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A B S T R A C T

The necessary decarbonization efforts in energy sectors entail integrating flexible assets and increased levels of
uncertainty for the planning and operation of power systems. To cope with this in a cost-effective manner,
transmission expansion planning (TEP) models need to incorporate progressively more details to represent po-
tential long-term system developments and the operation of power grids with intermittent renewable generation.
However, the increased modeling complexities of TEP exercises can easily lead to computationally intractable
optimization problems. Currently, most techniques that address computational intractability alter the original
problem, thus neglecting critical modeling aspects or affecting the structure of the optimal solution. In this paper,
we propose an alternative approach to significantly alleviate the computational burden of large-scale TEP
problems. Our approach integrates machine learning (ML) with the well-established Benders decomposition to
manage the problem size while preserving solution quality. The proposed ML-enhanced Multicut Benders
Decomposition algorithm improves computational efficiency by identifying effective and ineffective optimality
cuts via supervised learning techniques. We illustrate the benefits of the proposed methodology by solving multi-
stage TEP problems of different sizes based on the IEEE24 and IEEE118 test systems, while also considering
energy storage investment options..

1. Introduction

Power system planning is a large-scale problem that is crucial in
facilitating the cost-effective transition to a net-zero power sector.
However, it is also subject to fundamental changes brought on by
decarbonization efforts, including growing levels of uncertainty and a
greater number of associated technologies, necessitating novel planning
frameworks and their urgent application.

A principal challenge is the multi-source and multi-dimensional
uncertainty around future system developments. Neglecting uncer-
tainty altogether, or even considering future scenarios deterministically
as done in incumbent practices [1], could lead to flawed network
expansion plans associated with increased societal costs [2]. Therefore,
it has been established in the scientific literature that the application of a
form of stochastic optimization method is essential in the presence of
uncertainty [3,4], while [2] and [5] argue that multi-stage formulations
are necessary to unlock the potential for strategic decision-making for
cost-effective planning [6]. Further challenges arise with the importance

of integrating new technologies and recent evidence demonstrating that
smart investment options, such as energy storage and demand response,
could enhance investment flexibility [6] within a multi-stage strategi-
c-decision-making framework.

In this context, [2] and [5] propose alternative modeling approaches
to the multi-stage stochastic transmission expansion planning (TEP)
problem with energy storage as a non-network alternative, while the
same is done for demand response, soft-open points, and coordinated
voltage control in [7], and vehicle-to-grid charger placements are
co-optimized with network reinforcements in [8]. The inclusion of
detailed uncertainty representation, broad investment portfolios, and
intertemporal operation of flexibility assets evolves this class of planning
problems leading to more informed decisions. Nevertheless, the increase
in modeling complexities results in a greater, and often prohibitively
large, computational burden.

In general, stochastic TEP models are formulated as mixed-integer
linear programming (MILP) problems, that are NP-hard and can be
extremely difficult to solve, especially when associated with a large
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number of candidate solutions over many operating points. Decompo-
sition and parallelization techniques are often applied to handle
computational difficulties [9]. Benders decomposition [10,11] has been
highlighted as especially suited to address this class of problems because
its structure allows for straightforward disaggregation of investment and
operation constraints by taking the binary investment decisions as
complicating variables [8]. Researchers have also attempted to enhance
aspects of the performance of Benders decomposition [12]. For example,
multicut formulations [13], which append one cut per subproblem (SP)
in every iteration, are often used to improve convergence, while paral-
lelization of the SPs can speed up solution times [12]. However, the
critical issue in multicut Benders decomposition (MBD) is that all binary
decision variables are aggregated in the master problem (MP), the size of
which grows rapidly over iterations, becoming increasingly difficult to
solve. It has been reported that more than 90% of the total solution time
is dedicated to MPs [12] and could lead to intractability after a number
of iterations. Nevertheless, only 3.13% of reviewed articles in [12] apply
a method aimed at controlling the size of the MP, highlighting a research
gap.

The interest in Machine Learning (ML) methods has been growing
recently in power systems research, as evidenced in [14]. The previous
reference reveals that ML has predominantly found applications in
time-critical domains, which can lead to significant improvement in
execution times. Nonetheless, the strengths of ML can be exploited to
enhance various aspects of optimization-based frameworks via their
integration, as argued in [15] and demonstrated with application to
power systems in [16]. In line with the classification approach employed
in [15], authors in [17] identify four categories of learning-assisted
power system optimization algorithms: boundary parameter improve-
ment, optimization option selection, surrogate model, and hybrid
model. The review cites only two references with relevance to planning.
One example is [18], in which the power flow calculation is replaced
with a learning-based method in a hybrid model formulation. Other
recent publications in this emerging field have focused on electric
vehicle charging infrastructure planning in a predict-then-optimize
formulation, such as [19], where charging demand is first predicted
using a graph convolutional network to inform the optimal charger
allocation problem. The relevance of these works notwithstanding, they
do not directly address the computational bottleneck of combinatorial
optimization problems, which could have a broader contribution to
power system modeling.

Other promising techniques outlined in [15] are yet to be widely
adopted in power system applications. For example, an ML model is
proposed in [20] to identify sets of active constraints to obtain optimal
solutions more efficiently. A similar approach based on learning active
constraints is proposed in [21] for linear bilevel problems with appli-
cation to generator strategic bidding, and [22] proposes to learn
redundant constraints from previous instances of the unit commitment
problem. However, such methods change the problem structure and are
heuristic without guarantees of optimality or feasibility [21].
Leveraging the fact that not all supporting hyperplanes in iterative al-
gorithms contribute equally to constraining the MP, novel approaches
have emerged that incorporate classification techniques to identify
useful cuts. Notably, [23] proposes a learning-based selection of cutting
planes in integer programming methods, while [24] and [25] translate
the idea to Benders decomposition of two-stage stochastic programs and
of mixed-integer nonlinear programs for wireless communications,
respectively, utilizing support vector machines to distinguish between
effective and ineffective cuts. Nonetheless, to the authors’ knowledge,
this novel theory has not been extended to a multi-stage setting or
applied to power systems problems to date.

Within this context, we propose a learning-assisted decomposition
methodology to address computational intractability issues of large-
scale stochastic TEP problems. More specifically, we build upon previ-
ous research on cuts classification to develop a Benders decomposition
approach suitable for MILP problems with complete recourse that is able

to manage the critical computational bottleneck – the MP size growth
over iterations [3], thereby enabling the increase in modeling
complexity that is necessary to tackle modern power system challenges.
The proposed method is an ML-enhanced node-variable multicut
Benders decomposition algorithm (ML-MBD) that can solve the
multi-stage stochastic TEP problem, considering multiple investment
alternatives with diverse techno-economic characteristics. We present
an investigation into feature and target selection for this class of prob-
lems, as well as an appropriate sampling and training methodology. The
proposed ML-MBD is then benchmarked against the classical MBD and
evaluated against two alternative learning-assisted versions of the
method. Finally, note that this work presents a novel implementation of
ML in power systems that tackles common tractability issues in large
stochastic problems without resorting to reducing problem size through
approaches that could jeopardize solution quality. The contributions of
this paper can be summarized as:

• Develops a novel computationally efficient ML-enhanced Benders
decomposition method to solve the multi-stage stochastic TEP
problem.

