learning algorithms are usually employed to 

investigate a data set to come up with previously unknown patterns.  

  

“Unsupervised learning studies how systems can learn to represent particular input 

patterns in a way that reflects the statistical structure of the overall collection of input 

patterns. By contrast with SUPERVISED LEARNING or REINFORCEMENT 

LEARNING, there are no explicit target outputs or environmental evaluations 

associated with each input; rather the unsupervised learner brings to bear prior biases as 

to what aspects of the structure of the input should be captured in the output.” [ Dayan, 

1999] 

  

Compared to supervised learning, unsupervised learning is more complex and 

challenging. This is due to the fact that there are no predefined labels or “targets”. 

Example applications for unsupervised learning are fraud detection in transaction 

banking, finding hidden patterns in supermarket sales and targeted marketing.  

  

Clustering is the most common methodology here. In clustering, learning algorithms are 

applied to the data to find out characteristics and hidden patterns. Example algorithms 

commonly used are K-means and probabilistic clustering. 

  

Association is another methodology in unsupervised learning. Association tries to 

discover rule sets that relate one data set into another. One example is to discover 

purchasing patterns in supermarkets. For example, the different products usually bought 

by the customers who purchase hair products while shopping. 

 

 4.3.2 Supervised Learning 

Supervised learning is the process where the predicted outcome is a set of known values 

or results. It is the computational task of learning correlations between variables in 

annotated data (the training set), and using this information to create a predictive model 

which is capable of inferring annotations for new data, whose annotations are not 

known [Fabris & Magalhães , 2017].  
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Email and SMS spam [Abdulhamid, 2017] filters are some examples where the 

predicted outcomes are spam or not-spam. Diagnosing diseases using medical data 

[Dasgupta, 2011] is another example where the outcomes are positive or negative.  

  

Supervised ML is performed under two different categories called Classification & 

Regression which are discussed in detail later in this chapter.  

4.3.2.1 Classification Problems 

Classification problems are where the predicted outcome is a discrete classified set 

(labels). The classification can be binary or multi-class. In binary class classification, 

the possible number of outcomes is two. Classifying whether male or female by 

analysing features, deciding if infected vs not infected with certain diseases using 

medical data are examples for binary classification. 

 

In multi-class classification problems, the number of predicted outcomes is more than 

two. Some of the examples are predicting the colour of marbles (red, blue, green) using 

the same feature set, categorising the class of apples (A, B, C) by analysing the features 

and recognition of handwritten letters. 

 

Some of the algorithms used in classification are Linear Classifiers, Logistic 

Regression, Decision Trees, Random Forest, Naive Bayes, Nearest Neighbour and 

Neural networks. 

As examples, [Osisanwo, 2017] compares the accuracy of some classification 

algorithms using a large data set.  

[Kumar & Yadav, 2018] has details on the implementation of some classification 

algorithms in Python, considering a few practical examples.  

4.4 Linear Regression 

Regression problems are where the predicted outcome is a continuous series of values. 

House price prediction using features of properties or prediction of employee salary by 

using some of their attributes are some examples. 
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The fundamental of Linear regression is that the assumption of the linear relationship 

between the independent variables and the predicted dependent variable. The process 

observes continuous features to see they have a continuous relationship to the predictor.  

There can be one or more dependent variables which are also called regressors and they 

are denoted by X.  

4.4.1 Coefficient  

Coefficient, which is also called as Correlation is a numeric value ranges between -1 and 

1. If the value is 0, there is no linear relationship between X and Y. The value of -1 or 1 

indicates a perfect negative or positive association. The closer to the value of -1 or 1, the 

stronger the linear relationship between the independent variable (X) and the dependent 

variable (Y).  

 

4.4.2 Simple Linear Regression   

SLR deals with only two variables — the independent variable, which is represented by 

X and the dependent variable, which is represented by Y.  

Y can be positively or negatively dependent on X and the relationship is a linear one. This 

relationship can be mathematically described in equation 10 as below: 

 

  

Equation 10:Simple Linear Regression 

 

The parameters are described in below table: 

 

Parameter Description 

X Independent variable 

Y Dependent variable 

m Coefficient 

b Intercept 
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Predicting the salary of an employee based on the age is an example application of SLR 

that is based on the assumption that in some industries, the older the employee is, the 

higher the pay.  

4.4.3 Multiple Linear Regression   

As the name suggests, MLR deals with more than two variables. As it was evident in the 

previous section, the number of cores in the server CPU is a significant factor towards the 

energy consumption of a server.  

So, in this approach, both CPU speed and the number of cores were used as input variables 

for predicting the energy consumption of unknown server specifications.  

MLR can be mathematically represented as below in equation 11: 

 

  

  

Equation 11 : Multiple Linear Regression 

The parameters are described in the below table: 

 

Parameter Description 

Y’i Dependent variable (predicted) 

Xi Dependent variables 

b0 Intercept (constant) 

b1, b2 ...bn Coefficients (slopes)   

 

 

If we extend the salary prediction example given in 4.4.2, in addition to the age, we can 

also include some more attributes of an employee to predict the salary. The level of 

education, the number of certificates or licences an employee holds, the number of years 

in the current employment are such examples features to take into account.    
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When all these attributes are used to check if a linear regression exists between those 

employment related features and the employee’s salary, this is an example for an 

application of MLR. 

 4.5 Server Attribute Analysis  

4.5.1 Server Actual age Vs Reference age 

The actual age of the server in the data set is the difference in months between today 

and the month when the server was built. It can be an independent variable on its own, 

but there is a drawback of using it as a parameter. That is because today's date is a 

moving target and the age variable on the model performance will be less effective by 

the time.  

To minimize that risk, we introduced a derived variable called “reference age” (in 

months).  

It is calculated as below: 

 

1. Find the oldest date (month and year) from the test data set (September 2004 in this 

case). 

 

2.  Use a pivot date point which is older than the date found in the step 1. The pivot date 

chosen here was January 2003. 

 

3.  The reference date is the difference between two dates.  

               K52535.05	&85	 = 			453J53	;,-'%	:&%5	– 	+-J$%	:&%5	+$-.%  
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Below is an example showing calculated reference age by applying the above process 

for some selected servers. The chosen pivot date is 01 September 2004. 

  

 

4.5.2 Studied Attributes  

The fully utilized and idle power consumption is the predicted values of the models and 

the values in the training data is used to train the models. All others are independent 

variables on their own or combined with other attributes, depending on the model. The 

test data set from standard performance evaluation corporation (spec) contains various 

other attributes like Java virtual machine vendor, but they were not selected as the 

likelihood of their impact on the power consumption very less. Models were executed 

and results were analysed   before finalising the selected list of features. 

 

To analyse the models for prediction of server energy, the independent attributes we 

studied are listed below: 
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Attribute Measuring   Unit Type Comment Reason for Selection 

 

Processor Speed 

 

Megahertz (MHz) 

 

Independent  

Not difficult for DC operator to 

find out the value in real life.    

CPU is a high-power consuming 

part of a server. The speed of the 

processor is a major contributor 

towards the performance of the 

CPU. 

 

Total Memory 

 

Giga Bytes (GB) 

 

Independent 

Not difficult for DC operator to find 

out the value in real life.    

With a higher memory, more 

processing can be supported, hence 

total memory contributes the power 

consumption of a server. 

 

System Age 

 

Months 

 

Independent 

Not difficult for DC operators to 

find out the value in real life.    

General assumption is that 

newer servers are more energy 

efficient as they are built with 

modern technology. So, the age of a 
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server system is an important factor 

of the energy consumption. 

 

Reference Age 

 

Months 

 

Independent 

Derived from actual system age to 

standard the feature values. 

As opposed to the system age, 

the effectiveness of this derived 

parameter does not change by the 

time. 

 

Number of Cores 

 

Distinct numbers 

 

Independent 

Value can be found in the 

paperwork or in the system 

information. 

Number of cores directly related 

to the performance and the power 

consumption of a server as each 

core draws power.  

 

Threads per Core 

 

Distinct numbers 

 

Independent 

can be found in the paperwork or 

in the system information. 

It tells how many processing 

units can be executed at the same 

time within a processor core. This 

count is also directly related to the 

power consumption of a server. 
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Power Supply 

Rating 

 

Distinct numbers 

 

Independent 

can be found in the paperwork. Mandatory parameter for most 

of the power consumption models. 

Fully utilized 

power 

consumption 

 

Watts (w) 

 

Dependent 

Not easy to find. Benchmark test 

organization publish the values 

only for known specifications. 

Mandatory parameter for most 

of the power consumption models. 

Idle Power 

consumption  

 

Watts (w) 

 

Dependent 

Not easy to find. Benchmark test 

organization publish the values 

only for known specifications. 

Mandatory parameter for most 

of the power consumption models. 

Table 7 : Test Data Attributes
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4.5.3 Outliers Discovery and Removal 

In a dataset, outliers are the extreme values which diverge so much from the overall 

pattern and directly influence the error rate. 

The cause of outliers can be varying. They may be due to mistakes in calculations or the 

noise added while collecting data. 

 
In any machine learning exercise, it is recommended to carry out analysis on the 

outliers. Based on the discovery, they can be removed to increase the accuracy of an 

algorithm. 

 

When removing the outliers, a few factors need to be taken into consideration. Firstly, 

the percentage of data that is identified as outliers. This is important because due to any 

reason, if a high ratio of data needs to be removed resulting in not enough data being 

left, you may have to re-consider your algorithm.   

 

Our chosen strategy was to treat data points as outliers when they are below or above a 

few times of standard deviation from the mean. After some statistical analysis, we found 

out the effective number of standard deviations to be 2. The strategy is explained in 

detail below: 

 
1. For a given field, the mean and standard deviation are calculated.   

2. Lower and higher extreme thresholds are calculated  

Lower extreme threshold = mean – (2 * standard deviation)  

Higher extreme threshold = mean + (2 * standard deviation) 

3. Values below the lower threshold or above the higher threshold are 

removed. 

Impact Analysis 

To put the outlier removing strategy into practice, we carried out a scenario as discussed 

below.  
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We considered predicting utilized power consumption using only memory as 

independent variable. 

 
We ran the regression model and results are below: 
 
Test 

results 

Coefficient  Intercept Average error 

% 

Standard 

Deviation 

Min 

Error 

Max 

Error 

224 1.97 379.59 96.69 120.56 2.82 762.03 

 
A plotted graph is below: 

 
 
The average error is very high (96.69) and the maximum error as high as 762.03%. 
 
 
We then re-ran the models without the outliers. Results are shown below: 
 
 
Test 

results 

Coefficient  Intercept Average 

error 

Standard 

Deviation 

Min 

Error % 

Max Error 

% 

199 1.98 229.38 50.39 66.55 0.46 445.30 
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The same as before, the results are plotted in the graph below: 

 
 
Comparing results, we see a reduction of 25 in test data rows.  It has gone down from 

224 to 199. Those 25 data items are the outliers based on the criteria we applied.  

 

The comparison is summarized in the below table: 

 

 With Outliers Without Outliers 

Test Data Set  224 199 

Average Error Percentage 96.69% 50.39%. 

Standard Deviation 120.56 66.55 

Maximum Error Percentage 762.03 445.30 

 

As a result, the error percentage has significantly improved from 96.69% to 50.39%. 

This improvement can be explained by looking at the changes in standard deviation and 

max error percentage. They went down from 120.56 to 66.55 and 762.03% to 445.30% 

respectively. 
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4.6 Single Linear Regression (SLR) Analysis 

Initial predicted energy consumption using the input parameters listed in table 7 indicated 

a continuous series of values which suggested some form of linear regression relationship 

between some of the input parameters and the predicted outcome. Based on that it was 

decided to carry out research into detailed analysis on the linear regression models. This 

section discusses how the ML models were analysed in the context of the prediction of 

server energy consumption. 

Firstly, we started with SLR. Two variables selected were the processor speed (in MHz) 

and the predicted power consumption.  A specific dataset was chosen only by considering 

the servers with eight cores. The reason for that that filtering was to standardise the data 

set.  

X = server CPU speed (MHz)  

Y = predicted fully utilised energy consumption (in watts)  

The linear regression model was run on the selected data set, and the results are presented 

in figure 11. 

A linear relationship between the processor speed (x) and the energy consumption (y) can 

be seen here with an estimated coefficient of 0.16.  
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Figure 11:processor speed vs predicted energy consumption for selected dataset 

However, there is a significant limitation of this approach as only a selected subset of 

training data (servers with 8 CPU cores) was used here.   

