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Abstract

Rice is one of the most important crops worldwide. Diseases of the rice plant can drastically

reduce crop yield and even lead to complete loss of production. Early diagnosis can reduce the

severity and help efforts to establish effective treatment and reduce the usage of pesticides.

Traditional machine learning approaches have already been employed for automatic diagnosis.

However, they heavily rely on manual preprocessing of images and handcrafted features, which is

challenging, time-consuming, and may require domain expertise. Recently, a single end-to-end

deep learning (DL)-based approach was employed to diagnose rice diseases. However, it is not

highly robust, nor is it generalizable to every dataset. Hence, we propose a novel end-to-end

training of convolutional neural network (CNN) and attention (E2ETCA) ensemble framework that

fuses the features of two CNN-based state-of-the-art (SOTA) models along with those of an

attention-based vision transformer model. These fused features are utilized for diagnosis by the

addition of an extra fully connected layer with softmax. The whole procedure is performed end-to-

end, which is very important for real-world applications. Additionally, we feed the extracted

features into a traditional machine learning approach support vector machine for classification and

further analysis. To verify the effectiveness of our proposed E2ETCA framework, we demonstrate

it on three publicly available datasets: the Mendeley Rice Leaf Disease Image Samples dataset,
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the Kaggle Rice Diseases Image dataset, the Bangladesh Rice Research Institute dataset, and a

combination of these three datasets. On the basis of various evaluation metrics (accuracy,

precision, recall, and F1-score), our proposed E2ETCA framework exhibits superior performance

to existing SOTA approaches for rice disease diagnosis, which can also be generalizable in similar

other domains.

Keywords: Rice disease diagnosis, Ensemble method, CNN-based model, End-to-end model,

Inception model,DenseNet model, Vision transformer model, Attention-based model, Support

vector machine

1. Introduction

Increasing population leads to an increasing demand for food. More than 800 million people have

been found to lack access to enough food, and there are 1.3 billion people who receive less than one

USD per day and cannot afford to pay for the food that they need (Strange and Scott, 2005). Plant

diseases have severe adverse effects on crop production, leading to a negative impact on the

economy and hindering efforts to meet the demand for food. According to the Food and Agriculture

Organization (FAO), agricultural diseases and pests cost USD 220 billion annually and reduce crop

yield by 20%–40% (Agrios, 2005).

Rice is one of the most important crops, with consumption that increases day by day (Shahbandeh,

2023). However, rice plant decrease rice production by 10%–15% (Peng et al., 2009). In extreme

circumstances, they may reduce yield by 40%–50% or even lead to a complete loss of production (Jiang

et al., 2020). These diseases can drastically lower productivity and quality, and so their prompt

identification and control are crucial for good production (Deng et al., 2021).

Early diagnosis of rice diseases is essential to mitigate their severity and recover their previous

production rate. Manual diagnosis is frequently employed to identify a disease based on how it

manifests itself, but this requires human observation. For a large rice field, the cost, time, and effort

involved in this procedure are high, and expertise is needed to perform the activities involved (Sethy

et al., 2020; Zeng et al., 2023). Farmers frequently lack precise timing and knowledge of the

diseases affecting their plants when they spray them to eradicate insects, other pests, and diseases

(Andrianto et al., 2020). Moreover, excessive spraying pollutes the environment (Durmus et al., 2017).

The only way to adequately diagnose rice diseases is by continuously monitoring the crop, which is

only possible if an automated monitoring and diagnosis process can be developed (Sharma et al.,

2022a).

Recent automated rice disease diagnosis methods can be categorized into two types: traditional

machine learning (ML)-based approaches and modern deep learning (DL)-based approaches.

Traditional ML-based techniques are widely used in rice disease diagnosis (Udayananda et al., 2022),
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since they require less time and effort than manual diagnosis. For example, Islam et al. (2018)

employed a naive Bayes method to classify rice disease on the basis of the red, green, and blue

(RGB) values of the affected parts of a plant. Ahmed et al. (2019) removed the background and the

affected area and then used K-nearest neighbor (K-NN), decision tree, naive Bayes, and logistic

regression methods for rice disease classification. Although the currently available traditional ML-

based methods give encouraging results, they suffer from a lack of generalizability, as well as

depending on handcrafted features.

By contrast, DL-based approaches show promise as a basis for the development of more advanced

methods of rice disease diagnosis and classification. For example, Lu et al. (2017) implemented a

convolutional neural network (CNN)-based model for classifying 10 common rice diseases. Ghosal

and Sarkar (2020) employed a pre-trained CNN-based VGG-16 model to classify plants suffering

from three diseases along with healthy ones. Sharma et al. (2022a) investigated the use of six pre-

trained DL-based models, namely, MobileNet, VGG-16, Inception V3, ResNet-50, Xception, and

InceptionResNet V2, which were pre-trained on the largest ImageNet dataset. They considered three

rice diseases, namely bacterial blight, rice blast, and brown spot, and compared the diagnostic results

obtained using different DL-based approaches. We can see that the majority of DL-based methods

rely on a single end-to-end pre-trained model, and because such models are prone to overfitting, this

hinders the adaptability and generalizability of these methods to other datasets (Bejani and Ghatee,

2021).