• Proposes a hybrid framework that exploits advantages of both ML
and optimization for solving multi-stage stochastic optimization
problems with complete recourse while preserving solution quality.

• Investigates and proposes suitable classification targets, features,
and hyperparameters for this class of problems.

• Demonstrates the computational benefits and potential applications
of the proposed method.

The following Section presents the mathematical formulations that
form the basis for the developed ML-enhanced decomposition approach.
Then, Section 3 presents the proposed method, including details on
target selection, labeling, feature selection, and associated algorithms.
The case studies that validate ML-MBD and demonstrate its benefits are
presented in Section 4, while Section 5 provides a critical discussion on
the developed method and its contributions. The conclusions are sum-
marized in Section 6.

2. Mathematical formulations

2.1. Multi-stage stochastic transmission expansion planning

Long-term uncertainty in stochastic optimization problems with a
discrete distribution can intuitively be represented using a scenario tree
in which each node in Ωm is a realization of the uncertain parameters
and associated with a state probability (πm). On the other hand, short-
term operational variability is considered in TEP through representa-
tive time blocks in ΩB that are typically not presented as part of the
scenario tree but are directly associated with each m. The TEP under
uncertainty problem can be compactly formulated as a node-variable
multi-stage stochastic program with (1) – (6).

ψ = min
xm ,ym,b

∑

m∈Ωm

πm

(

f I
m(xm) +

∑

b ∈ ΩB

fO
m,b

(
ym,b

)
)

(1)

subject to

hI
m(xm) = 0 (2)

gI
m(xm) ≤ 0 (3)

hO
m

(
xa(m), ym,b

)
= 0 (4)

gO
m

(
xa(m), ym,b

)
≤ 0 (5)

xm ∈ X m, ym,b ≥ 0 (6)
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The superscripts I and O relate to investment and system operation,
respectively. The objective function minimizes the total expected cost
across all considered realizations of uncertainty, comprising investment
and system operation costs. The problem is MILP because investment
decisions xm are mixed integer and chosen from a portfolio of options,
including network reinforcements and non-network alternatives, while
decision variables ym,b are continuous and related to system operation. In
(4) and (5) it is observed that system operation constraints are subject to
investment decisions in m and all its ancestor nodes, a(m), considering
any construction lead times.

A problem is said to have complete recourse when for any feasible x,
there exist y such that the problem is feasible in all stages. The stochastic
TEP is a complete recourse problem because for all feasible xm, system
operation is feasible in all m due to the presence of load curtailment as a
slack decision variable (yσ

m,b) in fO
m,b(⋅), which is penalized with a large

cost – the Value of Lost Load.

2.2. Multicut Benders Decomposition

Taking the investment decisions as complicating variables, (1) – (6)
can be decomposed into an investment master problem (PM) and |Ωs|

system operation subproblems (PS
s ), each corresponding to a unique (m,

b) pair. Letting cm, dm, Am, bm, Fm,b and hm,b be functions of uncertainty,
(1) is rewritten as:

ψ = min
xm ,ym,b

∑

m∈ΩM

πm

(

cT
mxm +

∑

b in ΩB

dT
mym,b

)

(7)

Introducing the continuous variable αm,b ∈ R+, ∀m, b to approximate
operational costs, we formulate the PM in iteration k with (8) – (11).

ψM(k) = min
xm ,αm,b

∑

m∈ΩM

πm

(

cT
mxm +

∑

b in ΩB

αm,b

)

(8)

subject to

Amxm ≤ bm, ∀m ∈ ΩM (9)

αm,b ≥
(
hm,b − Fm,bxm

)Tυm,b, ∀m ∈ ΩM, b ∈ ΩB, υm,b ∈ Ω(k−1)

V (m,b)
(10)

xm ∈ X m, ∀m ∈ Ωm (11)

The MP yields a candidate solution (xm, αm,b) in every iteration. The
set Ω(k−1)

V (m,b)
in (10) contains the identified extreme points of the feasible

region of the PS
s corresponding to (m, b) at the current solution and is

associated with the optimality cuts. Benders’ method additionally in-
volves feasibility cuts associated with the identified extreme rays of PS

s ,
which are omitted here since all SPs are feasible for any MP solution. By
fixing investment decisions to xm, PS

s are free from integer decision
variables and defined for each (m, b) pair as:

ψS(k)

m,b (xm) = min
ym,b

dT
mym,b (12)

subject to

Wm,bym,b ≤ hm,b − Fm,bxm : λm,b (13)

ym,b ≥ 0 (14)

The MP (8) – (11) is a relaxation of the original problem, the
objective function of which is reconstructed by iteratively generating
optimality cuts of the form (10) from the solution of (12) – (14) and
appending them in (8) – (11) until convergence is achieved. By weak
duality, ψM provides a lower bound (LB) to the original problem, while a

valid upper bound (UB) is given by
∑

m∈ΩM

πm

(

cT
mxm +

∑

b in ΩB

ψS
m,b(xm)

)

,

where ψM and ψS
m,b are the optimal values of the MP and SPs at the

current candidate solution, respectively.
Each appended cut increases computational burden but does not

necessarily contribute notably towards convergence. The aim of the
proposed ML-MBD method is to discard those cuts that provide no or
little contribution.

2.3. Transmission expansion planning under uncertainty with energy
storage investment options

We present the deterministic equivalent of the node-variable multi-
stage stochastic TEP under uncertainty problem with energy storage
units as investment options in its decomposed form, following the MBD
approach. The investment MP in iteration k is described by (15) – (25),
where x is a vector containing all its decision variables. The investment
options considered are line reinforcements of all lines l and energy
storage units at candidate buses h.

ψM(k) = min
x

∑

m∈ΩM

πm

[

rI
ϵm

ΨI
m(x) +

∑

b∈ΩB

αm,b

]

(15)

where

ΨI
m =

∑

l∈ΩL

(
κlXm,l + κ̃lFm,l

)
Λl +

∑

h∈ΩH

κm,hYm,h (16)

subject to

Xm,l ∈ {0,1}, ∀m ∈ ΩM, ∀l ∈ ΩL (17)

Fm,l ≥ 0, ∀m ∈ ΩM, ∀l ∈ ΩL (18)

Ym,h ≥ 0, ∀m ∈ ΩM, ∀h ∈ ΩH (19)

∑

m∈ΩM(w)

Xm,l ≤ 1, ∀w ∈ ΩW, ∀l ∈ ΩL (20)

Xm,lF
∨

l ≤ Fm,l ≤ Xm,lFl
∧

, ∀m ∈ ΩM, ∀l ∈ ΩL (21)

S
∨

h ≤ Ym,h ≤ S
∧

h, ∀m ∈ ΩM, ∀h ∈ ΩH (22)

FC
m,l =

∑

a∈ΩEL
A(m)

Fa,l, ∀m ∈ ΩM, ∀l ∈ ΩL (23)

YC
m,h =

∑

a∈ΩES
A(m)