 

We then wanted to examine how the model will behave on the entire dataset with a wide 

range of server cores. So, the model was run on an unfiltered dataset. 

 

The predicted results as below: 

 

Average error % Intercept Coefficients 

58.01 526.38 -0.08 

 

 A plotted graph of processor speed and the predicted energy consumption on the whole 

data set is shown in figure 12. 
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Figure 12:CPU speed vs energy consumption for the whole data set 

 

Now as it can be easily seen, there is no good linear relationship between the processor 

speed and energy consumption anymore.   

Shown below is the comparison between actual and predicted power consumption: 
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Figure 13:Actual Vs Predicted 

  

SLR using number of cores 

We then examined the relationship between fully utilized power and the number of cores 

of the processor. The predicted results are shown in the graph below: 
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Figure 14:Actual Vs Predicted 

 

The predicted results are below: 

 

Average error % Intercept Coefficients 

29.97 138.36 7.24 

 

Based on the results above, the number of cores is a good candidate for predicting fully 

utilized power consumption. The Actual vs Predicted visualised below: 
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Figure 15:Actual Vs Predicted 

 

 

However, the accuracy of the prediction of idle power consumption is significantly lower. 

As shown in the evidence below, the average error percentage is 55.48: 

 

Average error % Intercept Coefficients 

55.48 75.93 0.61 

 

The plotted graph of actual vs predicted idle consumption for complete data set is shown 

below: 
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Figure 16:Actual Vs Predicted 

 

And the Actual Vs Predicted is visualised below: 

 

 
 

So, that indicates that number of cores is a less important factor of the energy 

consumption when in idle. 
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SLR using Memory 

The results of when memory was taken as the independent variable is shown below: 

 

Utilized Power 

 

Average error % Intercept Coefficients 

43.29 214.96 1.97 

 

 

Figure 17:Actual Vs Predicted 
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Actual Vs Predicted in a line chart is shown below: 

 

 

Figure 18:Actual Vs Predicted 

 

Idle Power 

 

Average error % Intercept Coefficients 

59.01 86.92 0.06 
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Figure 19:Actual Vs Predicted 

 

 

Actual Vs Predicted visualised below: 

 

 

Figure 20:Actual Vs Predicted 
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The best prediction result for predicting fully utilized power was 29.97 % in SLR and 

that is when the number of cores is used as the independent variable.  

 

It suggests that SLR is not a good enough technique in predicting power consumption in 

this context. This means that research should be directed towards a more complex linear 

regressions method like Multiple Linear Regression (MLR) to see if that will improve 

prediction accuracy.  

 

4.7 Multiple Linear Regression (MLR) Analysis  

As discussed in the above section, SLR using one independent variable is not a sound 

methodology for predicting energy consumption in this context. So, we started 

introducing an extra variable.  

  

A linear model was constructed using the three variables as below  

X1 = server CPU speed (MHz)  

X2 = number of Cores  

Y = Predicted utilized energy consumption (in watts)  

So, the assumed regression relationship is:   

 

  
 

Equation 12 : Multiple Linear Regression 

 

Below, we added number of cores as a second independent variable.  

Processor speed and number of cores: 
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Figure 21:Actual Vs Predicted 

 

Average error % Intercept Coefficient of 

Processor Speed 

Coefficient of 

number of cores 

39.98 -20.37 0.07 8.76 

 

We see a significant improvement in the average error percentage. 

 

Below we added one more independent variable 

Processor speed, number of cores, reference age: 
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Figure 22:Actual Vs Predicted 

 
 
Average error 

% 

Intercept Coefficient of 

Processor 

Speed 

Coefficient 

number of 

Cores 

Coefficient 

Reference 

Age 

46.06 618.47 -0.01 9.37 -4.15 

 

 

Then we added memory to the independent parameter list. The result is below: 
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Average 

error % 

Intercept Coefficient 

of 

Processor 

Speed 

Coefficient 

number of 

Cores 

Coefficient 

Reference 

Age 

Coefficient 

Memory 

46.06 622.37 -0.01 9.30     0.02 -4.17 

 

The memory does not make much difference to the error percentage. This is because 

the memory does not change much in the data set. 

Results are visualised below: 

 

Figure 23:Actual Vs Predicted 
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4.8 Conclusion on regression model analysis 

Based on the analysis on the regression models, we draw below conclusions: 
 

1. for the data set we used, single linear regression has some significant 

drawbacks as we do not see any strong linear relationship.   

2. Multi linear regression produces better prediction accuracy than the single 

linear regression. 

3. IN MLR, the best candidate is the processor speed and the second-best 

variable is the number of cores in the processor.  

4. The error prediction using linear regression is too high to use in a 

production environment. 

5. Memory on its own can be used in the prediction, it does not have much 

impact on the prediction error when used with other variables. 

How we leveraged machine learning to solve the problem of estimating the energy 

consumption of data centre servers with unknown specifications is discussed in this 

chapter. We presented the approach of analysing the models and how they were 

extended to improve the accuracy of the predicted results. How these ML models were 

implemented as a comprehensive tool and evaluated using a real-world test is discussed 

in chapter 7. 
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                                            Chapter V 

5 MALEP v2: DEEP LEARNING 
PREDICTION 

5.1 Introduction 

Chapter 4 discussed how ML regression models can be successfully used to predict the 

server energy consumption. However, there is a significant drawback in the regression 

models. The average error percentage between the actual and the predicted consumption 

is too high to be used in a production environment with high level of confidence. 

Details on the comprehensive regression model evaluation is presented under the 

evaluation section of this thesis, chapter 8.   

 

In the aim of improving the accuracy, we turned our focus towards deep learning. 

5.2 What is Deep Learning? 

Deep learning is a subcategory of machine learning and has been a research area for a 

long time.  But it only became popular after the year of 2000, thanks to more powerful 

computer power and the availability and the capability of handling large memory 

segments.  
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Figure 24 : Deep Learning 

DL is sometimes called Hierarchical Learning due to its layered learning structure 

where the learning output of one layer feeds the next layer as input. 

 

5.2.1 Artificial Neural Networks 

ANN simulates human brains, capable of acting like interconnected brain cells which 

are organized into multiple layers. They are capable of reasoning and making decisions 

similar to how the human brain would. ANN is able to process the input information 

and make insights and then delegate the next level of processing to the next layer in 

line. It is capable of self-learning from input data. Figure 25 represents the organization 

structure of a neural network: 

AI
Machine Learning

Deep 
Learning
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Figure 25 : Neural Network Structure 

 

5.2.2 Deep Neural Networks 

DNN is a subset of Artificial Neural Networks. What distinguishes DNN from ANN is 

the fact that DNN consists of input layers, output layers and deep hidden layers which 

sit in the middle. 

5.3 Why Deep Learning? 

Deep Learning is the technique of finding hidden patterners within a large set of data. It 

opens the door for multi-layered processing models which are capable of learning the 

patterns in the data in multiple levels of abstraction. The biggest difference between 

traditional machine learning techniques and deep learning is that in DL, the outcome 

rules are not defined at the beginning but learned as part of the process. 

 

5.4 Related Deep Learning Techniques 

The most popular deep learning technique is the Neural network. The NN is a directed 

graph with some connected nodes, each taking part in the computations on the flowing 

data through the model.  A node can have zero or many inputs and also zero or many 

outputs, depending on the model construction configuration. 

Node
N

N
N

N N
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Figure below depicts typical organization of a neural network: 

 

 

Figure 26: Organization of a Neural Network 

 
 

5.5 Model Analysis 

5.5.1 Feature selection 

Deep learning is primarily data driven. So, we studied the list of features available in the 

chosen dataset to identify the most fitting features for the models.  The selected features 

are listed below. 

 

- Processor Speed 

- Number of Cores 

- Memory 

- Threads per Core 

- Reference Age 

- Power Supply Rating 

The list of features here is same as the list of input parameters used in the linear 

regression models.  Reason for selecting these features was because analysis showed 

they have some form of relationship with the power consumption. 
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5.5.2 Models 

Deep learning models are built using neural networks. We reviewed the models 

available in the neural network context to select the most suitable one. Below are the 

two models available within the framework: 

 

Sequential – It is a stack of linear layers. It allows the construction of model, layer-by-

layer, but not sharing layers. 

 

Functional API – More flexible than sequential where a particular layer can be 

connected to multiple previous or next layers. Fit for creating very complex models like 

residual network. 

 

After a careful requirement analysis on the model, we decided that we need all our 

layers to connect to only the previous input and next output. We do not have any 

requirement for a layer to connect to more than two. So, the sequential model is chosen 

as the best suitable model for the neural network.  

 

We built the NN sequential model by feeding the input data.  Figure 27 depicts structure 

of that model to predict energy consumption: 
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_________________________________________________ 

Layer (type)                 Output Shape              Param #   

==============================================================

dense_1 (Dense)              (None, 128)               384     

____________________________________________________________ 

dense_2 (Dense)              (None, 256)               33024    

________________________________________________________________ 

dense_3 (Dense)            (None, 256)               65792    

________________________________________________________ 

dense_4 (Dense)              (None, 256)               65792  

_________________________________________________________________ 

dense_5 (Dense)             (None, 1)                 257        

Figure 27 : MALEP Neural Network Layers 

 

The model consists of five layers. 

Dense is a density-connected neural network layer which abstracts an operation. The 

number on the output shape of each layer represents the output space dimension e.g. 

128 in the dense 1. 

We designed the model in a way that the first input layer of the model with an output 

dimension of 128. That means, the input layer handles the model inputs and emits 128 

outputs. 

The entire model is visualized in the figure 28 with each dense and associated input and 

output space dimensions:  
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Figure 28 : Visualized Neural Network Model 

The technology we utilized for building and testing the model is Python and its libraries. 

For implementation of core neural network models, we used a library called Keras 

(keras.io). Keras is based on TensorFlow. 

  



83 
 

A detailed discussion on the technology is provided in the implementation chapter.   

Figure 17 is the execution model definition which is visualised using 

Tensorboard(https://www.tensorflow.org/tensorboard/r1/graphs), a utility tool comes 

with Tensorflow for visualizing models.  Tensorboard uses the model execution logs to 

produce the graphs. The visualized model displays how the training data is fed through 

each individual dense from bottom to top. Figure 29 is the visualized model we 

constructed for the prediction engine:  

 

Figure 29 : Dataflow of the Model 

5.6 Model Optimization 

As the neural network models were now identified, we then moved onto to finding the 

best optimized configurations to produce the most accurate predictions.   

 

Model: Sequential  

Firstly, with the sequential model, there are a few configuration parameters are listed 

below with the explanations: 



84 
 

 
1. Epoch – the arbitrary cut-off point and one cycle or pass through the entre 
data set though the model. Epoch is used to separate training into different 
phases. 
 

2. Dense – A layer of connected nodes in a neural network. A dense is 
constructed by specifying the size of input and output in the form of an 
array. 
 
 

3. Batch size – a batch approximates the distribution of an input data set. 

When the batch size is large, the approximation is better, but the drawback 

is that it takes longer to finish the job and has the risk of running out of 

memory on the system. So, it is important to find the best batch size which 

is big enough to predict with acceptable accuracy while maintaining the 

performance of the process. 

 

As a result of running the models for high number of times, we concluded that the best 

configuration is below: 

 

ePoch batch size 

500 20 

 

 
With the optimized configuration, we managed to achieve the best average error rate of  
 
12.38 %.  
 
The graph below displays the actual against the predicted utilized power consumption 

for the best optimized configuration:  
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Figure 30 : Sequential Model Actual vs Predicted 

 
  

5.7 Summary 

Since the prediction accuracy of server power consumption using regression models is 

not good enough for production level, we looked into other machine learning techniques 

for better results. Deep learning based neural networks were identified as a potential 

candidate and we carried out model analysis using the same test data as for the 

regression models in the previous chapter. The visualized models presented better 

explained layers of the neural network.  

 

Finally, detailed analysis steps to identify the optimized algorithms and configurations 

are presented. Discussion on how these models were implemented in the MALEP tool 

are discussed in chapter 7 and evaluation results are in the chapter 8. 
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                      Part III 
 
 
                    Implementation 
 

 

 

“Imagination is more important than knowledge. Knowledge is limited. Imagination 

encircles the world.” 