Recently, ensemble learning has been adopted owing to its superior performance (Talukder and

Sarkar, 2023). This is a learning process that combines an array of baseline models into a deeper

composite model that is more efficient than its components. Additionally, the diversity of baseline

models can help to reduce the risk of overfitting (Mohammed and Kora, 2023). Ensemble models

have already been employed for rice disease diagnosis. For example, Ahad et al. (2023) used an

ensemble model with DenseNet-121, EfficientNetB7, and Xception to compare individual CNN

models. They evaluated performance on a publicly available dataset of nine classes of rice diseases.

Sharma et al. (2022b) used an ensemble model with InceptionResNetV2, Xception, DenseNet-201,

and VGG-19 CNN-based methods to generate binary, ternary, or quaternary ensemble classifiers

and averaged the prediction probability. Denget al. (2021) implemented an ensemble model including

DenseNet-121, SE-ResNet-50, and ResNeSt-50, and they took the averaged output scores of

submodels to obtain the final scores for prediction. To classify plant diseases, Turkoglu et al. (2022)

proposed an ensemble model based on six state-of-the-art (SOTA) CNN-based models that provided

improved accuracy through the use of a majority voting technique for model selection. However,

these methods all adopted weighted average techniques or majority voting for the final prediction

score, and the procedure as a whole was not end-to-end.

By contrast, end-to-end ensemble models incorporate data processing, feature extraction, and final

prediction in a unified framework and are able to handle the sort of complex problems (Serbetci and
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Akgul, 2020; Caruana et al., 2004) that arise in real-world applications. In this study, we propose an

end-to-end ensemble framework (E2ETCA) for rice disease diagnosis that includes two CNN-based

models and an attention-based vision transformer model. The features extracted from the considered

models are consolidated to produce a final feature in the last layer with softmax for diagnosis. We

evaluate the proposed E2ETCA framework on three publicly available rice disease datasets and a

combination of these datasets. The results of this evaluation demonstrate that the E2ETCA

framework achieves state-of-the-art performance. After extracting the features using the framework,

we employ a traditional machine learning-based approach based on a support vector machine (SVM)

for further comprehensive analysis in a non-end-to-end manner. Furthermore, we evaluate each

component model of the E2ETCA framework separately and compare their performance to gain

insights into how well each model performs independently in an end-to-end way as well as with the

SVM in a non-end-to-end way.

2. Related work

2.1. Traditional machine learning-based approaches

Traditional ML-based approaches to rice disease diagnosis have been employed to automate the

detection and classification of these diseases. Such approaches often require the extraction of

handcrafted features from rice images before diagnosis can be performed. For example, Phadikar et

al. (2012) considered morphological changes and the radial distribution of hue from the center of the

boundary of the images as a feature for classification. They achieved accuracies of 79.5% and 68.1%

using a naive Bayes and an SVM classifier, respectively, for a dataset with 1000 sample images of

two rice diseases. Islam et al. (2018) introduced an approach to expedite the detection and

classification of rice diseases by low-level image processing of affected areas, such as the

localization and RGB values of the affected portion. Finally, they used traditional naive Bayes to

classify three rice diseases.

By contrast, Joshi and Jadhav (2016) employed the minimum distance classifier (MDC) and the K-

NN classifier to classify four rice diseases, taking the shape and color of a diseased rice leaf portion

as features. They evaluated their approach on a dataset with 115 leaf sample images and obtained

accuracies of 87.0% and 89.2% with MDC and K-NN, respectively. Kumar K and E (2022) took color,

shape, and texture as the main ingredients for feature extraction and applied the discrete wavelet

transform to identify affected areas for feature extraction and to remove the typical green portion of

leaves. They employed an adaptive boosting SVM and achieved a maximum accuracy of 98.8% for

the classification of three rice diseases. Bhartiya et al. (2022) used shape characteristics, including

area, roundness, and area-to-lesion ratio, to distinguish between various rice disease types. Using a

quadratic SVM classifier, they achieved an accuracy of 81.8%.
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Although the traditional ML-based methods remain useful for rice disease diagnosis, they depend

heavily on handcrafted feature extraction, which can be labor-intensive and requires domain expertise.

Moreover, the use of handcrafted features to represent the complex visual characteristics of rice

diseases can be challenging and may not capture all relevant information in the images, and it is

therefore difficult to adopt this approach for real-world applications.