Ya,h, ∀m ∈ ΩM, ∀h ∈ ΩH (24)

αm,b ≥ ψS,(ν)

m,b +
∑

l∈ΩL

(
FC

m,l − FC,(ν)

m,l

)
λF,(ν)

m,b,l +
∑

h∈ΩH

(
YC

m,h − YC,(ν)

m,h

)
λY,(ν)

m,b,h,

∀m ∈ ΩM, ∀b ∈ ΩB, ν = 1, …k − 1 (25)

The objective function (15) minimizes the expected total system cost,
consisting of discounted investment and estimated annual operation
costs, where system operation costs in each scenario tree node m and
representative block b are approximated with variable αm,b. Investment
costs are calculated according to (16). The mixed-integer nature of in-
vestment decision variables is enforced with (17) – (19). Constraints
(20) limit network investments in a single line to one upgrade for the
duration of the planning horizon, while (21) and (22) impose limits on
the capacity expansion amounts for line reinforcements and energy
storage, respectively. Then, (23) and (24) determine the cumulative
capacity investments that are operational in node m, taking into account
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the commissioning delays for transmission lines EL and energy storage
ES. Lastly, (25) represent all Benders cuts at the current iteration k.

The SPs in iteration k are defined for all m ∈ ΩM and b ∈ ΩB with (26)
– (40), where y is a vector containing all decision variables. They
represent independent problems that can be solved in parallel.

ψS,(k)

m,b = min
y

ωbrO
ϵm

ΨO
m,b (26)

where

ΨO
m,b =

∑

t∈Ωb
T

τ
[

∑

g∈ΩG

γG
m,gpt,g +

∑

n∈ΩN

(
γS

mρ−
t,n + Γyσ

t,n

)
]

(27)

subject to

F̃
C
l = FC,(k)

m,l : λF,(k)

m,b,l, ∀l ∈ ΩL (28)

Ỹ
C
h = YC,(k)

m,h : λY,(k)

m,b,h, ∀h ∈ ΩH (29)

0 ≤ pt,g ≤ P̂m,t,g, ∀t ∈ Ωb
T , ∀g ∈ ΩG (30)

pt−1,g − τ Rd
g ≤ pt,g ≤ pt−1,g + τ Ru

g , ∀t ∈ Ωb
T\

{
t1b

}
, ∀g ∈ ΩG (31)

Ete
b ,n = Et0b ,n, ∀n ∈ ΩN (32)

Em,t1b ,n = Em,t0b ,n + τ
(

η+
n ρ+

t1b ,n −
ρ−

m,t1n ,n

η−
n

)

, ∀n ∈ ΩN (33)

Em,t,n = Em,t−1,n + τ
(

η+
n ρ+

t,n −
ρ−

t,n

η−
n

)

, ∀t ∈ Ωb
T\

{
t1b

}
, ∀n ∈ ΩN (34)

0 ≤ Em,t,n ≤ τS
h

(

S0
n + Ỹ

C
h

)

, ∀t ∈ Ωb
T , ∀n ∈ ΩN (35)

ρ+
t,n ≤

(

S0
n + Ỹ

C
h

)

, ∀t ∈ Ωb
T , ∀n ∈ ΩN (36)

ρ−
t,n ≤

(

S0
n + Ỹ

C
h

)

, ∀t ∈ Ωb
T , ∀n ∈ ΩN (37)

ft,l = bl
(
δt,i(l) − δt,j(l)

)
, ∀t ∈ Ωb

T , ∀l ∈ ΩL (38)

⃒
⃒ft,l

⃒
⃒ ≤ F0

l + F̃
C
l , ∀t ∈ Ωb

T , ∀l ∈ ΩL (39)

∑

∀g
Gn,gpt,g +

∑

∀l

In,lft,l −
∑

∀n

(
p+

t,n − p−
t,n

)
− Dm,t,n + yσ

t,n = 0, ∀t ∈ Ωb
T ,∀n ∈ ΩN

(40)

The SP objective function (26) minimizes the discounted costs of
generation, storage operation, and load curtailment, as defined in (27).
Constraints (28) and (29) couple the operational subproblem with the
current candidate investment decision, the Lagrange multipliers of
which are used to construct Benders cuts that are to be appended to the
MP in the following iteration. Generators’ outputs are constrained with

(30) and (31), while (32) – (37) model energy storage operation. Note
that t0b , t1b and te

b denote the time period directly before the first hour of
operation in block b, the first time period in b, and the final time period
in b, respectively. Power flows are determined with (38) and constrained
to the available capacity with (39), while (40) is the power balance
equation.

The MBD solution algorithm is summarized in Fig. 1. The system
operation problem is built up from below by appending Benders cuts in
(25) over iterations until the MP objective function is equivalent to that
of the original problem. The lower bound and upper bound are defined
with (41) and (42), respectively, while (43) is the convergence criterion,
where ϵBD is a value close to zero.

LB(k) = ψM(k) =
∑

m∈ΩM

πm

[

rI
ϵm

ΨI
m

(
x(k)

)
+

∑

b∈ΩB

α(k)

m,b

]

(41)

UB(k) =
∑

m∈ΩM

πm

[

rI
ϵm

ΨI
m

(
x(k)

)
+

∑

b∈ΩB

ψS,(k)

m,b

]

(42)

UB(k) − LB(k)

LB(k)
< ϵBD (43)

3. Learning-enhanced benders decomposition method

The proposed methodology leverages ML techniques to enhance the
MBD algorithm, which is based on generating cutting planes to
approximate future-cost functions. We extend the novel theory in cuts
classification to a multi-stage multicut formulation and propose appro-
priate revisions where previous research falls short for the application to
power system optimization problems with complete recourse. The ML-
MBD method employs supervised learning techniques that take a set
of cut characteristics as inputs to distinguish between effective and
ineffective cuts based on user-defined criteria with varying strictness. It
involves two main stages: 1) data sampling and classifiers training, and
2) problem execution.

3.1. Machine learning method

We consider the use of supervised learning techniques to train the
classifiers in this research. Compared to other options, they have the
advantage of being relatively well understood in the field of artificial
intelligence, with a simpler implementation and faster convergence.

To maximize the performance of the proposed method, we explore
and evaluate different ML techniques [26], as detailed in Subsection 3.3
Nonetheless, models based on Support Vector Machines (SVM), Decision
Trees (DT), and Random Forests (RF) presented the best performance. As
authors in [25] argue the importance of correctly classifying effective
cuts, the precision-recall (PR) characteristics of the ML models, which
measure the trade-off between the accuracy and completeness of posi-
tive predictions, have a direct impact on the method’s performance.
Models trained with RF incurred in better PR scores and are therefore
used in the presented case studies.

Fig. 1. Workflow of the Multicut Benders Decomposition Approach.
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3.2. Target selection and labeling

The classification target could be any variable that informs on the
effectiveness of an individual cut in improving the approximation of the
future-cost function within the Benders algorithm. We therefore refer to
the target as a cut performance indicator (CPI). References [24] and [25]
both propose the LB as CPI, which would be the natural choice given that
it is the objective value of the MP and it increases monotonically.
However, using the LB as CPI may lead to inefficient behavior of the UB
and slower convergence as a result, an aspect that previous references do
not investigate. Furthermore, the UB does not behave predictably and
appending only the cuts that cause its value to decrease could be
extremely valuable, thus worth exploring as a CPI. In the case studies,
we identify shortcomings of both LB and UB as CPIs, and instead propose
to use UB and LB sequentially as CPIs to mitigate limitations.