- Albert Einstein  
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                                       Chapter VI 

6 IMPLEMENTATIONS OF 
CULCULATION MODELS 

6.1 Introduction 

In chapter 3, we presented the models for calculating the total energy for each 

equipment types in data centres using the idle and utilized consumption of individual 

equipment. This chapter introduces how those models were implemented as an 

independent new module and how it was integrated into the main Eureca project. The 

application can be accessed in  - https://tool.dceureca.eu/#!Calculator 

 

6.2 Application Architecture 

The application was designed using Model View Controller (MVC) design pattern. 

Figure 31 illustrates the basic principle of MVC: 

 

 

Figure 31: Application Architecture 
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Web 
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The Model: Represents the data and the interaction with the database which includes 

both data updates and reads. 

  

The controller: Connects the model and the view. It also contains the logic for request 

and response handling, transfer data between the view and the model. 

  

The View: Is the user-interactive layer, which is responsible for the presentation. It is 

the user interface and in addition to the presentation, it helps to capture and validate user 

inputs.  

 

Open-source framework Vaadin ( https://vaadin.com/) was used in the MVC pattern-

based implementation in the tool. The componentised nature of Vaadin makes the 

application configuration easier. It also helps to reduce boilerplate code which is 

required to bring up the necessary scaffolding of the application.  

 

6.2.1 Other Design Patterns 

Apart from MVC, the other designed patterns used in the application design are listed 

below: 

 

• Data Transfer Object (DTO) 

  Data is wrapped in Objects are transferred between application tiers. Plain java 

objects are constructed and populated either at the data access layer or the 

presentation layer and propagated up or down the stack. 

 

• Data Access Object (DAO) 

DAO pattern was used for handling and encapsulating database interaction of 

the application. While data retrieval and update are its main responsibility, other 

non-functional aspects like improving the performance through connection 

pooling are also fulfilled in this layer.  

 

• Multi-Threading Paradigm 

The application was designed and developed as a highly scalable and 

performance driven way which benefits the users by providing a faster access 

experience.  The multiple cores in the processors were utilized by running 
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multiple user sessions concurrently. How multiple user sessions are live in-

parallel severing the same function is represented in the below figure 32: 

 

 

Figure 32 :Multi-threaded sessions 

 

 

6.3 Technology  

This section details the technologies used in the implementation of the tool. 

6.3.1 Java & EcoSystem 

Java was the primary programming language chosen in the tool implementation. The 

reason for that decision was to be in line with the existing Eureca platform and the 

consistency.  

  

Java has a vibrant ecosystem with numerous open-source frameworks and libraries 

available to complement the power of Java in the development and production 

environments. Table 8 lists the related technologies and framework we utilized in the 

calculation model tool with the main the purpose of being used: 
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Framework Purpose Reference 

Vaadin MVC framework vaadin.com 

JSTL Tag library for UI  docs.oracle.com/javaee/5/jstl/1.1/docs/tlddocs/ 

Maven Build tool maven.apache.org 

JDBC Database connectivity docs.oracle.com/javase/8/docs/technotes/guides/

jdbc/ 

MySQL Database www.mysql.com 

JUnit Unit testing junit.org/junit5/ 

Mockito Mocking backend objects site.mockito.org 

GIT Version controlling system git-scm.com 

Table 8 :Java Frameworks used in the Application 

 

6.3.2 VAADIN 

Vaadin is an implementation framework of MVC pattern and it is written in Java. That 

makes it seamlessly integrate with the application.  The framework provides the 

template for application components to abstracts the behaviours easily and quickly. That 

enabled us to spend most of our development time on solving business problems as the 

basic application scaffolding templates had already been provided by the framework. 

6.3.3 Maven 

Since the application integrates with a number of libraries and frameworks like Vaadin 

and JDBC, managing the dependencies became a complicated and tedious piece of 

work. To address this problem, we decided to use a dependency management tool. The 

candidates we considered and evaluated were Ant, Maven and Gradle. However, Maven 

was the winner due to easier integration and the ability to maintain the dependencies for 

all environments like development, testing and production.  

 

Project Object Model or POM file was created by listing all dependent libraries with 

their inter dependencies and versions. The format of POM file is xml. When the project 

was built for the first time, Maven reads the POM file and downloads all required 
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dependencies from the sources and then stores them in a local repository. For 

subsequent builds, it uses the libraries from the local repository reducing the building 

time. It has helped in organizing the project dependencies along with their respective 

versions as well as improving the efficiency of the build process. Figure below is an 

extract from the POM file we have used. 
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6.3.4 Version Controlling & Code Repository 

Version controlling is the process of keeping a different version of the code at the file 

level, which enables us to build and deploy a certain version of the application. GIT was 

the version controlling tool we used.  

 

The code repository is the centralized place where the code is securely hosted. We 

used BitBucket (https://bitbucket.org) as code a hosting and sharing repository.  

6.3.5 Environment Management 

The application is available in multiple environments, as listed in table 9. The code is 

written, and unit tested in the development environment. It is then deployed to a test 

environment for integration and smoke testing. Once everything is good in the testing 

environment, the application is finally released to the production environment for users 

to access. 

 

Environment Purpose 

Development Application Development and Unit testing 

Testing Integration testing and pre-production sanity checks 

Production Deploy the application for users  

Table 9 :Application Environments 

Figure 33 demonstrates how the application code is promoted through each environment 

with the main responsibility and purpose is mentioned: 
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Figure 33:Code Promotion Steps 

 

6.3.6 Unit Testing and Test-Driven Development 

Unit testing is an integral part of software development as it helps to detect bugs in the 

early stage and increase the developer’s confidence on later refactoring tasks. We used 

the Open-source framework Junit for writing test cases to cover individual 

functionality. 

 

 Test Driven Development (TDD) was the development process we followed. It helped 

us to understand the requirement better to write our test cases. Having a good test 

coverage gave us the confidence to carry further refactoring work. As an example, if 

any test case in the test-pack fails, that would indicate that the new code we committed 

to the repository was likely to have introduced a defect.  

 

Figure 34 below explains the flow of TDD: 

Development
Unit Testing

Testing
Integration & User 
Acceptence

Production
Live Environment
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Figure 34 :TDD Cycle 

 

Before writing any functional code, we wrote the unit test case for the functionality in 

question. This particular test case was expected to fail immediately because no 

associated functional code is written yet. Then we wrote bare minimum code, just to 

pass the test and then refactored the functionality by bringing in more functional code.  

 

The same cycle applied multiple times to increase the functionality and test coverage.  

Given below is a code example of a test case from the tool.  It calculates the server 

energy calculation model for given utilized power consumption, idle power 

consumption and utilization percentage.   

If this particular test case fails, when all the test cases in the package have been 

executed, we then know immediately that a defect is introduced. We know we need to 

revisit the most recent changes as they may possibly have a knock-on effect on the 

server energy calculation function. 

 

Shown below is some code from an application unit test case: 
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1. @Test   

2.     public void calculateServerEnergy() {   

3.         double expected = 194760;   

4.    

5.         double actual = calculatorUtility.calculateTotalServerEnergy(12,370, 1

10,62);   

6.    

7.         assertNotNull(actual);   

8.         assertEquals("Error in calculated server energy", expected, actual, 0)

;   

9.     }   

It tests the application functionality by executing it with some input. The code then 

compares the expected value with the actual output and fails the test with an error 

message, if the condition under test is not met.  

 

6.3.7 Deployment 

The tool is deployed on Linux in a dedicated space in the Eureca multi-tenant server. 

The application code is compiled and bundled into an executable web archive file type 

called – WAR file. Since it is a web application, the war file is submitted into the 

webserver so it can be deployed on it. The webserver we used for deployment is Apache 

Tomcat. 

6.4 Workflow of the Tool  

This section provides an overview of the system workflow, how a particular data centre 

operator could use it to estimate the total and individual equipment type energy 

consumption.  

6.4.1 Energy Calculator  

 

As shown in figure 35 which is an input screen, a user can create the data centre 

equipment portfolio by choosing the brands and product types, the number of each type 

etc. This is where the system captures all the required input parameters for the model 

execution. 
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Figure 35 :Input Screen 

 

6.4.2 Output Screen  

After setting up the equipment portfolio, a user can kick off the calculation process.  

The system executes the models and present the results in the output screen shown as in 

figure 36: 
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Figure 36 :Output Screen 

                                                               

 6.4.3 Energy Snapshots 

An energy snapshot is the state of energy portfolio at a given time. New snapshots are 

created by changing different parameters of the portfolio. One such example would be 

by changing the equipment which has different energy efficiencies.  The energy 

snapshots are generated by capturing the details on each equipment types and saving 

them in the system. This functionality enables the data centre operators to compare the 

outcome of improvements made to their energy profile.  

 

Figure 37 shows the generic snapshot details capturing screen where the beginning of 

the workflow process to drive the user though the energy snapshot construction: 
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Figure 37 Energy Snapshot 

The details captured through the page is then stored in the system to re-construct and 

render to the user on demand. Figure 38 is the screen of the database table structure to 

save generic snapshot details: 
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Figure 38 :Snapshot Table Structure 

Servers 

 

 

Figure 39 :Server Energy 
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Database Table Structure 

 

Figure 40 : Server Energy Table Structure 

Network 

 

Figure 41 :Network Energy 
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Database Table Structure 

 

Figure 42 :Network energy Table Structure 

 

Storage 

 

Figure 43 : Storage Energy 
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Database table structure 

 

Figure 44: Network Energy Table Structure 

Cooling 

 

 

Figure 45 :Cooling Energy 

Database Table Structure 

 

Figure 46 : Cooling energy table structure 



103 
 

Calculation results  

 
The models were executed by feeding the input data, and then the tool calculates the 

total energy, IT energy and PUE value. The output details are presented in the calculation 

results dashboard, which is shown in the below figure: 

 

Figure 47:Energy Calculation Results 

6.5 Application Security 

We designed the tool in a way that it could utilize the existing security service of the 

main Eureca tool. A handler was introduced to validate each user session through the 

authentication and authorisation services.  It is a common aspect which is applied before 

any user service request is served. Un-authenticated user sessions are re-directed to 

login page of the main tool. 

6.6 Code Samples 

The primary programming language of the tool is Java. Selected Java code samples 

from the main components are demonstrated here.  

 

6.7 Model Evaluation 

The first round of Model evaluation was done using some sample data. That includes 

both unit testing as well as integration testing. Unit testing details and evidence for each 

category are discussed below. 
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JUnit framework (https://junit.org) was used for implementing unit test cases.  

 

6.7.1 Server Power Consumption Calculation 

 

Figure 48:Evaluation of Server Power consumption 

 

6.7.2 Storage Power Consumption Calculation 

 

Figure 49:Evaluation of Storage s Power consumption 
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6.7.3 Network Power Consumption Calculation 

 

Figure 50:Evaluation of Network Power consumption 

6.7.4 UPS Power Consumption Calculation 

 

Figure 51:Evaluation of UPS Power Consumption 

 

6.7.5 Cooling Power Consumption Calculation 

 

Figure 52:Evaluation of Cooling Power Consumption 
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6.8 Conclusion 

This chapter was relating to the web application we built for data centre operators. 

They can create and maintain their energy snapshots which reflect the current equipment 

portfolio and the energy consumption.  The tool implements the models discussed in 

chapter 3 and present the users the opportunity to calculate the current consumption. They 

can also use the system to preview the impact of any improvements or changes by 

comparing snapshots. 

We also discussed how we evaluated each model with sample data through a testing 

strategy with unit and integration test cases. 
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                                 Chapter VII 

7 IMPLEMENTATIONS OF 
MALEP  

7.1 Introduction 

This chapter presents the implementation details of the tool for both Multi Linear 

Regression and Deep Learning-based predictions of server energy consumption. 

 

The tool was built as a modularised enterprise application, applying the latest 

architectural patterns like Microservices, Restful web services and also utilising 

technologies like Python, TensorFlow, Keras, SkLearn, Flask, Linux. The tool executes 

ML algorithms on training data which were obtained from a reliable source in the public 

domain and predicts the energy consumption for specifications.  

 

It has some multi-user interaction interfaces like web and desktop UI. The application is 

highly configurable which provides the users with a great level of flexibility. The 

application provides integration web service endpoints for external applications to 

consume the service. The chosen message exchanging format is JASON due to its 

simple but flexible structure as well as being the single most used format in the 

industry. 

   

The design and architecture of the application are discussed in the next subsection, 

outlining how various components are organised to serve multi-channel offerings. 

7.2 Design & Architecture 

7.2.1 Overall View  

The Architecture of the application is depicted in figure 53: 
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Figure 53:Architecture of the Integrated System 

 

Main components of the system are persistence storage, processing layer and the 

interfaces. The processing layer is the machine learning engine which accesses data 

from persistence storage. The different forms of the interfaces interact with the engine 

to retrieve the predictions and then present them to the users or other systems.  