2.2. Deep learning-based approaches

Convolutional neural networks (CNNs) have emerged as a powerful and highly effective approach for

preprocessing, feature extraction, and classification in an end-to-end manner in many fields of

computer vision, such as biometrics (Uddin et al., 2018, 2019), medical imaging (Anwar et al., 2018),

and person re-identification (Serbetci and Akgul, 2020). Such DL-based approaches have also been

explored for rice disease detection and diagnosis (Liao et al., 2023; Jiang et al., 2020; Ramesh and

Vydeki, 2020; Nalini et al., 2021). For example, Jiang et al. (2020) used a CNN along with an SVM to

classify rice diseases, while Ramesh and Vydeki (2020) and Nalini et al. (2021) utilized K-means

clustering algorithm for disease diagnosis. A variety of end-to-end pre-trained models (transfer learning)

have also been employed in rice disease detection and diagnosis. For example, Temniranrat et al.

(2021) compared four models, namely, Faster R-CNN, Retina-Net, YOLO V3, and mask R-CNN, for

rice disease classification, and they demonstrated that YOLO V3 achieved the highest accuracy of

79.2% on a dataset of 8767 images for six classes. Studied in (Simhadri and Kondaveeti, 2023;

Gautam et al., 2022) explored six different pre-trained CNN-based models, for example, VGG-16,

VGG-19, ResNet, Inception, Mobilenet, and SqueezeNet. They find out that Inception works better than

other models. By contrast, Sudhesh et al. (2023) implemented 10 transfer-learned CNN-based models

along with pre-processed raw images using a dynamic mode decomposition (DMD)-based attention-

driven mechanism. Besides transfer learning, generative adversarial networks (GANs) have also been

explored. For example, Stephen et al. (2023) utilized three-dimensional and two-dimensional CNNs to

extract features, and for classification, they employed a GAN based on an improved backtracking

search method.

Vision transformer (ViT) models (Dosovitskiy et al., 2020) are attention-based models that

demonstrate the power of attention mechanisms in capturing long-range dependencies within images,

dividing an image into fixed-size, non-overlapping patches, which are then linearly embedded into a

sequence of vectors. ViT models are widely used for image classification and rice disease diagnosis

and classification. For example, Borhani et al. (2022) employed a ViT-based approach using image

patches. They evaluated their model on a dataset of 120 images for three disease classes and

achieved an accuracy of 91.7%. ViT models can also be combined with CNNs. For example, to

combine the advantages of both a ViT and ResNet, Zhang et al. (2023) proposed a model called
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ResViT-Rice, in which a ResViT-Rice block was embedded in ResNet, using a self-attention

mechanism. They evaluated their model on a publicly available dataset consisting of 1548 images of

two rice disease classes and a healthy class, for which they achieved an accuracy of 99.1%.

Ensemble models combine several independent models into a single unified framework, thereby

improving generalization performance over the individual components (Opitz and Maclin, 1999) and

also reducing overfitting (Serbetci and Akgul, 2020). Recently, ensemble learning has gained popularity

in rice leaf disease detection and diagnosis. For example, Ahad et al. (2023) implemented an ensemble

model consisting of DenseNet-121, EfficientNet B7, and Xception. They achieved an accuracy of

97.6% for a dataset of 900 images of nine classes, which represents an increase in accuracy of 17.0%

compared with a single model (Seresnext101). Putra et al. (2022) implemented two ensemble models,

one a combination of MobileNet and DenseNet and the other a combination of DenseNet and

XceptionNet, through feature fusion, and they achieved over 40.0% greater accuracy compared with

the individual models for the first ensemble model, and 60.0% greater accuracy for the second, for a

dataset of three diseases with 300 images. Deng et al. (2021) employed an ensemble model consisting

of DenseNet-121, SE-ResNet-50, and ResNet-50, using an averaging technique for final prediction.

They achieved an accuracy of 91.0% using a dataset of 33026 images of six diseases. Turkogluet al.

(2022) proposed an ensemble model combining six state-of-the-art CNN-based models to classify plant

diseases, and they were able to achieve an improved accuracy when they evaluated the performances

of different combinations of base models with an SVM.

However, all these methods used weighted average techniques or majority voting for the final

prediction score, and the procedure as a whole was not end-to-end. By contrast, an end-to-end

ensemble model would achieve better general performance with reduced overfitting training and test

time. Furthermore, such a model could be applied in real time, which is necessary for rice disease

detection and diagnosis. In this paper, we propose an end-to-end ensemble framework (E2ETCA) that

fuses the features from two CNN-based models along with an attention-based model.

3. Proposed framework

3.1. Overview of framework

Traditional ensemble methods usually involve training the component models separately, either in

parallel or sequentially, which is not feasible for deep learning because of computational cost.