For the avoidance of doubt, we henceforth refer to the proposed
method as ML-MBD-C, as it involves the combined use of both CPIs. We
use ML-MBD-L andML-MBD-U to indicate the use of a single CPI, namely
the LB or the UB, respectively, which we apply for feature selection in
Subsection 3.3 and to evaluate the performance of ML-MBD-C in Section
4.

Next, a cut performance metric (CPM) is introduced that provides
information on the improvement of the CPI as a result of appending a
cut. Since such a metric is continuous, a label transformation function is
required to separate effective and ineffective cuts for the binary classi-
fication task. Equations (44) and (45) define the CPM with reference to
each CPI before and after cut c has been added and evaluate it against a
predefined threshold θ. Cuts that satisfy the inequalities are labeled 1, or
labeled 0 otherwise.

CPMLB
c =

LB(after) − LB(before)

LB(after) ≥ θLB (44)

CPMUB
c =

UB(after) − UB(before)

UB(after) ≤ θUB (45)

Unlike the monotonically increasing LB, changes in UB can be both
positive and negative, so θUB is a negative value since improvement
implies a decrease in the UB. The threshold is an important factor in ML-
MBD as it ultimately influences the conservativeness of the classifier. A
stricter θCPI would result in fewer cuts appended to the MP, risking
slower convergence, while an overly permissive θCPI could render the use
of ML redundant. The choice of threshold is challenging for two main
reasons. Firstly, because there is no established rule as to what consti-
tutes an effective cut [27]. Secondly, because the rate of convergence of
MBD has a tailing off effect such that the changes in the LB and UB
diminish in latter iterations, causing distribution shift and implying that
a single threshold might not be appropriate for all cuts. For these rea-
sons, we use a set of thresholds with decreasing strictness, similar to the
approach in [24]. We define Nζ thresholds in ΩCPI

θ =
{

θCPI
1 ,…,θCPI

Nζ

}
, for

each CPI, based on observations of CPMLB
c and CPMUB

c for each cut c in
the respective training datasets. Thresholds in ΩLB

θ are chosen uniformly
with values between, but excluding, the largest and the smallest
observed CPMLB

c , and the same is done for ΩUB
θ with values greater than

the smallest observed CPMUB
c up to, and including, zero. This approach

to thresholds selection is adopted because it generalizes well to any TEP
problem.

3.3. Feature selection

The aim of feature selection is to identify cut characteristics and
complementary information that best inform the ML model on a cut’s
potential for CPI improvement. It is important to base this selection on
both ML metrics and ML-MBD performance. We aim to define problem-
independent features such that the method generalizes to a range of
modified TEP problems, as discussed further in Subsection 4.2.3.

Here, we investigate ten potential features in combinations of two or
more, with LB and UB as CPIs. We evaluate their correlation and feature
importance (Gini Importance and Mean Decrease in Accuracy), as well
as classification scores (receiver operating characteristic (ROC),
balanced accuracy, and F-score) of models trained with SVM, DT, RF,
logistic regression, and k-nearest neighbors [26]. The combinations with
highest scores are selected to support ML-MBD-L and ML-MBD-U in
solving two trial TEP problems, resulting in 72 test examples upon which
the final feature selection is made based on the trade-off between the
number of cuts and the number of iterations at convergence.

This is illustrated in Fig. 2 for all converging problems with an
optimal cost within 1.5% of that obtained using MBD. It shows that
despite a high classification score, a model based on an inadequate
combination of features could prohibitively increase the required
number of iterations or lead to larger MP sizes. Therefore, the aim is to
select feature and target combinations resulting in an ML-MBD perfor-
mance that lies in the lower left corner of the plot.

Table 1 summarizes the investigated features and the observations in
terms of their efficacy. Note that quantities here are defined on the set
Ωs, where each s translates to a unique (m, b) in line with notation in
Section 2. The symbol Δ denotes the difference between the values in
iterations (k) and (k − 1).

The first feature is cut origin, namely the SP from which the cut
originates. The second is the iteration in which the cut is generated,
which might carry useful information given the tailing off effect of MBD.
Then, Cut Violation is a feature proposed in [24] that is related to the
feasible space of the MP that can be removed by appending the cut. It is
inherently a useful measure; however, note that it is defined only at the
current MP candidate solution (x, αs) and resulting λs, without any
indication of how it translates to the rest of the feasible region and, by
extension, to subsequent candidate solutions. Although this feature
might contain useful information and is shown empirically as important,
it does not carry full information and could be developed further in
future work.

The objective function value of the SP in which the cut is generated
and the corresponding dual variables are contained within Cut Viola-
tion. Nonetheless, our investigation reveals that they could act as com-
plementary features that increase the performance of ML-MBD. A similar
observation is made for the final two features – solution proximity and
value of the slack variable. The slack variable is penalized with a high
cost in the SP objective function and could be considered as a reflection
of the quality of the MP candidate solution. Intuitively, it should carry
important information about the cuts in a problem with complete
recourse.

Fig. 2. Trade-off between number of cuts and number of iterations of the test
models as a percentage of the non-ML MBD solution.
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Table 1
Feature Selection Summary.

Feature CPI = LB CPI = UB

Observation Use Observation Use

Cut origin: PS
s detrimental irrelevant

Iteration: k informative ✓ informative ✓
Cut Violation: (hs − Fsx)

Tλs − αs informative ✓ informative ✓
SP objective: ψS

s irrelevant informative (supplementary) ✓
Change in SP objective: ΔψS

s informative (supplementary) ✓ informative (supplementary)
Dual variables: λs irrelevant irrelevant
Change in dual variables: Δλs informative (supplementary) ✓ irrelevant
Solution proximity: |Δx| informative (supplementary) ✓* informative (supplementary) ✓
Value of slack variable: yσ

s informative (supplementary) informative (supplementary) ✓
Change in slack variable value: Δyσ

s informative (supplementary) ✓ informative (supplementary)

Algorithm 1
Data sampling and classifiers training.
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There are a few observations on the final feature selection marked
with (✓) in the table. Firstly, different features are preferred depending
on the CPI. For instance, ML-MBD-L performance is improved if sup-
porting features are formulated as a change in value from the previous
iteration, which is not the case for ML-MBD-U. Similarly, solution
proximity is used with both CPIs, but the binary decision variables are
excluded from the ML-MBD-L features (✓*). Secondly, our investigation
finds that the two-feature approach in [24] leads to underperformance,
both in terms of ML metrics and number of cuts at convergence, and that
the additional features proposed in [25] are not applicable to our
decomposition technique. Lastly, unlike in both previous papers, which
focus on other problems, we find that cut origin is not an effective
predictor for a cut’s effectiveness in our multi-stage formulation, and in
fact, it is detrimental to the performance of ML-MBD-L.