 

Storage consists of a relational database and data files. Both training and test data are 

structured and stored on flat files. Data from those files are loaded into main memory 

and constructed as a multi-dimensional array using   Python’s Pandas library.   The 

application reference data is stored and in a mysql database. Reference data is loaded 

and kept in-memory to enrich the data streams propagating through the machine 

learning models. 

  

 The core component of the system is the machine learning engine where main 

processing logic is encapsulated. The engine is designed and built as an independent 

module and is used by multiple other components like web services and user interfaces.  

  

Two different types of user interfaces are available for users to interact with the 

application.  
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Desktop UI: Which can be run on client-side computer, consuming the service of ML 

Engine. It interacts with the ML engine to render the interactive UI. Python library 

Matplotlib (https://matplotlib.org) was the technology used in UI design. 

 

 

Web UI: Which can be accessed from a remote web browser. It delegates user requests 

to the prediction engine and serves the response back. Python based   microframework 

called Flask (http://flask.pocoo.org/) was used to leverage code to expose as a web 

application. 

 

 We adopted Microservice architecture which is also called Service Oriented 

Architecture (SOA) as our main architecture principle, so the application is by-design 

and provides the integration out of the box.  

What that means is that it is much easier for external applications to integrate with 

MALEP and consume the services on offer.  

  

The modern standard application integration method is API via the web services. To 

that end, a Restful web service was built on the calculation engine to provide the 

integration capability with other systems. It provides the API via HTTP using JSON as 

the data sharing file format. This enables the technology-agnostic integration. In other 

words, the capability to integrate with other systems that might use different 

technologies from Python. More details on how they were designed as a microservices 

environment is discussed in the next section. 

7.2.2 Microservices for Integration 

Given that we used Java based technology for the model-based web calculation tool, 

there was a challenge of how that tool could utilize the Python-based ML predictor 

(MALEP). 

How we addressed this problem was by introducing a Component-Based software 

design.  The core ML engine is segregated from the presentation component in a loosely 

coupled way, enabling it to be accessible and maintained independently.  

  ML engine and all its related components are designed in a pluggable way.  

  

Figure 54 depicts how external applications would integrate with MALEP to consume 

the restful web services. 
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Figure 54:Application Integration 

 

MALEP offers its prediction service as a web service API.  Our own web tool we built 

for model-based calculations also falls into the external application category. It is 

integrated with MALEP web services and the service is accessed using JSON messages. 

 

7.3 Technology 

7.3.1 Python & EcoSystem 

After a careful evaluation of the technology, we chose Python (www.python.org)  as the 

primary programming language. Java was also a close candidate for ML due to its rich 

and mature eco-system and availability of open source libraries for ML.   

However, Python was preferred mainly for its simple and easy to use untyped-data 

structures. That helps to parse and transform data easily which is a very powerful option 

to have.  

 

 Availability of excellent ML libraries for Python was also a major decisive factor. 

Examples of these open source supported libraries are Pandas, numpy, 

keras and sklearn. There are also useful data visualization libraries like statsmodel and 

all these are open source, hence freely available to use.  

 

Restful web 
service 1•External 

Application

Web 
service 

3

Web 
service 2
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Python and relevant libraries Code samples are presented later in this chapter.  

Below table lists all the open-source libraries used in MALEP: 

 

Library Purpose Reference 

Pandas Data structures and data file 

handling  

https://pandas.pydata.org 

Numpy Provides complex data structure 

like Multi-dimensional arrays and 

supports Scientific computing  

https://numpy.org 

Sklearn Data migration and analysis  https://scikit-learn.org 

Statsmodel Statistical model estimation https://www.statsmodels.org 

Keras Neural Network API which 

users TensorFlow internally. 

Supports both convolutional and 

recurrent networks 

https://keras.io 

TensorFlow Core Neural network 

framework 

https://www.tensorflow.org 

Matplotlib 2D plotting library https://matplotlib.org 

Seaborn Data visualization library built 

on matplotlib 

https://seaborn.pydata.org 

Table 10:Python Frameworks Used 

  

7.3.2 Neural Network 

As discussed in chapter 5, Neural Network resembles the human brain with connected 

neurons. The primary data structure of the neural network is the model. While Keras 

provides multiple models, the one we chose was Sequential.  That is how the sequential 

model is constructed and assigned to a reference: 
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1. # Sequential Model construction   

2. NN_model = Sequential()   

 

The model consists of multiple layers. Firstly, the input layer with Dense of 128 is 

created and added to the model. That is where training data is fed into the model. 
# The Input Layer :   

1. print(train.shape)   

2. NN_model.add(Dense(128, kernel_initializer='normal',input_dim = train.shape[1]

, activation='relu'))   

 

Three hidden layers are added to form the processing layers. 

1. # The Hidden Layers :   

2. NN_model.add(Dense(256, kernel_initializer='normal',activation='relu'))   

3. NN_model.add(Dense(256, kernel_initializer='normal',activation='relu'))   

4. NN_model.add(Dense(256, kernel_initializer='normal',activation='relu'))   

 

And the output layer with a Dense of 1 is added to finish the model construction with 

the activation algorithm is linear. 

1. # The Output Layer :   

2. NN_model.add(Dense(1, kernel_initializer='normal',activation='linear'))   

 Eventually, the entire model is compiled by providing the matrices of absolute error 

and accuracy. Due to these matrices being added, it provides the ability of querying 

these matrices from the model. 

 
    # Compile the network :   

1. NN_model.compile(loss='mean_absolute_error', optimizer='adam', metrics=['mean_

absolute_error', 'accuracy'])  
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Figure 55 has the visual representation of the neural network built in the MALEP: 

 

 

Figure 55:MALEP NN 
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7.3.3 Virtual Environment 

For easy deployment and maintenance, all code is deployed in a Python Virtual 

Environment. A Python Virtual Environment is a self-contained directory tree which 

contains python and all dependencies pre-installed. 

MALEP is shipped in a virtual environment and a user who downloads and executes it 

will not have to perform any sort of installations or dependency download. Everything is 

packaged in the virtual environment which means it is all good to execute the application 

straightaway. 

A Virtual environment provides the portability to deploy the application into multiple 

environments with consistent behaviour across various platforms and operating systems. 

As an example, we could perform the isolated development testing in our local PCs and 

then promote the same code into the hosted Linux server for integration, by only changing 

the configurations. 

Figure 56 below shows how the files are organized in the Python Virtual Environment. 

 

 

Figure 56 : MALEP Virtual Environment 
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7.4 Restful Webservices 

REST (Representational State Transfer) is a lightweight but scalable web service 

architecture. The web services built using REST style are called Restful web services.  

The Restful web services we built are for external applications to integrate with MALEP 

to access the prediction service. They were designed by following the Micro Services and 

Micro Framework based architecture. 

Security 

The web service endpoint is only supported vi HTTP POST method. The requester 

needs to authenticate with the system by sending a pre-issued username and password 

as header attributes. MALEP first verifies the user credentials before serving the 

request. 

Sample JSON Request  

Paw (https://paw.cloud) was the HTTP utility we used to test the web services. The 

request is designed to contain independent attribute values with their names. Below is a 

screen for sample JSON. 

 

Figure 57 :JSON Request 
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Response with predicted values 

 

Below is the response JSON received back from the restful web service with predicted 

energy consumption:  

 

Figure 58 : JSON Response 

 

Web Services Code  

Below are some code samples responsible for serving Restful web service. The code 

first handles the JSON request and performs necessary validation. The request is then 

delegated to the ML engine to retrieve the predicted energy consumption. The result 

comes back in the form of a Python data object. It is then transformed into JSON before 

streaming back to the client. 

1. @app.route('/malep/serverenergy/predict', methods=['POST'])   

2. def get_predicted_energy():   

3.     if not request.json :   

4.         abort(400)   

5.    

6.     processor_speed = request.json['processor_speed']   

7.     no_of_cores = request.json['no_of_cores']   

8.     memory = request.json['memory']   

9.     reference_age_months = request.json['reference_age_months']   

10.    
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11.     predicted_utilized_energy = predict_utilized_power(processor_speed, no_of_

cores, memory,   

12.                                                                         refere

nce_age_months)   

13.    

14.     predicted_idle_energy = predict_idle_power(processor_speed, no_of_cores, m

emory,   

15.                                               reference_age_months)   

16.    

17.    

18.     predicted_consumption = {   

19.         'utilized_power_consumption': json.dumps(predicted_utilized_energy),   

20.         'idle_power_consumption': json.dumps(predicted_idle_energy)   

21.     }   

22.    

23.     return jsonify({'prediction': predicted_consumption}), 201   

 

 

7.5 Micro Framework and API development 

Microframework helps to leverage existing functionality and expose it for clients via 

HTTP. It powers up the API development by facilitating to serve an underlying 

functionality as web services, most commonly Restful style. 

 

The microframework we used in the application was Flask 

(https://palletsprojects.com/p/flask/). Flask is a Web Server Gateway Interface (WSGI) 

web framework.  

We considered some other Python microframeworks like Bottle (https://bottlepy.org), 

but eventually, Flask was the clear winner.  

 

The reason for choosing it over other possible candidates was due to its lightweight 

architecture and the ability to build products relatively easily and quickly. Another 

reason was its robust scalability, which helps to scale up the service to meet high 

demand automatically in production environments. The ability to scale up and down 

automatically to meet the changes in the demand is called elasticity in the industry. 

 



118 
 

The figure below represents the API architecture we built using Bottle to expose energy 

consumption predictors as web services. The JSON requests coming in are intercepted 

and validated before routed to the appropriate service component. The individual 

predictor within the MALEP engine uses the incoming server attributes and sends back 

the predicted values to the API layer. The values are then propagated back to the client 

in the response. The processing transaction details are logged for troubleshooting and 

auditing purposes by the logging module: 

 

 

Figure 59:MALEP Microframework 

 

7.6 Challenges faced 

One major challenge was how to execute the application smoothly and quickly for the 

potential users once downloaded. This is due to the fact that application requires a 

number of dependencies which need to be downloaded and built first. This can be even 

more complex process as users may use them on different operating. Systems like 

Window, Mac and Linux. This challenge was successfully overcome by using the 

Python Virtual environment (7.3.3) as it helps to bundle the application and all its 

required dependencies in a container. This container helps the application to work like 

in an isolated environment, regardless of which operating system it runs on or the 

underlying hardware specifications.  

Restful API

Routing

Predictor 1 Predictor 2

Logging

Predictor 3
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7.7 Summary 

We explained the key design and architecture principles of the MALEP with 

diagramme. Comprehensive details about technology evaluation process and the 

decisions is also present in this chapter. How the modern technology was utilized to 

implement the tool as per the main design is explained with sample code.  
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Part IV 

 
Evaluation 

 

 

 

 

 

 

 

 

“Many of life’s failures are people who did not realize how close they were to success 

when they gave up.” 

                   -Thomas A. Edison 
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                                CHAPTER XIII 

8 EVALUATION OF MALEP:  
REGRESSION MODELS 

 

This chapter is about how the ML regression and deep learning algorithms were tested 

and evaluated using the predictor tool. We used a wide variety of benchmarks and 

scenarios, outlined throughout this chapter. 

8.1 Test Data 

8.1.1 Obtained data set 

Standard Performance Evaluation Corporation (SPEC) publishes a list of server 

specifications with associated attributes and the energy consumption figures for each 

wide variety of specification. We chose their data due to the quality and the reliability. 

The fact that the data is available in the public domain is also another reason behind that 

decision. 

A selected data set consists of several attributes for server specifications along with 

utilized and idle energy consumption in watts.  

Figure 60 is a sample set of data in the original format: 

 

 

Figure 60:A sample server specification with energy consumption data from SPEC 
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8.1.2 Data Cleansing and Feature Selection 

The raw data from SPEC is not in a suitable format to train the ML algorithms. This is 

due to the structure of the data and the non-standard nature of it. Also, some of the 

attributes are not directly relevant to the server energy consumption. Java Virtual 

Machine vendor name and the company names who sponsored the test provision are 

such attributes. So, we only selected the relevant attributes and cleansed the raw data 

and then structure it in a format suitable for ML model evaluation. 