Furthermore, it is necessary to select the best models using voting. Therefore, instead of training

multiple methods from scratch, we propose a end-to-end training of convolutional neural network (CNN)

and attention (E2ETCA) ensemble framework of multiple base learners in a unified framework,

including two of which are CNN-based and the other is an attention-based ViT. An overview of the

proposed framework is presented in Fig. 1. Our framework is based on Inception V3 (Szegedy et al.,
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a BH, brown plant hopper; BB, bacterial blight/bacterial leaf blight; BS, brown spot; FS, false smut;

HI, hispa; NB, neckblast; ST, stemborer; HE, healthy; LB, leaf blast/blast; TU, tungro; SB,

sheath (blight and/or rot).

available dataset collected from rice farmland and consisting of 1600 images of three diseases,

namely, brownspot, hispa, and leaf blast, and healthy plants. The dataset details are given in Table 1,

and examples of images from each class are shown in Fig. 4. We used fivefold cross-validation to

validate the proposed framework for a fair comparison with the SOTA approach (Wang et al., 2021;

David et al., 2022; Al-Gaashani et al., 2023).

The Bangladesh Rice Research Institute dataset (Rahman et al., 2020)3 (henceforth referred

to as the BRRI dataset) consists of 1426 images with nine classes and was collected from paddy

fields of the Bangladesh Rice Research Institute. The images were gathered from heterogeneous

backgrounds over a period of seven months under different conditions, such as winter, summer, and

overcast, to get, as far as possible, a fully representative set of images. To increase the robustness of

the model, four different cameras were used. This dataset has a total of five classes of disease, three

classes of pests, and a remaining class for healthy plants and others, with sheath blight and sheath rot

being considered as the same class owing to their simultaneous occurrence, similar locations, and

similar treatment methods. The dataset details are given in Table 1, and examples of images from

each class are shown in Fig. 5. For a fair comparison with existing methods (Rahman et al., 2020;

Gautam et al., 2022), we employed all nine classes, and the experiment was performed with 10-fold

cross-validation, with the average evaluation result being used for each experiment.

To validate the proposed E2ETCA framework on a large-scale dataset with many classes, we

generated a combined dataset by combining the Mendeley, Kaggle,and BRRI datasets. It consisted of

a total of 11 classes, namely, false smut, brown plant hopper, bacterial leaf blight, neck blast,

stemborer, hispa, sheath blight and/or sheath rot, brown spot, blast, tungro, and healthy plant,

comprising 8958 sample images. It consisted of a total of 11 classes, namely, false smut, brown plant

hopper, bacterial leafblight, neck blast, stemborer, hispa, sheath blight and/or sheath rot,

3https://drive.google.com/drive/folders/1ewBesJcguriVTX8sRJseCDbXAF_T4akK?usp=drive_open

https://data.mendeley.com/datasets/fwcj7stb8r/1
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(a) Brown spot (b) Healthy

(c) Hispa (d) Leaf blast

Fig. 4: Example image for each rice disease class of the Kaggle RiceDiseases Image dataset.

brown spot, blast, tungro, and healthy plant, comprising 8958 sample images. It should be noted that

bacterial blight and bacterial leaf blight are considered to be in the same class under the name

“bacterial blight”, and similarly, leaf blast and blast under the name “leaf blast”. The numbers of

samples of each class of the combined dataset are shown in Table 1. In each experiment, the

combined dataset was randomly divided into two subsets, namely, a training set and atest set, in a

ratio of 80:20, and all experiments were repeated five times to reduce the effects of randomness.

Evaluation protocol: Different evaluation criteria, including accuracy, precision, recall, and F1-score,

were employed to validate the proposed E2ETCA framework. The evaluation metrics and their

calculation formula are given in Table 2. Quantification was performed in terms of true positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN). Here, TP and TN denote successfully

predicted labels, and FP and FN denote incorrectly predicted labels. For example, the correct

classification of a given class of disease is considered a TP. On the other hand, whenever a disease

does not belong to a given class, a prediction that it is in that class is considered an FP. Whenever a

disease belongs to a desired class but is predicted as another class, this is considered an FN.

(a) Bacterial blight (b) Brown plant hopper (c) Brown spot
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The accuracy, precision, recall, and F1-score on the Mendeley dataset are presented in Table 4,

which demonstrates the superiority of our proposed E2ETCA framework over all SOTA approaches.

Compared with an Inception layer-based model (Hasan and Maji, 2022), an CNN with attention-

based model (Peng et al., 2023) and several other CNN-based approaches (Sharma et al., 2022c;

Singh et al., 2023; Sudhesh et al., 2023), our proposed E2ETCA framework exhibited better

performance. The accuracy, precision, recall, and F1-score of our method were all 100.0%. This

indicates that our proposed E2ETCA framework achieves SOTA performance.

4.4.2. Evaluation of Kaggle dataset

The accuracy, precision, recall, and F1-score on the Kaggle dataset are presented in Table 5.