3.4. Sampling and training procedures

The proposed offline sampling and training procedure is summarized
in Algorithm 1 and consists of two parts – solving a TEP problem with a
modified MBD algorithm to extract cut information and subsequently
training the ML models. The sampling problem should be of a similar
structure as the one in which the ML-MBD will be applied, for example
involving the same network and a simplified uncertainty representation.

In the first part, the MDB is modified so as to reveal unique infor-
mation on the effectiveness of each cut individually. This is achieved by
re-solving the MP with only one newly appended cut and measuring the
improvement in the LB as a direct consequence of that cut alone. Then,
all cuts are appended to progress the algorithm and continue to SPs
execution. The improvement in UB is measured at the end of the itera-
tion as an aggregated contribution of all cuts appended in that iteration.
To obtain individualized UB improvement information, similar to LB,
|ΩS|

2 additional SP instances would need to be solved, which prohibi-
tively increases the sampling time for problems with large scenario trees
and the benefit of this information does not justify the increased time
demand for smaller problems. Finally, the features are extracted at the
end of each iteration.

Step 1 is run for NS iterations, which is significantly fewer than the

number of iterations required to achieve convergence. Then, ΩCPI
θ are

determined for both LB and UB, and cut samples are labelled accord-
ingly. With that, Nζ datasets are created for each CPI (ΘLB

i and ΘUB
i in

Algorithm 1) with |Ωc| rows and |ΩCPI
F | + 1 columns. They contain the

same number of rows (samples) and identical first |ΩCPI
F | columns (fea-

tures), but the labels contained in the final column differ due to the
varying strictness of the thresholds. Finally, an under-sampling pro-
cedure is performed for each dataset to balance the classes before
training.

Classifiers ζCPI
1 , ζCPI

med and ζCPI
Nζ

are trained on ΘCPI
1 , ΘCPI

med and ΘCPI
Nζ

,

respectively, where ΘCPI
med is the dataset corresponding to the median

threshold in ΩCPI
θ . They are evaluated using their ROC and PR curves,

such that if the areas under the ROC and PR curves are below pre-
defined minimum levels (ϵmin

ROC, ϵmin
PR ), the algorithm returns to Step 1

where the modified MBD is resumed for another NS iterations. The
termination criterion is based on the performance of three ML models
because each is trained with a different number of samples due to the
class imbalance of the respective dataset and subsequent under-
sampling, which could result in different performances of the models.
The remaining classifiers in Ωζ are trained at the end.

3.5. Solution algorithm

The proposed method is summarized in Algorithm 2. Step 1 is per-
formed only if suitable classifiers do not already exist from a previously
concluded training procedure, as supported by the generalization
properties evidenced in Subsection 4.2.3.

Step 2 describes the ML-supported solution of a TEP problem, as

illustrated in Fig. 3. Cuts are classified using ΩCPI
ζ =

[
ζCPI
1 , …, ζCPI

Nζ

]
,

starting with the strictest model ζCPI
1 until at least one cut is identified as

effective. Should no cut be deemed effective by any classifier in ΩCPI
ζ ,

then the algorithm proceeds as traditional MBD in that iteration. Stricter
classifiers may become redundant considering the distribution shift as
the Benders algorithm progresses and could therefore be discarded.
However, we find that although CPI improvements decrease on average

Algorithm 2
ML-MBD-C.

S. Borozan et al. Electric Power Systems Research 237 (2024) 110985 

7 



over iterations, they do not decrease monotonically and often a stricter
classifier can still be utilized after it has failed to label any cuts as useful
in a previous iteration, potentially yielding greater benefits compared to
the approach in [24]. For the proposed ML-MBD-C, the CPI is updated
when the moving average of CPMUB in the previous 10 iterations (δUB)
falls below a pre-determined value ϵUB. For the two testing versions of
the method, this action can be ignored in ML-MBD-U, while ML-MBD-L
only requires adequate CPI initialization.

In summary, the proposed ML-MBD framework for solving TEP
under uncertainty problems consists of the steps illustrated in the
flowchart in Fig. 4, and are as follows:

1) Start: The process begins with initializing the problem parameters
and variables.

2) Problem Formulation/ Problem Inputs Update: The multi-stage sto-
chastic TEP problem is defined. In a first execution, this includes
specifying the objective function, decision variables, constraints, and
the scenario tree and other input parameters. In subsequent model
executions, the input parameters are updated correspondingly.

3) Decomposition: The problem is decomposed into a MP and SPs. The
MP includes the investment decisions, while the SPs handle the
operational aspects for each scenario tree node and representative
block.

4) Machine Learning Integration: Data on the cuts generated in the
initial iterations is sampled and used to train ML classifiers, as
defined with Algorithm 1. These classifiers aim to distinguish be-
tween effective and ineffective cuts based on their impact on the
convergence process, and are designed to generalize to modified
problems such that this step can be omitted in subsequent model
executions.

5) Iterative Solution Process: The solution process is described with
Algorithm 2 and illustrated in Fig. 3. It involves building up the MP
with effective cuts, solving the SPs based on the candidate MP so-
lution in the current iteration, generating new cuts, and classifying
them. This process repeats until the convergence criteria are met.

6) End: The results of the TEP problem are outputted and evaluated.

3.6. Computational effort

ML integration adds a certain overhead to the full solution process.
The bulk of it is in fact in Step 1 of Algorithm 1 and it depends on the

problem size and number of iterations required for generating an
adequate dataset. In the studies presented here, we do not impose any
expectations or restrictions on the total training time and NS = 20 is
used throughout. In all cases, Algorithm 1 terminated after two or three
repetitions of Step 1 for a high standard for ϵmin

ROC and ϵmin
PR of 0.92. In

terms of training in Step 3, the ML techniques employed require a
relatively low number of samples to produce well-performing models
and training time is insignificant. In our investigations, the training time
of a single classifier typically ranged between 0.5 and 3 seconds, with
only a few instances taking between 20 and 30 seconds, depending on
the number of samples and the ML technique. Nevertheless, the sam-
pling and training process does not add to the computational efforts of
the problem execution itself because it is performed offline and only
once with application to different problems, enabled by the general-
ization properties of the method. The classification step in Algorithm 2
added at most 0.6 seconds, including the time required for memory
communication between scripts, which is negligible considering the
total time of a single MBD iteration.

4. Case studies

We apply ML-MBD to the problem of co-expansion of the trans-
mission system with battery energy storage (BES) as a non-network in-
vestment alternative, as presented in Subsection 2.3. The proposed ‘ML-
MBD-C’ is benchmarked against the classical MBD and evaluated with
respect to ‘ML-MBD-L’ and ‘ML-MBD-U’ that use a single CPI as done in
previous research [24,25]. The computational benefits of the proposed
method are analyzed with respect to the number of appended cuts,
which is directly related to the memory requirements of the problem,
and MP solution times. The optimization problems are implemented in
FICO XPress 8.13 and the ML scripts in Python 3.9. Results are obtained
on a Dual Xeon computer with 512 GB RAM. All cases are solved with
Nζ = 10, ϵBD = 0.01, and NBD = 1,000.