8.1.2.1 Cleansed Training Data 

 
A few rows from the cleansed training data is listed in table 11: 

 

Fully 

Utilized 

Power 

Active Idle 

Power 

Number of 

Cores 

Processor 

Speed 

Memory Reference 

Age in 

Months 

118 56.7 4 2833 4 63 

170 86 8 2500 8 69 

385 48.2 56 2500 192 188 

1417 193 224 2100 768 192 

315 69.4 16 2200 24 112 

125 35.4 4 2933 8 86 

58 21.5 4 2400 8 104 

267 76.9 12 2933 12 89 

124 39.6 4 2933 8 86 

272 73.6 12 2933 12 89 

Table 11 : Cleansed training data sample 

 

The training data set was then converted into a tabular format for easy access by the 

computer programmes. The tabular format also works well in data transformation 

through the application code. The chosen format was a comma-separated value (CSV) 

file. 

 

Some of the training data in a tabular format are shown in figure 61: 
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average_watts_fully_utilized, 

average_watts_active_idle,no_of_cores,processor_speed,memory,reference_age_month

s 

118,56.7,4,2833,4,63 

170,86,8,2500,8,69 

385,48.2,56,2500,192,188 

1417,193,224,2100,768,192 

315,69.4,16,2200,24,112 

125,35.4,4,2933,8,86 

58,21.5,4,2400,8,104 

267,76.9,12,2933,12,89 

124,39.6,4,2933,8,86 

272,73.6,12,2933,12,89 

Figure 61 :Cleansed training data sample in tabular format 

 

8.1.3 Test Data Analysis  

The statistical analysis on the chosen test data is presented below. The main objective 

behind the analysis was to examine if the quality and the distribution of data is good 

enough for evaluation purposes. 

 

8.1.3.1 Distribution of Data 

 

Distribution of each training data feature is visualized below. X-axis is the value of the 

given feature and the Y-axis is the number of test data items. 
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Fully utilized power 

 

Figure 62 : Distribution of fully utilized power  

 
Idle Power Consumption  
 
Figure 63 is the distribution of the idle power consumption in the test data set: 
 

 

Figure 63:Distribution of idle power  
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Processor speed 
 
Figure 64 is the visualised distribution of processor speed:  

 

Figure 64:Distribution of Processor Speed 

As we can see in the graph, most of the servers built with CPU speed between 2000Ghz 

and 3000Ghzs 

 

Memory 
 
Figure 65 is the distribution of memory:  

 

Figure 65:Distribution of memory 
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Number of processor cores 
 

 

Figure 66:Distribution of number of cores 

 
Reference Age 
 

 

Figure 67:Distribution of reference age 
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8.1.4 Statistical Details of Full Data Set  

Statistical details of the test data are depicted in table 12: 
 

Attribute Minimum Max Mean Standard 

Deviation 

Fully Utilized 

Power Consumption 

44.70 7031 823.22 1334.47 

Idle power 

consumption 

9.33 2024 188.53 267.94 

Processor Speed 1600 3800 2533.09 361.50 

Memory 4 5120 219 527.74 

Number of Cores 2 784 77.22 145.44 

Threads per Core 1 4 1.77 0.427 

Reference Age 20 197 119.22 43.52 

Table 12 : Summary of Full data set 

 

8.1.5 Test Data Utilization Strategy 

We split the test data set of 673 records into two different sets. The first set of 449 is for 

training the machine learning models and the rest of 224 data elements are used to test 

the trained models. 

  

Figure 68:Test Data Strategy 

 

Evaluation 
Data

Training 
Data
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1. Training Data set – 449 elements  

The data set used for training the model. 

 

2. Evaluation Data set – 224 elements  

The data set of testing the trained models. 

 

8.1.6 Statistical Analysis of Training Data Set  

Table 13 is the statistical analysis on the training data set: 
 
 
 
 

Attribute Minimum Max Mean Standard 

Deviation 

Fully Utilized 

Power Consumption 

 

44.7 7031 794.06 1270.79 

Idle Power 

Consumption 

 

10 2024 185.42 262.14 

Processor Speed 

 

1600 3800 2531.32 361.01 

Memory 

 

4 5120 209.62 509.85 

Number of Cores 

 

2 784 73.75 136.28 

Reference Age 20 197 119.25 43.80 

Table 13 : Training Data Analysis 

 

8.1.7 Statistical Analysis of Test Data Set  

Table 14 is the statistical analysis on the data set which was used to test the models: 
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Attribute Minimum Max Mean Standard 

Deviation 

Fully Utilized 

Power consumption 

 

51.8 6532 990.02 1650.09 

Idle power 

consumption 

 

9.33 1842 206.35 299.83 

Processor Speed 

 

1800 3700 2543.25 365.95 

Memory 

 

4 2688 272.68 620.49 

Number of Cores 2 784 97.14 189.15 

Reference age 40 197 119.11 42.11 

Table 14:Test Data Analysis 

 

8.2 Regression Model Evaluation  

We executed the regression models using separate training and testing dataset by 

splitting the dataset into 2:1 ratio with training and testing set respectively as below: 

 

Size of training dataset  Size of testing dataset 

449 224 

Table 15:Test Data Summary 

 

8.2.1 Model Evaluation Criteria 

The process we followed for model evaluation and benchmarking are shown below: 
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 1.    Model is trained using the training data set. 

 

2.    For each test data item, use a chosen one or more independent attributes as input 

parameters. 

 

3.  Predict utilized and idle energy consumption by executing the already trained model 

for each test data.  

 

4.    The predicted value is compared with the actual dependent variable (e.g. fully 

utilized consumption), and the error percentage is calculated using the below formula. 

 

!""#"	%&"'&()*+&	 = 	-
*./(%"&12')&1	3*45& − 	7')5*4	3*45&)

7')5*4	3*45& 9 ∗ 	;<< 

Equation 13 : Error Percentage Calculation 

 

5. The error percentage for each test data row is accumulated and then the average error 

percentage is calculated. 

 

6. The average error percentage is used to benchmark each model. 

 

8.2.2 Evaluation of Fully Utilized Energy Consumption 

We first worked on predicting the server power consumption when it is fully utilized.  A 

few scenarios were picked by changing the independent input variables of the model. 

The dependent variable for all scenarios was fully utilized power consumption. The 

result analysis of each scenario with the test results are discussed under each scenario. 

 

The benchmark of comparing each scenario is the average error percentage. All six 

independent parameters were used as independent variables in the scenario 6, expecting 

it to provide the best model accuracy. On the other hand, scenario 3 evaluates the model 

when only reference age is used as input. In other scenarios, different number of 

parameters as well different parameter combinations were evaluated. In reality also, it is 

very likely that all parameter values are not available for the data centre operators to use 



131 
 

in the prediction models. Benchmarking the performance of such models which depend 

on the server attribute values available, provides insights on the impact of different 

variables.   

 

Scenario 1 

 
Independent variable  Dependent Variable 

Processor Speed 

Number of Cores 

 

Fully Utilized Power Consumption 

 
Results  
 

After executing the model, the intercept and coefficients for each input parameter and 

the average error percentage are listed in below table. 

 
Independent 

variable 

Coefficient  Intercept 

(Constant) 

Average 

Error % 

Processor Speed 0.10  

-119.59 

 

31.36 % Number of Cores 7.69 

 
 
Machine Learning Model  
 
As a result of the training phase, the model for predictions is the one below: 
 

	=>?@?ABC		D#(/5E%)2#(

= 	−;;F. HF + 	<. ;< ∗ 	J"#'&//#"	K%&&1	 + 	L. MF

∗ 	N#	#O	D#"&/					 
 

We then executed the algorithm for the test data set. The first 10 predicted results are 

listed in the below table. It contains the input values, the actual and predicted 

consumption, along with error percentage.      

Processor speed Cores 

Actual 

consumption 

Predicted  

 consumption  prediction error % 
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2666 8 173 221.59 28.09 

2933 12 259 284.27 9.76 

2500 12 307 240.44 21.67 

2600 48 511 571.49 11.83 

2400 64 713 693.87 2.68 

2600 48 559 571.49 2.23 

2500 12 327 240.44 26.47 

2200 16 255 245.73 3.63 

3067 12 264 297.84 12.82 

3067 48 1025 618.75 39.63 

Predicted values against actual consumption are visualized in the figure 69 and 70: 

 

 

Figure 69:Predicted Vs Actual  
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Figure 70:Actual Vs Predicted 

Scenario 2 

In the scenario 2, we used four input parameters in the evaluation as listed in the table 
below: 
 

Independent variable  Dependent Variable 

Processor Speed  

Number of Cores 

Memory 

Reference Age (months) 

 

Fully Utilized Power Consumption 

 

The same as in scenario 1, after the model executed with training data, the intercept for 

the model and coefficient for each input parameters were derived as shown in the table 

below: 

 

Independent 

variable 

Coefficient  Intercept 

(Constant) 

Average 

Error % 

Processor Speed 0.10  

176.36 

 

30.68% Number of Cores 10.03 
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Memory -1.24 

Reference Age -2.33 

 

 

Machine Learning Model  
 

Based on the trained dataset, the model used for predictions is shown below: 

 

PQBRSTB	US>>V	UWBX	YZ@@[	Z>?@?ABC		

= 		;LM. \M + 	<. ;<	 ∗ 	J"#'&//#"	K%&&1	 + 	;<. <\

∗ 	D#"&/					 + 	−;. ]^ ∗ 	_&E#"`	 +	−]. \\

∗ 	a&O&"&('&	7+& 
 

 
The first 10 results rows of the results are shown in the table below: 
 

Processor 

 Speed 

Number 

of Cores Memory 

Reference 

Age  

Real 

Utilized 

Power 

Predicted 

Utilized 

Power 

Prediction  

Error  

Percentage 

2666 8 8 69 173 228.88 32.30 

2933 12 12 89 265 342.06 29.08 

2933 12 12 89 259 342.06 32.07 

2500 12 128 112 307 235.32 23.34 

2600 48 64 118 511 552.60 8.14 

2400 64 256 113 713 725.03 1.68 

2600 48 64 108 559 594.46 6.34 

2500 12 128 112 327 235.32 28.03 

2200 16 24 124 255 209.54 17.82 

3067 12 12 98 264 308.84 16.98 

 

Predicted Vs Actual Consumption 

 

A plotted graph of actual vs predicted utilised power consumption is shown below: 
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Figure 71:Predicted Vs Actual -Scenario 2 

Actual Vs Predicted in a line chart is presented below: 

 

 

Figure 72: Actual Vs Predicted 
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Scenario 3  

In this scenario, only one independent variable which is the reference age is used: 
 

Independent variable  Dependent Variable 

Reference Age (months) Fully Utilized Power 

 

And the results are in the table below: 

 

Independent  

variable 

Coefficient  Intercept  

(Constant) 

Average Error % 

Reference Age 1.27 166.98 54.93% 

 

We see the error percentage has gone up when only reference age is used to feed the 

algorithms. This is an interesting observation as it’s natural assume that that reference 

age more related to the power consumption. However, the reason why it is not highly 

related is because the age of a server doesn’t carry a lot of information. Other factors 

like processor speed or memory have high impact on the energy consumption but do not 

necessarily rely on the age. 