Compared with existing CNN-based approaches (David et al.,2022; Kathiresan et al., 2021; Van Ho et

al., 2022; Agustin et al., 2023) and CNN with attention-based models (Wang et al., 2021; Al-Gaashani

et al., 2023), the proposed E2ETCA framework achieves the best performance. For example, its

accuracy, precision, recall, and F1-score were all 99.2%, representing improvements upon the best

results among the existing approaches by 0.5%, 0.2%, 0.4%, and 0.3%, respectively.

4.4.3. Evaluation of BRRI dataset

The accuracy, precision, recall, and F1-score on the BRRI dataset are presented in Table 6. As with

the Mendeley and Kaggle datasets, the performance of our

4https://www.image-net.org/download.php

proposed E2ETCA framework exceeded those of existing approaches, namely, SequeezeNet V1.1,

MobileNet V2, NasNet, VGG-16, ResNet, CNN, and VGG-19 (Gautam et al., 2022; Rahman et al.,

2020). The accuracy, precision, recall, and F1-scores of E2ETCA were 99.5%, 99.1%, 98.9%, and

98.9%, respectively, surpassing by 2.4%, 3.2%, 2.9%, and 2.1%, respectively, the best results among

the other methods.

5. Discussion

5.1. Overview

We have proposed an end-to-end ensemble framework (E2ETCA) incorporating several models:

Inception V3, DenseNet-201, and ViT. Here, we compare the performance of our end-to-end ensemble

with a traditional non-end-to-end ML-based approach with SVM by feeding the features extracted

https://www.image-net.org/download.php
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using the proposed framework. This method is denoted as FCA-SVM. Similarly, we analyze in depth

the performance of each of the considered models in both the end-to-end approachand the non-end-

to-end approach with SVM by feeding the extracted features from these models. Furthermore, we

evaluate the performance on the combined dataset using the proposed E2ETCA framework along

with FCA-SVM.

5.2. Comparison of E2ETCA with FCA-SVM

To compare the performance of E2ETCA with that of FCA-SVM, we selected the dataset with the

highest number of classes, namely, the BRRI dataset, with nine classes. We followed the same

protocol for BRRI as described in Sec. 4.1. Experiments were evaluated using 10-fold cross-validation.

The accuracy, precision, recall, and F1-score on the BRRI dataset are presented in Table 7, the

confusion matrix is shown in Fig. 7, and a comparison for each rice disease class is shown in Fig. 8.

We can see that the proposed end-to-end E2ETCA framework performed better than the non-end-to-

end FCA-SVM framework for each class and in terms of the average of all results. The average

precision, recall F1-score, and specificity for all classes using the proposed E2ETCA framework were

99.1%, 98.9%, 98.9%, and 99.9%, respectively, compared with 96.9%, 95.6%, 96.2%, and 99.5%,

respectively, for FCA-SVM. These represent improvements of 2.2%, 3.3%, 2.7%, and 0.4%,

respectively, for E2ETCA over FCA-SVM.

Regarding the evaluation performance for each rice disease class, we can observe that our

proposed framework gave precision, recall, F1-score, and specificity of 100.0% for all classes

except for

(a) Original (b) Random erasing (c) Vertical flipping (d) Rotation
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(e) Horizontal flipping (f) Normalization (g) Resizing (h) Color jitter

transformation

Fig. 6: Examples of augmented images, together with

the original.

Table 4: Comparison of the proposed E2ETCA framework with existing methods applied to the Mendeley dataset. Bold

values indicate the bestbenchmark.

Author (year) Method Accurac

y

Precisio

n

Recal

l

F1-

score

Hassan and Maji

(2022)

Inception 99.7 99.7 99.7 99.7

Sharma et al. (2022c) CNN 99.6 99.6 99.6 99.7

Peng et al. (2023) Attention +

DenseNet

97.9 98.0 97.9 97.9

Singh et al. (2023) CNN 99.8 99.8 99.8 99.8

Sudhesh et al. (2023) Xception 100.0 100.0 100.0 100.0

This study Proposed E2ETCA 100.0 100.0 100.0 100.0

Table 5: Comparison of the proposed E2ETCA framework with existing methods applied to the Kaggle dataset. Bold

values indicate the bestbenchmark.

Author (year) Method Accurac

y

Precisio

n

Recal

l

F1-

score

Kathiresan et al.

(2021)

DenseNet 66.5 68.2 65.4 66.8

Wang et al. (2021) Attention +

MobileNet

94.7 92.6 87.4 89.6

David et al. (2022) CNN 64.8 — — —

Van Ho et al. (2022) ResNet + DenseNet — — — 96.0

Agustin et al. (2023) Yolo V5 80.0 — — —
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Al-Gaashani et al.