4.1. Description

The case studies are based on the IEEE 24-Bus Reliability Test System
(IEEE24) and the IEEE 118-Bus System (IEEE118), the topologies of
which can be found in [28]. Line capacities in both networks are
modified to allow unconstrained operation in the initial system state, as
explained in [5], while the IEEE24 case additionally includes solar and

Fig. 3. Workflow of the ML-MBD-C solution algorithm.

Fig. 4. Flowchart of the ML-Enhanced Multicut Benders Decomposition Framework.
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wind generation as done in [8]. Generator capacities are scaled up to
ensure system adequacy throughout the planning horizon.

Three test cases of different sizes are developed subject to uncer-
tainty in the level and rate of peak demand increase, as presented with
the scenario trees in Fig. 5. All cases involve four decision-making stages
over a 40-year horizon, but the number of scenarios and scenario tree
nodes is different. The first tree shows 6 scenarios over 13 nodes, the
second 18 scenarios and 27 nodes, and the final case considers 27 sce-
narios over 40 nodes. Each node represents an investment decision-
making point and is associated with a unique system operation prob-
lem. Short-term variability is accounted for with four representative
blocks. Demand profiles are obtained from IEEE24 and IEEE118 data
and renewable generation time-series from [8]. Since each (m, b) pair

represents a separate SP, the first case involves |ΩS| = 52, the second |

ΩS| = 108, and the third |ΩS| = 160, and the same number of Benders
cuts per iteration.

Line reinforcements are subject to an annualized fixed cost of
$121,600 per km, annualized variable cost of $76 per MW and km, and a
commissioning delay of one stage. BES units are assumed to have a
discharging duration of 2 hours and 90% efficiency. They are subject to
an annualized investment cost of $102,000 per MW and are available in
the same stage in which the investment decision is made. Case studies on
the IEEE24 involve the possibility to invest in BES in all buses, while 13
candidate buses are selected in IEEE118 in keeping with [5].

Fig. 5. Scenario trees describing the three test cases.

Table 2
Results of the case studies.

Network Scenario tree Method Iterations Total cuts Optimality gap [%] Total solution time [h] Best LB
[£ million]

Best UB [£ million]

IEEE24 13 nodes MBD 88 4,524 0.89 1.81 6,285 6,317
ML-MBD-L 127 4,885 0.91 2.64 6,261 6,314
ML-MBD-U 287 3,080 0.36 3.31 6,311 6,371
ML-MBD-C 116 4,398 0.86 2.16 6,268 6,314

27 nodes MBD 60 6,372 0.58 9.57 21,964 22,175
ML-MBD-L 75 6,534 0.84 10.89 21,821 22,128
ML-MBD-U 164 2,110 0.91 13.01 21,715 22,227
ML-MBD-C 65 4,765 0.86 9.14 21,929 22,121

40 nodes MBD 58 9,120 0.83 11.35 38,144 39,038
ML-MBD-L 67 7,569 0.77 10.52 38,180 38,504
ML-MBD-U 1,000 4,880 15.04 23.08 34,131 39,532
ML-MBD-C 63 5,970 0.81 9.78 38,146 38,516

IEEE118 13 nodes MBD 156 8,060 0.50 7.22 58,451 58,969
ML-MBD-L 175 6,434 0.84 6.23 57,542 58,460
ML-MBD-U 224 4,179 0.95 6.78 57,746 58,668
ML-MBD-C 179 6,276 0.72 6.35 57,538 58,476

27 nodes MBD 250 26,892 0.96 35.44 56,353 56,679
ML-MBD-L 305 22,189 0.78 33.99 56,022 56,499
ML-MBD-U 812 13,319 0.93 59.00 55,891 56,403
ML-MBD-C 278 21,261 0.88 32.22 56,350 56,632

40 nodes MBD 175 27,840 2.35 240.00 55,503 55,964
ML-MBD-L 232 26,542 0.85 165.15 55,519 55,946
ML-MBD-U 1,000 9,267 13.66 222.63 52,243 56,798
ML-MBD-C 226 25,702 0.96 159.90 55,503 55,957
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4.2. Results

4.2.1. Validation and scalability
Table 2 summarizes the results at termination of the solution algo-

rithm. As the contributions of this research concern the solution
approach, we focus on convergence and obtained costs to validate the
method, while the exact investment strategies are not of consequence.
We stress, however, that all convergent ML-MBD cases result in identical
expansion decisions as with MBD. In terms of cost, the results table
shows that all expected total system costs obtained using a version of the
ML-MBD method fall within 0.5% of the corresponding MBD reference
values, except on two occasions with ML-MBD-U when costs differ by
0.86% and 1.34%. This signals that ML-MBD converges to the correct
TEP solution, as further evidenced by the values for best UB in Fig. 6.

In terms of convergence, we emphasize that MBD failed to find a
solution for the IEEE118 40-node problem as the algorithm stopped
progressing after 7 days and was terminated after 10 days. In contrast,
the proposed ML-MBD-C reaches convergence, highlighting its primary
contribution – the ability to solve larger stochastic optimization prob-
lems while preserving solution quality. Fig. 7 demonstrates the rates of
MP growth using the four considered decomposition methods. MBD
adds 160 constraints in every iteration, regardless of their effectiveness,
and so fails to progress past iteration 175. Conversely, all ML-MBD
versions manage the size growth by discarding cuts classified as inef-
fective, leading ML-MBD-C and ML-MBD-L to convergence within 226
and 232 iterations, respectively. Finally, the figure reveals that the
problem grows most conservatively with ML-MBD-U, although in this
case it reaches the 1,000-iteration limit before convergence.

To highlight the computational benefit of ML-MBD with respect to
problem size across all considered problems, Fig. 8 shows the percentage
reduction in the total number of appended cuts compared to the MBD
solution as a reference. ML-MBD-C consistently converges to a solution
that is marginally better than that of MBD, as supported by Fig. 6, while
also appending between 3% and 35% fewer cuts. Note that for the
largest problem, the benefit is much more significant than the figure
suggests because, as previously noted, MBD fails to converge. Moreover,
the results show certain flaws in both testing versions of ML-MBD.
Although the problem grows the least with ML-MBD-U, appending be-
tween 32% and 67% fewer cuts than MBD, convergence within the limit
is not always reached. ML-MBD-L, on the other hand, underperforms in
the smaller-sized problems. This validates the proposed approach
involving the use of both UB and LB as CPIs.

4.2.2. Computational performance
The MP is NP-hard and the worst-case complexity increases expo-

nentially with the problem size. However, there are no proven rules

regarding the average computational complexity of NP-hard problems
and solution times in practice depend on additional factors, such as CPU
usage. Therefore, the computational performance of the proposed
method must be evaluated empirically and we analyze the results only
for direct comparison between the ML-assisted and classical MBD onFig. 6. Percentage change between the best upper bound obtained using ML-

MBD methods and the reference values obtained using MBD.

Fig. 7. Cumulative number of appended cuts over iterations for the four MBD
methods in the IEEE118 27 nodes case.

Fig. 8. Percentage reduction in the total number of cuts at convergence using
ML-MBD methods compared to MBD.