 
Machine Learning Model  
 

Based on the trained dataset, the model used for predictions is shown below: 

 

Z>?@?ABC	bcXVZde>?cX	 = 	;MM. Ff + 	;. ]L ∗ 	a&O&"&('&	7+e 
 
 
Detailed Prediction Model Evaluation Results (First 10 results only): 
 

Reference 

Age 

Real Fully Utilized 

Power  

Predicted Fully Utilized 

Power  

Prediction Error 

 Percentage 

69 173 240.51 39.03 
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89 265 460.83 73.89 

89 259 460.83 77.92 

112 307 714.20 132.64 

118 511 780.29 52.69 

113 713 725.22 1.71 

108 559 670.14 19.88 

112 327 714.20 118.41 

124 255 846.39 231.92 

98 264 559.98 112.11 

 
 
Figure 73 shows the actual vs predicted consumption: 
 
 
 
 

 

Figure 73:Predicted Vs Actual -      Scenario 3 
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Figure 74:Actual Vs Predicted 

Scenario 4 

Here, three attributes were used as shown below: 
 

Independent variable  Dependent Variable 

Processor Speed 

Number of Cores 

Reference Age (months) 

 

Fully Utilized Power Consumption 

 

The results in the table below: 

Independent variable Coefficient  Intercept (Constant) Average Error % 

Processor Speed 

 

   0.04  

241.08 

 

30.46% 

Cores 

 

  9.54 

Reference Age  -2.50 
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Machine Learning Model  
 

Based on the trained dataset, the model used for predictions is shown below: 

 

YZ@@[	Z>?@?ABC	gcXVZde>?cX		

= 	]^;. <f + 	<. <^ ∗ 	J"#'&//#"	K%&&1	 + 	F. H^

∗ 	D#"&/					 + 	−]. H< ∗ 	a&O&"&('&	7+& 
 

 

Actual vs Predicted consumption are visualized below: 

 

Figure 75 :Actual Vs Predicted 

 
Comparison of Actual Vs Predicted in line chart is presented below: 
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Figure 76:Actual Vs Predicted 

Scenario 5 

In this scenario, four input attributes were chosen. But they are different to what is used 

in the scenario 2: 

 
Independent Variable  Dependent Variable 

Processor Speed 

 Number of Cores 

 Processor Thread Count 

 Reference Age (months) 

 

Fully Utilized Power Consumption 

 

And the results re shown below: 

 

Independent 

Variable 

Coefficient  Intercept 

(Constant) 

Average 

Error % 

Processor Speed 3.24  

210.10 

 

29.54% Cores 9.70 

Processor Threads 7.14 

Reference Age -3.12 
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Machine Learning Model  
 

Based on the trained dataset, the model used for predictions is shown below: 

 

PQBRSTB	US>>V	UWBX	YZ@@[	Z>?@?ABC		

= 	];<. ;< + 	\. ]^ ∗ 	J"#'&//#"	K%&&1	 + 	F. L< ∗ 	D#"&/		

+ 	L. ;^ ∗ 	J"#'&//#"	hi"&*1/				 − \. ;]

∗ 	a&O&"&('&	7+& 
 

Actual vs predicted consumption are visualized below: 

 

Figure 77:Actual Vs Predicted 

 

Actual Vs Predicted is presented in a line chart below: 
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Figure 78 :Actual Vs Predicted 

Scenario 6 

In the last scenario, all six independent attributes were used in the prediction: 
 

Independent Variable  Dependent Variable 

     Processor Speed 

Number of Cores 

Memory 

Processor Thread Count 

Power Rating 

Reference Age (months) 

 

Fully Utilized Power 

 

The results are shown below: 

 

Independent 

Variable 

Coefficient  Intercept 

(Constant) 

Average 

Error % 

Processor Speed 0.27   
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Cores 9.72 254.57 26.80 % 

Memory -1.39 

Processor Threads 5.81 

Power Rating -2.83 

Reference Age -0.52 

 

Machine Learning Model  
 

Based on the trained dataset, the model used for predictions is shown below: 

PQBRSTB	US>>V	UWBX	YZ@@[	Z>?@?ABC		

= 	]H^. HL + 	<. ]L ∗ 	J"#'&//#"	K%&&1	 + 	F. L] ∗ 	D#"&/		

+ 	−;. \F ∗ jBdcR[ + 	H. f; ∗ 	J"#'&//#"	hi"&*1/		

+ 	−]. f\ ∗ kcUBR	lS>?XT	 + 	−<. H] ∗ 	a&O&"&('&	7+& 

 
A visualized graph between actual and prediction power consumption is displayed 
below: 
 
 

 

Figure 79:Actual Vs Predicted 
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Actual Vs Predicted in a line chart below: 
 

 

Figure 80:Actual Vs Predicted 

 

8.2.3 Evaluation of Idle Power Consumption 

The same as in the prediction of fully utilized power consumption, we have picked a 

few scenarios for detailed analysis as discussed below:  

Scenario 1 

We started with number of cores and memory. 
 

Independent Variable  Dependent Variable 

Processor Speed  

Number of Cores 

 

   Idle Power Consumption 

 

The results are in the table below: 

Independent 

Variable 

Coefficient  Intercept 

(Constant) 

Average 

Error % 

Processor Speed  

 

0.01  

24.13 

 

55.63% 

Number of Cores  0.69 
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Machine Learning Model  
 

PQBRSTB	ecUBR	UWBX	?C@B		 = 

	]^. ;\ + 	<. <; ∗ kRcgBVVcR	meBBC + 	<. MF ∗ 	D#"&/ 
 
The actual and predicted values are visualized in the below graph: 
 

 

Figure 81:Actual Vs Predicted 

 
Actual Vs Predicted results are visualised in line chart: 
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Scenario 2 

We started with number of cores and memory. 
 

Independent Variable  Dependent Variable 

Processor Speed  

Number of Cores 

 

   Idle Power Consumption  

 

The results are in the table below: 

 

Independent 

Variable 

Coefficient  Intercept 

(Constant) 

Average 

Error % 

Number of Cores 

 

1.36  

75.76 

 

54.22% 

Memory 

 

-0.37 
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Machine Learning Model  
 

Based on the trained dataset, the model used for predictions is shown below: 

 

PQBRSTB	ecUBR	UWBX	?C@B		 = 

	LH. LM + 	;. \M ∗ 	D#"&/		 + 	−<. \L ∗ jBdcR[ 
 
The actual and predicted values are visualized in the below graph: 
 

 

Figure 82:Actual Vs Predicted 
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Actual Vs Predicted is visualised in a line chart below: 
 

 

Figure 83:Actual Vs Predicted 

 

Scenario 3  

Four input parameters in the first scenario. 
 
 

Independent Variable  Dependent Variable 

Processor Speed 

Number of Cores 

Memory 

    Processor Thread Count 

    Reference Age (months) 

 

Idle Power Consumption  
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The results are in the table below: 

 

Independent 

Variable 

Coefficient  Intercept 

(Constant) 

Average 

Error % 

Processor Speed 

 

0.14  

267.08 

 

41.05% 

Number of Cores 

 

1.61 

Memory 

 

7.90 

Processor Threads 

 

-0.22 

Reference Age -1.33 

 

Machine Learning Model  
 

Based on the trained dataset, the model used for predictions is shown below: 

 

PQBRSTB	ecUBR	UWBX	?C@B		 = 

	]ML. <f + 	<. ;^	 ∗ 	J"#'&//#"	K%&&1	 + 	;. M; ∗ 	D#"&/		 + 	L. F< ∗

dBdcR[ +	−<. ]] ∗ 	J"#'&//#"	hi"&*1/				 + 	−;. \\ ∗

	a&O&"&('&	7ge 
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The actual and predicted values are visualized in the below graph: 
 

 

Figure 84:Actual Vs Predicted 

 
Actual Vs Predicted is visualised in a line chart below: 
 

 

Figure 85:Actual Vs Predicted 
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Scenario 4 

Here all six input attributes were used to feed the algorithm. 
 

Independent variable  Dependent Variable 

Processor Speed 

Number of Cores 

Memory 

Processor Thread count 

Power Rating 

    Reference Age (months) 

 

Idle Power Consumption 

 

The results are in the table below: 

 

Independent Variable Coefficient  Intercept 

(Constant) 

Average 

Error % 

Processor Speed - 0.13  

263.60 

 

40.78 Number of Cores 1.63 

  Memory 7.41 

       Processor Thread 

count 

        -2.15 

Power Rating  -1.34 

Reference Age 3.47 
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Machine Learning Model  
 

Based on the trained dataset, the model used for predictions is shown below: 

 

nC@B		%#o&" = 	]M\. M< +	−<. ;\ ∗ 	J"#'&//#"	K%&&1	 + 	;. M\ ∗

	D#"&/		 + 	L. ^; ∗ _&E#"` + −]. ;H ∗ 	J"#'&//#"	hi"&*1/				 +

	−;. \^ ∗ J#o&"	a*)2(+ + \. ^L	 ∗ 	a&O&"&('&	7ge 
 
Again, actual vs predicted power consumption is visualized below: 
 

 

Figure 86:Actual vs Predicted 
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Actual Vs Predicted in a line chart is presented below: 
 

 

Figure 87:Actual Vs Predicted 

 
 

8.2.4 Result Comparison of Regression Evaluation  

Table 16 presents results of all model evaluations to predict power consumption and the 

average error percentage: 
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Processor Speed Cores Memory Processor Threads Reference Age Power Rating Utilized Power 
Average Error (%) 

Idle Power Average 
Error (%) 

Single Independent Parameter 

´ Ö ´ ´ ´ ´ 29.97 55.48 

´ ´ Ö ´ ´ ´ 43.29 59.01 

´ ´ ´ ´ Ö ´ 54.93 59.56 

Ö ´ ´ ´ ´ ´ 58.01 61.67 

´ ´ ´ Ö ´ ´ 59.29 54.62 

´ ´ ´ ´ ´ Ö 69.54 62.27 

Combination of Independent Parameters 

Ö Ö Ö Ö Ö ´ 29.66 41.05 

Ö Ö Ö Ö ´ ´ 32.60 47.96 

Ö Ö Ö ´ ´ ´ 31.82 54.55 

Ö Ö ´ ´ ´ ´ 31.36 55.63 

´ Ö Ö ´ ´ ´ 29.76 54.22 

All Independent Parameters 

Ö Ö Ö Ö Ö Ö 26.80 40.78 

Table 16:Prediction Results Comparison
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8.2.5 Conclusion on Regression Result Analysis 

Based on the evaluation results, we can draw the below conclusions: 
 
1. The number of cores has the biggest impact on idle power consumption.  

2. If you only have one parameter value available, the best candidate to be used as 

an input attribute is the number of cores. This is the case for both idle and fully 

utilized consumption. 

3. If you have got two variables available, the best prediction results are produced 

for the combination of number of cores and the memory. 

4. The best result which is 26.80% is a decent prediction accuracy. However, this is 

still too high to use in a production environment.  
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8.3 Deep Learning Model Evaluation 

This section is about how we evaluated the deep learning predictor. The sequential 

neural network (NN) was trained using the same training data set as used in the 

regression evaluation.  

We used a scenario-based evaluation strategy by changing the combination of the input 

features.  Again, the predicted features are the fully utilized and idle power consumption 

of the servers. Test results are analysed and discussed under each scenario.   

8.3.1 Performance Tuning 

The deep learning models were first trained using the training data. The neural network 

was configured to run multiple times.  The improvements were monitored by changing 

the number of cycles at each run. As a result of that, we found out that the best value for 

the number of cycles to be 500.  We did not see any improvement in the results after 

that point.  

 

The technical word for a training cycle is an Epoch. Below is an extract of the output of 

the last execution cycle. We can see in the logs that the value loss which is a major 

benchmark in results analysis did not improve beyond that point: 

 

Epoch 00499: val_loss did not improve from 0.49853 

Epoch 500/500 

 

 32/457 [=>............................] - ETA: 0s - loss: 20.0671 - mean_absolute_error: 

20.0671 

457/457 [==============================] - 0s 132us/step - loss: 

8.7768 - mean_absolute_error: 8.7768 - val_loss: 7.9127 - val_mean_absolute_error: 

7.9127 

Epoch 00500: val_loss did not improve from 0.49853 

 

 

To find the best model configurations, we carried out number of testing scenarios and 

iterations. Under each scenario, we changed the number of epochs and batch size and 

then compare the results to achieve best optimized results.  
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The best performance in other words, the lowest average error percentage was achieved 

for the below combination: 

  Epochs – 500 

  Batch size – 32  

 

An Epoch is a cycle of the entire training data set which is passed forward and 

backward through the neural network. 

 

The benchmark we used to compare each scenario was the model accuracy of the neural 

network which is related to the accuracy of the prediction.  

 

For the comparison, we picked two scenarios to discuss details. In both cases, all six 

independent parameters were used to predict fully utilized power consumption. 

Details as below:  

 

 

 

 

Scenario 1 

Batch Size Number of Epoch Average Error % 

16 500 18.41% 

 

This has the least model accuracy and accordingly reported the highest error percentage.  

 

Model accuracy graph displaying the accuracy for each epoch is shown below: 



158 
 

 

Figure 88:Model Accuracy 

 

Scenario 2 

 

Batch Size Number of Epoch Average Error % 

32 50 17.87% 

 

When the batch size was increased to 32 without changing the number of epochs, we 

saw a slight improvement in the accuracy. 

 

The model accuracy graph is shown below: 
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Figure 89:Model Accuracy 

Scenario 3 

 

Batch Size Number of Epoch Average Error 

Percentage 

32 500 12.63 

 

This was the best-case scenario. We saw a significant improvement in the accuracy 

when number of epochs was increased to 500 which is the optimized value.  

 

Model accuracy graph is shown below: 
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Figure 90:Model Accuracy 
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8.3.2 Evaluation of Fully Utilized Power Prediction 

We picked a few scenarios to study the results of deep learning predictions.  