(2023)

Attention + ResNet 98.7 99.0 98.8 98.9

This study Proposed E2ETCA 99.2 99.2 99.2 99.2

bacterial blight/bacterial leaf blight (BB) and hispa. We believe that this discrepancy is due an

imbalance in training andtest samples for these two classes. The numbers of BB and HI disease class

samples are 71 and 73 (see Table 1). Therefore, it is easy for hispa to be misclassified as bacterial

blight/bacterial leaf blight (BB) and brown plant hopper (BH) (see the confusion matrix in Fig. 7).

Table 6: Comparison of the proposed E2ETCA framework with existing methods applied to the BRRI dataset. Bold

values indicate the bestbenchmark.

Author (year) Method Accuracy Precision Recall F1-

score

Rahman et al. (2020) SequeezeNet V1.1 92.5 — — —

MobileNet V2 96.1 — — —

NasNet 97.0 — — —

VGG-16 97.1 — — —

Gautam et al. (2022) VGG-19 90.0 90.0 90.0 91.0

ResNet 91.0 90.0 90.0 91.0

CNN 96.7 96.9 96.0 96.8

This study Proposed E2ETCA 99.5 99.1 98.9 98.9
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(a) E2ETCA (b) FCA-SVM

Fig. 7: Normalized confusion matrices of E2ETCA and FCA-SVM on BRRI dataset. BB, bacterial leaf blight/bacterial

blight; BH, brown planthopper; BS, brown spot; FS, false smut; HE, healthy; HI, hispa; NB, neck blast; SB, sheath

(blight and/or rot); ST, stemborer.

5.3.Impact of individual models

We evaluated each of the base models considered in our ensemble framework separately:

Inception V3, DenseNet-201, and ViT. We trained and tested each base model end-to-end and

employed the SVM with the extracted features from the corresponding base model ina non-end-to-end

manner. We again selected the BRRI dataset, which has the highest number of classes, for the

evaluation. The accuracy, precision, recall, and F1-score are shown in Table 8 and Fig. 9. We can

see that the proposed E2ETCA framework gave an accuracy, precision, recall, and F1-score of 99.1%,

98.8%, 98.7%,and 98.7%, respectively, representing improvements of 3.0%, 2.6%, 2.6%, and 2.7%,

respectively, compared with the Inception V3 base model and 1.3%, 0.9%, 0.9% and 0.9%,

respectively compared with ViT. We can observe a similar tendency when the SVM was employed.

For example, it improved accuracy, precision, recall, and

F1-score by 0.8%, 0.7% 0.8%, and 0.8%, respectively, compared with ViT. Thus, our ensemble

framework achieved better performance than each of the individual base models when applied in either

an end-to-end or a non-end-to-end manner.

Regarding the evaluation performance for each base model, the attention-based ViT model was

superior to the CNN-based models. For example, the accuracy, precision, recall, and F1-score achieved

by ViT were better by 1.7%, 1.7%, 1.7%, and 1.8% than those from Inception V3 and better by 0.7%,

0.4%, 0.7%, and 0.7% than those from DenseNet-201. We know that the ViT model extracts feature
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intra-patch-wise locally and inter-patch-wise globally, along with using a multi-headattention mechanism.

Thus, it was able to extract fine-grained local details and global features and thereby exceed the

evaluation performance of the CNN-based models.

Table 7: Precision, recall, F1-score, and specificity of E2ETCA and FCA-SVM on BRRI dataset. The standard deviation

(SD) is shown in parentheses. Bold values indicate the average benchmarks.a

Class E2ETCA FCA-SVM

Precision

(SD)

Recall

(SD)

F1-score

(SD)

Specificit

y

(SD)

Precision

(SD)

Recall

(SD)

F1-score

(SD)

Specificity

(SD)

BB 100.0

(0.0)

100.0

(0.0)

100.0

(0.0)

100.0

(0.0)

100.0 (0.0) 97.6 (3.4) 98.8 (1.7) 100.0 (0.0)

BH 91.7

(5.9)

100.0

(0.0)

95.6 (3.1) 99.5

(0.4)

91.7 (5.9) 95.8 (5.9) 93.6 (5.1) 99.5 (0.4)

BS 100.0

(0.0)

100.0

(0.0)

100.0

(0.0)

100.0

(0.0)

100.0 (0.0) 100.0

(0.0)

100.0

(0.0)

100.0 (0.0)

FS 100.0

(0.0)

100.0

(0.0)

100.0

(0.0)

100.0

(0.0)

100.0 (0.0) 88.9 (0.0) 94.1 (0.0) 100.0 (0.0)

HE 100.0

(0.0)

100.0

(0.0)

100.0

(0.0)

100.0

(0.0)

90.5 (2.1) 97.1 (4.1) 93.7 (3.1) 98.0 (0.4)

HI 100.0

(0.0)

90.5 (6.7) 94.9 (3.6) 100.0

(0.0)