Fig. 9. MP solution time improvement with ML-MBD-C normalized for the
number of iterations and as a percentage of the MBD reference values.
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separate test cases. Notwithstanding, the results show a clear trend that
less time is spent solving MP instances with the proposed method. Fig. 9
demonstrates the reductions in average MP solution time with ML-MBD-
C. The computational time savings increase with the size of the TEP
problem, up to 72.1%. Note again that the final case does not reflect the
full benefit because MBD leads to an intractable MP in iteration 176. The
percentage reduction in MP solution time up to this iteration is 52.4%.

Although ML-MBD-C requires fewer cuts to find a solution, it com-
pletes more iterations compared to MBD, which could lead to an in-
crease in total solution time in some cases. Note, however, that the
impact of the number of iterations on total solution time could be largely
reduced with parallel execution of SPs, which we avoid in order to
identify direct effects of the application of the proposed method.
Nevertheless, the considerable MP solution time savings with ML-MBD-
C in the larger problems compensate for the time demands of additional
iterations and lead to reductions in total solution times of up to 33.4%,
as observed in the last case in Table 2. This fact highlights the pertinence
of the proposed method to large-scale problems, especially those that
challenge tractability limits.

4.2.3. Generalizability
Lastly, we test the generalizability properties of the method on

modified problems with respect to aspects that might occur in imple-
mentation, such as changes to the assumptions on long-term uncertain
parameters, short-term operational variability, scenario tree transition
probabilities, or the size and shape of the scenario tree. Specifically, we
take ML-MBD-C trained on the IEEE118 problem with a 13-node sce-
nario tree and apply it directly, without re-training, to the following
problems:

• IEEE118 and 13-node scenario tree with different transition
probabilities

• IEEE118 and 13-node scenario tree with different uncertainty as-
sumptions on long-term demand increase

• IEEE118 and 13-node scenario tree with different short-term vari-
ability time-series (representative blocks)

• IEEE118 and 27-node scenario tree.

In all cases, ML-MBD-C converges to an equivalent solution to the
one obtained with MBD, but with reduced computational burden as
highlighted in Fig. 10, which shows the significant MP solution time
savings obtained. Fig. 11 shows the rate of MP size growth over itera-
tions for the four cases and demonstrates that the proposed method is
able to manage the problem size despite the ML models being trained on
a different problem. ML-MBD-C achieves a decrease in the total number
of constraints in the MP of the final iteration of 18.9%, 27.0%, 15.5%
and 1.2%, for the four cases respectively. The results demonstrate that
the proposed method generalizes exceptionally well to modified prob-
lems without repeated execution of Algorithm 1.

5. Discussion

Modern TEP exercises are witnessing a trend of increasing
complexity, leading to computationally intractable optimization prob-
lems. As such, modeling real-world details that allow for more informed
decision-making is limited by computational scalability, which is one of
the principal challenges in power system problems [3]. Techniques like
scenario reduction or recent learning-based solutions have been applied
to mitigate tractability issues, but such approaches alter the problem
structure and may lead to different or suboptimal solutions. In contrast,
the proposed method preserves the original problem and leads to a so-
lution of the same quality. Most notably, we demonstrate its application
to solve a highly complex TEP problem that is intractable with a
state-of-the-art decomposition method. Moreover, the results in Section
4 prove that the application of ML-MBD could be highly beneficial even
for instances that can be solved with the classical decomposition.

The proposed ML-MBD-C outperforms MBD in all cases as it is
consistently able to find a tighter UB, observed in Fig. 6, with the help of
fewer Benders cuts, shown in Fig. 8, thus implying a notable reduction in
memory requirements and leading to the great computation time sav-
ings highlighted in Fig. 9. The requirement of additional iterations could
be considered a drawback of the proposed method; however, as evi-
denced in Table 2, the computational impact of extra iterations is
compensated for, ultimately leading to total solution time savings that
increase with problem size.

Notwithstanding the low computational overhead of the ML-MBD,
the sampling procedure involves solving a number of iterations of
MBD. This fact is justified for two reasons: Firstly, ML-MBD could enable
the convergence of certain problems that are otherwise intractable; and
secondly, TEP studies typically involve solving the problem multiple
times with modified inputs. In Subsection 4.2.3, we show that the
method generalizes well to modified problems and this property would
allow the user to solve all subsequent studies without the need to re-
sample and re-train ML models. Furthermore, the problem-
independent feature selection could result in the applicability of ML-
MBD to problems with a similar structure that require repeated execu-
tion, such as stochastic unit commitment, which could benefit with
faster MP computation and the opportunity to increase modeling
complexity.

In this research, we leverage supervised learning techniques because
of their straightforward implementation and short training times, which
is crucial to minimize the burden of the procedure described in Sub-
section 3.4. An alternative would be to employ unsupervised learning
algorithms, such as neural networks that have an advantage in pro-
cessing high-dimensional complex data and could potentially be more
efficient in evaluating the effectiveness of individual cuts [24]. Never-
theless, they have certain limitations, such as larger dataset re-
quirements, difficult implementation, longer training time, and poor
transparency. Therefore, neural networks would not be suitable for the
TEP problem, but their application could be explored in combination
with other power system problems.

The proposed approach combines Benders’ Decomposition with ML
techniques to improve the computational efficiency and scalability of
long-term multi-stage transmission problems under uncertainty. It can
also potentially improve the problem’s flexibility and robustness,
leveraging the framework’s capability to allow the user to solve prob-
lems with modified parameters without the need to re-sample and re-
train ML models.

Existing dynamic TEP problems under uncertainty include stochastic
and robust formulations depending on the description of the uncertainty
and the computational challenges encountered in their solution. Robust
formulations involve solving a series of nested optimization problems to
ensure feasible solutions under all possible realizations within the un-
certainty sets. Typically, the robust formulation involves min-max
structures, making them more complex and challenging to solve than
their stochastic counterparts [32], especially considering the large

Fig. 10. MP solution time improvements with ML-MBD-C normalized for the
number of iterations and as a percentage of the MBD reference values.
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uncertainty affecting the long-term TEP. Moreover, robust formulations
can be overly conservative, leading to higher costs. In [32], the authors
present comprehensive computational results showing that robust for-
mulations are more complex and require more computational resources
than stochastic formulations. Scenario-based approaches have been
adopted to solve robust formulations of long-term multi-stage trans-
mission planning problems to reduce computational complexity and
improve scalability compared to traditional robust optimization
methods [35]. Hence, the proposed framework could also support the
solution of robust formulations, allowing the efficient identification of
representative scenarios and constraints rather than considering all
possible uncertainties. The integration of ML allows for the adaptive
handling of uncertainties and offers more robust solutions than purely
heuristic or deterministic models. The proposed method is scalable to
larger and more complex problems, which is a significant advantage
over some traditional heuristic methods [31] that might struggle with
large-scale TEP problems and can enhance recent state-of-the-art Dy-
namic Robust Transmission Expansion Planning formulations [30]
leveraging Adaptive Robust Optimization frameworks to handle
uncertainties.