Scenario 1  

This is the best-case scenario where we take all six independent parameters for 

predictions. The summary of the results is shown in the table below:  

 
Independent Variable  Dependent Variable Average Error % 

Processor Speed 

Number of cores 

Memory 

Threads per Core 

Reference Age 

Power Supply Rating 

fully utilized power 

consumption 

12.63% 

 
 

The bellow table shows only the first 10 results: 

Actual Predicted predict-actual Error Percentage 

173 175.29 2.29 1.32 

265 266.15 1.15 0.43 

259 260.10 1.10 0.42 

307 308.23 1.23 0.40 

511 512.55 1.55 0.30 

713 716.19 3.19 0.44 

559 560.89 1.89 0.33 

327 327.91 0.91 0.27 

255 254.79 0.20 0.07 
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The figure below presents the actual values vs predicted energy consumption: 
 

 

Figure 91 : Actual vs Predicted – Scenario 1 

 
The actual utilized power consumption against the error percentage is presented in 
figure 92: 
 
Actual Vs Error Percentage 
 

 

Figure 92:Actual vs Error – Scenario 1 



163 
 

 
How the model accuracy was performed at each training model training cycle is shown 
below:  
 

 
Figure 93:Model Accuracy 

 

Scenario 2 

In this scenario, we consider the best results achieving a single independent parameter 

which is number of cores. The results are in the table below: 

 
Independent Variable  Dependent Variable Average Error % 

Number of Cores Fully Utilized Power 

Consumption 

20.49% 

 
 

For each test data point, the actual and the predicted energy consumption are compared 

in the below graph: 
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Figure 94:Actual vs Predicted – Scenario 2 

 

The error percentage of the predicted value for each actual power consumption is 

plotted below: 

 
 

Figure 95:Actual vs Error – Scenario 2 
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Model Accuracy 

 

The below graph shows the accuracy of the Neural Network at each Epoch. The 

accuracy is out of 1. The accuracy of 0 means an utterly unsuccessful prediction while 1 

is entirely successful. 

 

 

Figure 96 : Model Accuracy 

 

Scenario 3 

Here we consider the best results achieving two input parameters We took processor 

speed and memory as input parameters and executed the models. The results are in the 

table below: 

 
Independent Variable  Dependent Variable Average Error % 

Processor Speed 

Memory 

 

Fully Utilized Power 

Consumption 

 

33.78 % 

 



166 
 

Actual utilized power against the prediction error percentage is shown in the graph 

below: 

 

Figure 97:Actual Vs Error Percentage - Scenario 3 

 

The actual utilized power consumption vs predicted values are visualized in the below 

graph: 

 

Figure 98:Actual Vs Predicted - Scenario 3 
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Model Accuracy vs Epoch 

 

 

 

Figure 99:Model Accuracy Vs Epoch – Scenario 3 

 

 

 

Scenario 4 

Serer memory and the reference age were used as independent parameters. The results 

of the model execution are shown in the table below: 

 
Independent Variable  Dependent Variable Average Error % 

Memory  

Reference Age 

Fully Utilized Power 

Consumption 

26.81% 

Table 17:Scenario 1 Results 

 

 

 

The actual vs predicted utilized power consumption is visualized in the graph below: 
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Figure 100:Actual Vs Predicted - Scenario 4 

Actual utilized power consumption against predicted error percentage is visualized in 

the below graph: 

 

 

Figure 101 : Actual Vs Error Percentage - Scenario 4 
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Figure 102:Model Accuracy - Scenario 4 

 
 

8.3.3 Evaluation of Idle Energy Consumption 

We picked some scenarios to study the results of idle energy consumption predictions 

using deep learning. Details are discussed below:
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Scenario 1  

 
Independent variable  Dependent Variable Average Error % 

Processor Speed 

Number of Cores 

Memory 

Reference Age 

 

Fully Utilized Power 

Consumption 

 

25.35% 

Table 18 : Scenario 1 Results 

 

The First 10 Predictions 

 

Actual Predicted Absolute Difference 

 (predict-actual) 

Error Percentage 

89.4 89.33 0.06 0.07 

76.4 76.32 0.07 0.09 

76.6 76.52 0.08 0.10 

99.5 98.84 0.65 0.65 

145 144.95 0.04 0.03 

176 175.66 0.34 0.19 

127 127.18 0.18 0.14 

98.2 97.54 0.65 0.67 

68.5 68.01 0.49 0.733 

                                    Table 19:First 10 Predictions 
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Actual Vs Predicted Idle Power Consumption 

 

 

Figure 103:Actual Vs Predicted  

 

Actual Vs Error Percentage 

 

Figure 104:Actual Vs Error percentage – Scenario 1 
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Model accuracy across each training cycle is shown below: 
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8.3.4 Results Comparison - Power Consumption  

Table 20 summarises the valuation results for fully utilized power consumption: 

 

Ö : Included in the Evaluation 

´: Not Included in the Evaluation 

 

Processor 

Speed 

Cores Memory Threads 

Per core 

Reference 

Age 

Power Supply 

Rating 

Utilized power 

 Average Error (%) 

Idle power  

average error % 

All Independent Parameters 

Ö Ö Ö Ö Ö Ö 12.63 17.09 

Single Independent Parameters 

Ö ´ ´ ´ ´ ´ 50.95 41.15 

´ Ö ´ ´ ´ ´ 20.49 34.27 

´ ´ Ö ´ ´ ´ 28.69 43.42 

´ ´ ´ Ö ´ ´ 45.70 46.94 
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´ ´ ´ ´ Ö ´ 44.46 41.41 

´ ´ ´ ´ ´ Ö 24.34 29.48 

Combination Independent Parameters 

Ö Ö Ö Ö Ö ´ 13.58 21.87 

´ Ö Ö Ö Ö Ö 13.22 16.77 

Ö Ö ´ ´ ´ ´ 18.74 38.19 

Ö ´ Ö ´ Ö Ö 15.77 22.60 

´ Ö Ö ´ ´ ´ 20.26 30.85 

Ö Ö ´ ´ ´ Ö 16.59 16.59 

´ Ö Ö Ö ´ ´ 21.77 39.22 

´ Ö Ö ´ ´ ´ 19.68 31.10 

´ ´ Ö Ö Ö ´ 25.45 22.88 

´ Ö Ö Ö Ö ´ 15.78 21.66 

Table 20:Results Comparison: Fully Utilized Power 
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8.3.5 Analysis of Results 

Analysing the evaluation results, we can draw the below conclusions: 
 
1. The best prediction accuracy of 12.63% is for utilized power consumption, 
when all six independent parameters are provided.  

 
2. If you have only got one input attribute value in hand, the best candidate 
is   
- Power supply rating for idle power consumption: prediction 
percent error of 29.48%. 
 

-  Number of cores for fully utilized power consumption: prediction 
percent error of 20.49%.  

 
 

 
 

8.4 Summary 

Analysing the details of the evaluations is presented in this chapter. We showed a linear 

regression between selected combined features of servers and the power consumption. 

We also ruled out the usage of single linear regression (SLR) models as there is no 

strong linear regression relationship between any single feature and the power 

consumption. This is discussed in detail in the model analysis chapter. 

 

In this chapter, with test evidence, we concluded that machine learning regression 

models are capable of predicting the power consumption with a good average percent 

error of 26.80%. However, this level of accuracy is not good enough to use in a 

production application. 

 

So, we continued the research aiming to improve the accuracy by choosing another ML 

technique which is Deep Learning. A comprehensive model analysis was carried out 

first and then it was implemented in a tool.  We managed to improve the accuracy by 

reducing the average percent error to 12.63% using those DL algorithms. 

 

We present comprehensive details of the DL based predictor on three different aspects 

in the evaluation process. As detailed below, all aspects were satisfied. 
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1. Accuracy  

We managed to achieve 12.63% of average error percentage for the prediction for a 

large test data set. This is a decent and acceptable accuracy level for a commercial 

software application. 

 

2. Consistency 

Evaluation results were calculated by running the model number of times. Each time the 

predictions were in line with standard prediction accuracy.  

 
3. Scalability  

The Neural network model we built was a significantly complex one with number of 

layers. However, we showed the evidence of a very efficient execution cycle in the 

prediction process. This is due to the advanced software engineering principles upon 

which the tool is built. As an example, multi-threading programming helped the tool to 

run completely independent multiple prediction processes concurrently, to speed up the 

workload.  
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Part V 

Conclusion 
 

 

 

       “Life is trying things to see if they work.” 

                                                   -Ray Bradbury 
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CHAPTER IX 

9 CONCLUSION AND FUTURE 
WORK 

 

9.1 Summary and Conclusion 

This research is based on measuring the energy consumption of data centres by applying 

estimations and predictions. It resulted in a number of research contributions. 

 

We conducted a survey on exiting publications on energy consumption estimations by 

querying well known information sources. The results and analysis are presented in 

chapter 2 with the identified gaps. 

 

We then led the research onto address the gaps. Firstly, we performed analysis on how 

individual features of each DC equipment category contributes to the total energy 

consumption. We built models for each category and the details are discussed in the 

chapter 3. 

 

The best way of evaluating models is by creating a tool to incorporate them. That way, 

real-world users could get involved to use on a day-to-day basis. So, we built an online 

tool by utilizing state-of-the art architectural principles and technologies.  The tool 

scales very well based on the demand, meaning it has the capability to serve many users 

at the same time, without compromising the performance and the user experience.  

 

Back-end service functions of the application were utilized to evaluate those models. A 

combination of unit testing and integration testing strategies were used in the evaluation 

strategy. Individual test cases were written using Junit. Mockito framework was used to 

mock some of the dependencies which business logic does not directly depend on.  

Implementation and evaluation details are presented in chapter 6.  
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Since the servers are the single most energy consumers of the DC IT equipment, the 

focus of the research was directed to measuring the energy consumption of servers. 

Even though the models we developed can be used to calculate the total server energy 

consumption, there is a practical obstacle.   Idle and utilized power rates of the servers 

are some input parameters of the total energy models but are not easy to find out for 

some servers. This is especially for the custom-built ones which are very common in the 

DCs.  

There public data sources where these figures are published but only for the standard 

specifications. Spec.org is a reliable public source.  

 

To address this problem, we leveraged the machine AI and in particular learning 

techniques to predict the energy consumption of such non-standard servers, using the 

published data for well-known specifications. The rest of this research is based on the 

analysis, implementation and evaluation of the machine learning models in predicting 

the idle and fully utilized energy consumption of servers. 

 

Chapter 4 is on the analysis of Linear Regression models and a comparison on simple 

and multi linear regression models. With the evidence, we showed that the MLR was 

the better fitting model than SLR for predicting the consumption using training data. 

 

We built a proof of concept (POC) tool for implementation machine learning models 

and algorithms. It is the first version of MALEP (Machine Learning Energy Predictor) 

which we have later extended to incorporate deep learning algorithms as well. 

 

After reviewing the evaluation results of the regression based MALEP - version 1, we 

decided we needed to improve the accuracy if we wanted to make the tool available for 

real users. With that in mind, research was carried out on deep learning. Details on the 

analysis of deep learning models which is the MALEP version 2 is discussed in chapter 

5.  

 

Chapter 7 is on the MALEP implementation, covering both version 1 and 2. 

Evaluation of MALEP models are presented in chapter 8. 
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With the DL models, we managed to predict the server energy consumption with an 

average error percentage of 12% which is a decent and acceptable accuracy for real 

world applications. 

 

Due to the successful prediction rate we managed to achieve, we decided to make it 

open source software. It is available to download from GitHub and ready to use for data 

centre operators. They can use it to find out idle and utilized power consumption of 

their servers. The results can be fed into our model-based web tool to find out total 

energy consumption of the data centre. 

9.2 Future Perspectives 

This research provides a lead for a lot of future work, both short-term and long-term. 

9.2.1 Short Term 

We leveraged AI algorithms to predict server energy consumption. As a short-term 

extension, the same process can be applied to other IT equipment in the data centres like 

storage and network equipment as well. 

9.2.2 Long Term 

As a long-term extension, AI algorithms can be used to predict the energy consumption 

of data centre infrastructure equipment like cooling as well. Cooling is the single most 

energy consuming aspect, so having the capability of measuring it will certainly help to 

apply efficiency measures.  That, in effect, should have a significant and positive impact 

on the environment since the power consumption by data centres has been going up 

dramatically due to ever-increasing demand.  