100.0 (0.0) 90.5 (6.7) 94.9 (3.6) 100.0 (0.0)

NB 100.0

(0.0)

100.0

(0.0)

100.0

(0.0)

100.0

(0.0)

100.0 (0.0) 100.0

(0.0)

100.0

(0.0)

100.0 (0.0)

SB 100.0

(0.0)

100.0

(0.0)

100.0

(0.0)

100.0

(0.0)

93.7 (4.5) 90.5 (0.0) 92.0 (2.1) 98.9 (0.8)

ST 100.0

(0.0)

100.0

(0.0)

100.0

(0.0)

100.0

(0.0)

96.8 (2.2) 100.0

(0.0)

98.4 (1.1) 99.4 (0.4)

Average 99.1
(0.7)

98.9 (0.7) 98.9 (0.7) 99.9
(0.0)

96.9 (1.6) 95.6 (2.2) 96.2 (1.9) 99.5 (0.2)

a BB, bacterial blight/bacterial leaf blight; BH, brown plant hopper; BS, brown spot; FS, false smut; HE, healthy;

HI, hispa; NB, neckblast; SB, sheath (blight and/or rot); ST, stemborer.

5.4.Evaluation of combined dataset

To validate the proposed E2ETCA framework on a large-scale dataset, we used the combined

dataset generated from the Mendeley, Kaggle, and BRRI datasets. The evaluation results for
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precision, recall, F1-score, and specificity of the proposed end-to-end E2ETCA framework and

those obtained when the extracted features were fed to an SVM (FCA-SVM) are shown in Table 9, and

the confusion matrix is shown in Fig. 10. Wecan observe that the average precision, recall, F1-score,

and specificity for all rice disease classes from E2ETCAwere 90.7%, 91.5%, 90.8%, and 99.4%,

respectively, compared with 83.3%, 76.6%, 77.9%, and 98.4% from FCA-SVM. This demonstrates

that our proposed end-to-end framework was superior in terms of precision, recall, F1-score, and

specificity by 7.4%, 14.9%, 12.9%, and 1.0%, respectively, compared with the non-end-to-end

framework.

With regard to the results for each class, E2ETCA achieved a better evaluation performance than

FCA-SVM. We can see that the end-to-end ensemble framework E2ETCA gave results ranging from

a minimum 3.1% F1-score for leaf blast (LB) to a maximum 27.4% for brown plant hopper (BH) (see

Table 9). Furthermore, the performance differences between the end-to-end E2ETCA and the non-

end-to-end FCA-SVM are clearly visible for the large dataset.

For example, the performance difference in F1-score for a brown spot on the BRRI dataset (see

Table 7) was 0.0%, but 7.5% on the combined dataset (see Table 9). We believe that this is

because there were only 111 sample images of the brown spot rice disease class on the BRRI

dataset but 2111 on the combined dataset. The end-to-end E2ETCA framework perfectly trains the

model with a large sample size and greater diversity because this brown spot disease class is

available on all three datasets.

6. Conclusion

We have presented an approach based on end-to-end training of a CNN and an attention-based

ensemble framework (E2ETCA) for diagnosing rice diseases, which combines the strengths of the

CNN-based approach of Inception V3 and DenseNet-201 with a vision transformer for the attention-

based model. The proposed framework considers the features extracted from each of the base

models and merges them through pointwise addition in a separated layer along with a final

classification layer with softmax. In total, 11 disease classes have been considered to evaluate the

proposed framework: false smut, brown plant hopper, bacterial leaf blight, neck blast, stemborer,

hispa, sheath blight or sheath rot, brown spot, blast, tungro, and healthy. We have also employed

different image preprocessing and argumentation techniques to reduce the overfitting of the

framework.
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Fig. 8: Precision, recall, F1-score, and specificity of E2ETCA and FCA-SVM on BRRI dataset. BB, bacterial

blight/bacterial leaf blight; BH,brown plant hopper.

Table 8: Performance of individual models: Inception V3, DenseNet-201, and ViT in an end-to-end manner and with

the extracted features fed toan SVM. The standard deviation (SD) is shown in parentheses. Bold values indicate the

average benchmarks.