The most used algorithmic approaches to solve large robust and
stochastic optimization problems are i) Decomposition techniques, ii)
Column-and-Constraint Generation (CCG), and iii) Metaheuristics. The
CCG generates scenarios and constraints iteratively to refine the solution
space. It balances solution quality and computational effort but can be
slow for very large problems [33]. Instead, metaheuristic techniques like
Genetic Algorithms, Simulated Annealing, and Particle Swarm Optimi-
zation can be used for larger problems [34] where exact methods are
infeasible. They provide good solutions in reasonable time frames but
may not guarantee optimality, and they do not return any information
on the quality of the provided solution. Moreover, their performance
depends heavily on parameter tuning and algorithm design.

This paper aims to push forward the computational limits of
decomposition techniques in general. Decomposition techniques based
on Benders decomposition are the most efficient for large-scale problems
[36], as they can exploit the problem structure. The Nested Benders
decomposition in [5] demonstrated good computational performance
solving long-term multi-stage problems for the IEEE 118-bus system by
trading off the solution optimality. Instead, the technique proposed in
this paper demonstrated the ability to achieve optimality while preser-
ving acceptable computational times. A limitation of the proposed

method is that it works to filter ineffective cuts and, as such, conver-
gence cannot be achieved in fewer iterations than with MBD. Methods
aimed at accelerating convergence via advanced cut generation exist, for
instance as in [29]. Applying the ideas developed in this work to such
techniques could unlock further computational benefits.

6. Conclusion

Modern TEP frameworks must involve a high degree of modeling
complexity that enables more informed decision-making to facilitate the
transition to a net-zero power sector. However, state-of-the-art models
are reaching computational limits, even with the application of
advanced solution techniques. Motivated by the main computational
bottleneck of MBD and the potential of learning-assisted optimization,
this paper proposed an ML-enhanced Benders decomposition approach
to solve large-scale stochastic TEP problems that manages the increase
in MP size over iterations. The importance of the contribution has been
corroborated by the attained results, which, most notably, demonstrated
that ML-MBD is able to reach convergence when applied to a problem
that is otherwise unsolvable with the well-established MBD approach,
thus pushing the tractability limits of modern TEP problems. Significant
benefits were observed in comparably smaller problems as well,
particularly in reducing computational time and memory requirements.
We also emphasized the advantage of the proposed method in preser-
ving solution quality, in contrast to other approaches that alter the
original problem structure.

The proposed framework is the first to use ML to classify or evaluate
the quality of cuts in a multi-stage setting or when applied to power
systems. Its generality can benefit researchers who are exploring the
integration of ML with decomposition methods to solve large-scale
optimization problems, while the generalizability properties highlight
the value and applicability of ML-MBD in practice.

In future work, we aim to apply the proposed decomposition method
to other power system problems and formulations while enhancing the
convergence rate of ML-MBD through advanced cut generation tech-
niques. We also plan to investigate further the scalability of the ML-MBD
approach on larger and more complex expansion planning problems to
validate its computational efficiency and robustness. In addition, we
plan to integrate real-time data and adaptive learning techniques to
boost the algorithm’s dynamic decision-making capabilities. Using real-
time operational data could improve the predictive accuracy of the ML

Fig. 11. Comparison between MBD and ML-MBD-C in terms of cumulative number of appended cuts over iterations for the four modified problems.
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models. Finally, we will work on refining the cut classification process
and overall algorithm performance by leveraging advanced ML tech-
niques, such as deep learning and reinforcement learning, while
considering the trade-offs between computational complexity and the
benefits of these advanced techniques. The envisaged future directions
aim to enhance further the effectiveness and applicability of the pro-
posed ML-enhanced Multi-Cut Benders Decomposition approach, mak-
ing it a more versatile and powerful tool for solving large-scale
optimization problems considering multidimensional uncertainty in
power systems.
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Appendix: Nomenclature

Parameters
CPI Cut Performance Indicator
NBD Maximum number of iterations in the Benders algorithm
NS Number of sampling iterations
Nζ Number of classifiers ζ
ϵBD Convergence tolerance of the Benders algorithm
ϵPR Area under the Precision-Recall curve
ϵROC Area under the Receiver Operating Characteristic curve
ΘCPI

i Training dataset for the corresponding CPI, i = 1, .., Nζ

PM Master problem
PS

s Subproblem s
G Bus-to-generator incidence matrix
I Bus-to-line incidence matrix
Λ Length of transmission line
b Susceptance of transmission line
i, j Start and end bus of transmission line
D Electricity demand in MW
F0, S0 Initial transmission and storage capacity

F
∧
, F

∨ Maximum and minimum network capacity upgrade

S
∧

, S
∨ Maximum and minimum storage capacity upgrade

η+ , η− Charging and discharging efficiency of storage units
P̂ Maximum generator output

Ru, Rd Ramp up and ramp down capability of generators in MW/h
κ, κ̃ Fixed and variable investment costs
γG, γS Operation cost for generators and storage units
Γ Value of Lost Load
τ Duration of time period t in hours
τS Discharge duration of energy storage units
ϵ Planning stage
π State probability
ω Weighting factor of a representative block
rϵm Cumulative discount factor in the planning stage to which node m belongs (ϵm)

Eo Construction time (delay) of investment option o expressed in number of stages
Decision variables and solutions
X Binary decision variable for network investments
F Continuous decision variable for network capacity investments
Y Continuous decision variable for storage investments
FC ,YC State variables representing aggregate investments

F̃
C

, Ỹ
C Auxiliary decision variables

α Decision variables to approximate the objective value of the subproblems in the current iteration
λF , λY Lagrangian multipliers (dual variables)
p Generator output
ρ+, ρ− Storage charge and discharge
E Storage state of charge
yσ Slack decision variable representing load curtailment
f Power flow
δ Bus voltage angle
x,y Vectors containing all decision variables of PM and of PS

s
x,y Vectors containing the current candidate solutions of PM and of PS

s
αs PS

s objective approximation at the current PM solution
λs Vector containing dual variables obtained from PS

s

ψM Current objective function value of PM

ψS
s Current objective function value of PS

s

(continued on next page)

S. Borozan et al. Electric Power Systems Research 237 (2024) 110985 

13 



(continued )

Sets and indices
ΩB Set of all short-term representative blocks, indexed b
ΩC Set of all Benders cuts, indexed c
ΩE

C Set of all effective Benders cuts generated in iteration k
ΩCPI

F(c)
Set of values of c for all features corresponding to CPI

ΩG Set of all generation units, indexed g
ΩH Set of all candidate storage units, indexed h
ΩL Set of all transmission lines, indexed l
ΩM Set of all scenario tree nodes, indexed m
ΩM(w) Set of all scenario tree nodes belonging to scenario w
ΩN Set of all network buses, indexed n
ΩS Set of all subproblems, indexed s
ΩEo

A(m)
Set of all nodes that are ancestors of m, from stage 1 until stage ϵm − Eo

Ωb
T Set of all time periods in block b, indexed t

ΩW Set of all scenarios, indexed w
ΩCPI

θ Set of all labeling thresholds for the corresponding CPI, indexed θ

ΩCPI
ζ Set of all classifiers of the corresponding CPI, indexed ζ
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