 

The energy calculation system we built, captures and stores the structured data for each 

equipment type. Energy consumption profiles which are constructed out of this data are 

also stored alongside the generic energy profiles.  Machine learning and other AI 

algorithms can then be used to generate recommendations on power saving as long-term 

future work. 

 

Techniques like neural networks can be employed to train on the collected data, and the 

generated recommendations can be sent to data centre managers. They can apply them 
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to optimize their power savings. Feedback from their experience of the changes in the 

production environment can also be fed back to the system to improve the ML models.  

Figure 105 depicts the high-level architecture of the proposed recommendation system. 

 

 

 

Figure 105:Architecture of proposed Recommendation System 

Most important component of the system is the recommendation engine which is fed data 

from the persistence database.  Energy profiles and reference data are loaded into the 

engine. It generates recommendations on potential energy efficiencies and the users are 

able to see them using application user interface. The external systems which are 

integrated are also fed through the application API. The application API can be Restful 

web service or something similar. 
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APPENDICES 

Appendix 1: Code Samples 

1 Calculation Model Web Tool 

Calculation View 

CalculationView.java class represents the view model, responsible for rendering the 

calculated values in the user interface.  As shown below in the code snippet, the class 

constructs and then holds the view: 

 public class CalculatorView extends Panel implements View {   

1.    
2.  public static final String VIEW_NAME = ((ResourceBundle) VaadinSession.getCur

rent().getAttribute("interfaceText")).getString("menulink_calculator");   
3.  public static final String VIEW_URI = "Calculator";   
4.    
5.  private static final double YEARLY_CONSUMPTION_CONSTANT = 8.76;   
6.    
7.  private double electricityUnitCost = 0.12209195;   
8.    
9.  private ComboBox serverEuqipmentCb, coolingEuqipmentCb, upsEuqipmentCb, stora

geEuqipmentCb, networkEuqipmentCb, countryCb;   
10.  private VerticalLayout resultsLayout;   
11.    
12.  private TextField serverCountTxt, serverPowerUtilizedTxt, serverPowerIdleTxt,

 serverUtilizationTxt, coolingCountTxt, coolingPowerTxt, coolingUtilizationTxt
,   

13.  upsCountTxt, upsPowerTxt, upsUtilizationTxt, upsEfficiencyTxt, storageCountTx
t, diskCountTxt, diskUtilizationTxt, diskPowerTxt,   

14.  networkCountTxt, networkPowerTxt, networkUtilizationTxt, licensingCostTxt, in
stallationCostTxt, itStaffCostTxt, rentalCostTxt, facilityStaffCostTxt;   

15.    
16.  public CalculatorView() {   
17.   addStyleName(ValoTheme.PANEL_BORDERLESS);   
18.   setHeight("99%");   
19.    
20.   addStyleName("product-form-wrapper");   
21.    
22.   VerticalLayout root = new VerticalLayout();   
23.   root.setMargin(true);   
24.   setContent(root);   
25.   Responsive.makeResponsive(root);   
26.    
27.   root.addComponent(HeaderBuilder.buildHeader(((ResourceBundle) VaadinSession.

getCurrent().getAttribute("interfaceText")).getString("calculator_title")));   
28.    
29.   Component content = buildContent();   
30.   root.addComponent(content);   
31.   root.setExpandRatio(content, 1);   
32.   
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Web Content Building 

The web components are responsible for rendering the view for the user. It receives the 

contents from the model and then transforms it to the view. The code below, first 

generates HTML components and then binds data to them. 

 

1. private Component buildContent() {   
2.    
3.    VerticalLayout content = new VerticalLayout();   
4.    content.addStyleName("dashboard-panels");   
5.    Responsive.makeResponsive(content);   
6.    content.setSpacing(true);   
7.    content.setMargin(true);   
8.    
9.    try {   
10.    
11.        resultsLayout = new VerticalLayout();   
12.        //resultsLayout.setSpacing(true);   
13.        resultsLayout.setSizeFull();   
14.    
15.        serverEuqipmentCb = createComboBox(serverEuqipmentCb, "calculator_serve

r_euqipment");   
16.        //serverCountCb = createComboBox(serverCountCb, "calculator_server_coun

t");   
17.    
18.        coolingEuqipmentCb = createComboBox(coolingEuqipmentCb, "calculator_coo

ling_euqipment");   
19.        // coolingCountTxt = createComboBox(coolingCountTxt, "calculator_cooler

_count");   
20.    
21.        upsEuqipmentCb = createComboBox(upsEuqipmentCb, "calculator_ups_euqipme

nt");   
22.        //upsCountCb = createComboBox(upsCountCb, "calculator_ups_count");   
23.    
24.        storageEuqipmentCb = createComboBox(storageEuqipmentCb, "calculator_sto

rage_euqipment");   
25.        // storageCountCb = createComboBox(storageCountCb, "calculator_sorage_c

ount");   
26.    
27.        networkEuqipmentCb = createComboBox(networkEuqipmentCb, "calculator_net

work_euqipment");   
28.        // networkCountCb = createComboBox(networkCountCb, "calculator_network_

count");   
29.    
30.        countryCb = createComboBox(countryCb, "calculator_country");   
31.    
32.        // Servers   
33.        serverCountTxt = createTextBox(serverCountTxt, "calculator_server_count

", "1");   
34.        serverPowerUtilizedTxt = createTextBox(serverPowerUtilizedTxt, "calcula

tor_server_utilized_power", "301");   
35.        serverPowerIdleTxt = createTextBox(serverPowerIdleTxt, "calculator_serv

er_idle_power", "125");   
36.        serverUtilizationTxt = createTextBox(serverUtilizationTxt, "calculator_

server_utilization", "0.2");   
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Calculation Models 

As demonstrated in the below code snippets, the models have been encapsulated into 

Java methods. Those methods take equation variables as method parameters before 

calculating the power consumption. Calculated values are then returned to the 

accumulation model: 

 

1. public static double calculateServerEnergy(int serverCount, double serverPower
Utilized, double serverPowerIdle, double serverUtilization) {   

2.    double anualConsumption = 0;   
3.    
4.    anualConsumption = (serverPowerUtilized * serverUtilization + serverPowerId

le * (1 - serverUtilization)) * electricityUnitCost * YEARLY_CONSUMPTION_CONST
ANT * serverCount;   

5.    
6.    return anualConsumption;   
7.    
8. }   
9.    
10. public static double calculateUpsEnergy(int upsCount, double upsPowerRating, d

ouble utilization, double upsEfficiency) {   
11.    double anualConsumption = 0;   
12.    
13.    anualConsumption = (upsPowerRating * utilization / upsEfficiency ) * YEARLY

_CONSUMPTION_CONSTANT * electricityUnitCost * upsCount;   
14.    
15.    return anualConsumption;   
16. }   
17.    
18. public static double calculateStorageEnergy(int storageCount, int driveCount, 

double utilization, double diskPower) {   
19.    double anualConsumption = 0;   
20.    
21.    anualConsumption = diskPower * driveCount * utilization * electricityUnitCo

st * YEARLY_CONSUMPTION_CONSTANT * storageCount;   
22.    
23.    return anualConsumption;   
24. }   
25.    
26. public static double calculateCoolingEnergy(int coolingCount, double coolingPo

wer, double coolingUtilization) {   
27.    double anualConsumption = 0;   
28.    
29.    anualConsumption = coolingPower * coolingUtilization * electricityUnitCost 

* YEARLY_CONSUMPTION_CONSTANT * coolingCount;   
30.    
31.    return anualConsumption;   
32. }   
33.    
34. public static double calculateNetworkEnergy(int networkCount, double networkPo

wer, double networkUtilization) {   
35.    double anualConsumption = 0;   
36.    
37.    anualConsumption = networkPower * networkUtilization * electricityUnitCost 

* YEARLY_CONSUMPTION_CONSTANT * networkCount;   
38.    
39.    return anualConsumption;   
40. }  
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  2 MALEP  

Import additional libraries  
 

from sklearn import linear_model   

import tkinter as tk   

import matplotlib.pyplot as plt   

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg   

import pandas as pd   

 

 

Reading the test data from a flat file 

df = pd.read_csv('server_specs_data.csv')   

   

print('df: ', df)   

 

 

Building dependent and independent variable models 
 

X = df[['Processor_Speed', 'Processor_Cores', 'Total_Memory']].astype(float)   

Y = df['Energy_Consumption'].astype(float)  # output variable (what we are trying 

to predict)  

 

 Regression Model building 
 

regr = linear_model.LinearRegression()   

regr.fit(X, Y)   

print('Intercept: \n', regr.intercept_)   
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print('Coefficients: \n', regr.coef_)  

 

User Interface Rendering 
 

root = tk.Tk()   

canvas1 = tk.Canvas(root, width=500, height=300)   

canvas1.pack()   

# capturing GUI input   

Intercept_result = ('Intercept: ', regr.intercept_)   

label_Intercept = tk.Label(root, text=Intercept_result, justify='centre')   

canvas1.create_window(260, 220, window=label_Intercept) 

 

#Streaming data to the UI component 
 

Coefficients_result = ('Coefficients: ', regr.coef_)   

label_Coefficients = tk.Label(root, text=Coefficients_result, justify='centre')   

canvas1.create_window(260, 240, window=label_Coefficients) 

 

 Capturing Input data for prediction 
 

label1 = tk.Label(root, text='Processor Speed: ')   

canvas1.create_window(100, 100, window=label1)   

   

entry1 = tk.Entry(root)  # create 1st entry box   

canvas1.create_window(270, 100, window=entry1)   
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label2 = tk.Label(root, text=' Processor Cores: ')   

canvas1.create_window(120, 120, window=label2)   

   

entry2 = tk.Entry(root)  # create 2nd entry box   

canvas1.create_window(270, 120, window=entry2)   

   

label3 = tk.Label(root, text=' Total Memory: ')   

canvas1.create_window(140, 140, window=label3)   

   

entry3 = tk.Entry(root)  # create 3rd entry box   

canvas1.create_window(270, 140, window=entry3)   

 

def values():   

    global New_Processor_Speed   

    New_Processor_Speed = float(entry1.get())   

   

    global New_Processor_Cores   

    New_Processor_Cores = float(entry2.get())   

   

    global New_Total_Memory   

    New_Total_Memory = float(entry3.get())   
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   prediction_result = ('Predicted Energy Consumption: ', regr.predict([[New_Proce

ssor_Speed, New_Processor_Cores, New_Total_Memory]]),   

                          ' watts')   

    label_prediction = tk.Label(root, text=prediction_result, bg='green')   

    canvas1.create_window(260, 280, window=label_prediction)   

   

button1 = tk.Button(root, text='Predict Energy Consumption', command=values,   

                    bg='orange')   

canvas1.create_window(290, 170, window=button1)   

   

# plot 1st scatter   

figure3 = plt.Figure(figsize=(5, 4), dpi=100)   

ax3 = figure3.add_subplot(111)   

ax3.scatter(df['Processor_Speed'].astype(float), df['Energy_Consumption'].astype(f

loat), color='r')   

scatter3 = FigureCanvasTkAgg(figure3, root)   

scatter3.get_tk_widget().pack(side=tk.RIGHT, fill=tk.BOTH)   

ax3.legend()   

ax3.set_xlabel('Processor Speed ')   

ax3.set_title('Processor Speed Vs. Energy Consumption')   

   

# plot 2nd scatter   

figure4 = plt.Figure(figsize=(5, 4), dpi=100)   

ax4 = figure4.add_subplot(111)   

ax4.scatter(df['Processor_Cores'].astype(float), df['Energy_Consumption'].astype(f

loat), color='g')   
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scatter4 = FigureCanvasTkAgg(figure4, root)   

scatter4.get_tk_widget().pack(side=tk.RIGHT, fill=tk.BOTH)   

ax4.legend()   

ax4.set_xlabel('Processor_Cores')   

ax4.set_title('Processor Cores Vs. Energy Consumption')   

   

# plot 3rd scatter   

figure5 = plt.Figure(figsize=(5, 4), dpi=100)   

ax5 = figure5.add_subplot(111)   

ax5.scatter(df['Total_Memory'].astype(float), df['Energy_Consumption'].astype(floa

t), color='g')   

scatter5 = FigureCanvasTkAgg(figure5, root)   

scatter5.get_tk_widget().pack(side=tk.RIGHT, fill=tk.BOTH)   

ax5.legend()   

ax5.set_xlabel('Total_Memory')   

ax5.set_title('Total Memory Vs. Energy Consumption')   

root.mainloop()   

 

 
 