Model End-to-end Extracted features fed to SVM

Accurac

y

(SD)

Precisio

n

(SD)

Recall

(SD)

F1-

score

(SD)

Accuracy

(SD)

Precisio

n

(SD)

Recall

(SD)

F1-score

(SD)

Inception V3 96.1

(1.1)

96.2

(1.1)

96.1

(1.1)

96.0

(1.1)

90.8

(9.0)

92.4

(6.4)

90.7(9.0) 90.9

(8.7)

DenseNet-201 97.1

(1.0)

97.5

(0.5)

97.1

(1.0)

97.1

(1.0)

83.2

(5.0)

88.5

(2.3)

83.2

(5.0)

84.4

(3.8)

ViT 97.8

(0.8)

97.9

(0.8)

97.8

(0.8)

97.8

(0.8)

96.3

(0.3)

96.4

(0.4)

96.3(0.3) 96.3

(0.2)

Proposed

(E2ETCA)

99.1
(0.2)

98.8
(0.7)

98.7
(0.7)

98.7
(0.7)

97.1
(0.7)

97.1
(0.7)

97.1
(0.7)

97.1 (
0.7)

(a) E2ETCA

(b) FCA-SVM
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We have evaluated the proposed framework using various metrics: accuracy, precision, recall, and

F1-score. After analyzing the results, we can conclude that the proposed framework outperforms

existing SOTA approaches for rice disease diagnosis on three publicly available datasets.

Furthermore, we have added deep insight for each base model of our proposed framework, and the

comparative analysis performed in this paper shows that the proposed E2ETCA framework improves

the accuracy by 1.2%-3.0% for each base model for each dataset. In addition, we have performed a

detailed analysis of how the proposed end-to-end framework differs when the extracted features are

fed to an SVM for evaluation in a non-end-to-end manner. We have found that the proposed end-to-

end framework achieves better accuracy both on each class as well as on average for all disease

classes. Furthermore, the proposed framework works better for a large-scale dataset.

However, because of the great importance of this work, we need to develop a much larger dataset

covering samples from various countries and then apply existing approaches to demonstrate their

performances. We also need to ensure that these algorithms are applicable on edge devices or

smartphones so that they can be used even by farmers in communities with a lack of access to other

sophisticated technology. Our proposed method will have a high impact not only for rice disease

diagnosis, but also for similar other crops' disease analysis in the long run.

(a) End-to-end training and testing
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(b) Extracted features fed to SVM.

Fig. 9: Performance of individual models: Inception V3, DenseNet-201, and ViT. (a) Training and tests were performed

in an end-to-end manner.

(b) Extracted features from the corresponding network were fed to an SVM for evaluation.
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(a) E2ETCA (b) FCA-SVM

Fig. 10: Normalized confusion matrices for the combined dataset. BB, bacterial blight/bacterial leaf blight; BH, brown

plant hopper; BS, brown spot; FS, false smut; HI, hispa; NB, neck blast; ST, stemborer; HE, healthy; LB, leaf

blast/blast; TU, tungro; SB, sheath (blight and/or rot).

Table 9: Precision, recall, F1-score, and specificity of E2ETCA and FCA-SVM on combined dataset. The standard

deviation (SD) is shown inparentheses. Bold values indicate the average benchmarks.a

Class E2ETCA FCA-SVM

Precision

(SD)

Recall

(SD)

F1-

score

(SD)

Specificity

(SD)
Precision

(SD)

Recall

(SD)

F1-

score

(SD)

Specificity

(SD)

BS 96.9 (1.0) 95.4 (1.7) 96.1 (0.8) 99.0 (0.3) 86.7

(11.9)

91.8 (4.1) 88.6 (6.5) 94.9 (5.3)

LB 95.2 (2.4) 92.9 (2.1) 94.0 (0.5) 98.7 (0.7) 93.9 (2.2) 88.2 (4.0) 90.9 (1.9) 98.5 (0.6)

BH 91.8

(10.8)

100.0

(0.0)

95.4 (6.2) 99.9 (0.1) 85.4

(11.3)

67.9

(33.7)

68.0

(26.2)

99.9 (0.1)

BB 97.2 (1.1) 99.1 (0.8) 98.2 (0.6) 99.3 (0.3) 88.1

(16.2)

91.7 (3.6) 88.9 (9.3) 95.9 (6.1)

TU 100.0

(0.0)

99.8 (0.3) 99.9 (0.2) 100.0 (0.0) 93.8

(10.8)

85.2

(14.8)

87.8 (7.2) 98.6 (2.5)

HE 80.1 (3.8) 83.1 (5.1) 81.3 (0.8) 98.4 (0.4) 74.6 (3.9) 73.8

(17.0)

73.3

(10.7)

98.1 (0.5)

HI 73.7 (9.2) 70.5

(13.0)

70.4 (4.1) 98.4 (0.8) 68.8 (6.1) 67.3

(11.8)

66.9 (4.4) 98.2 (0.9)
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NB 94.8 (4.3) 99.6 (0.8) 97.1 (2.3) 99.8 (0.2) 77.5

(26.4)

73.7

(33.2)

74.9

(30.4)

99.5 (0.4)

SB 89.6 (8.0) 88.4

(4.9)

88.7

(4.8)

99.7 (0.2) 85.3 (9.7) 72.1

(20.6)

76.9

(16.7)

99.7 (0.2)

ST 96.3 (1.1) 95.6

(4.8)

95.9

(2.2)

99.9 (0.0) 84.5

(22.0)

78.1

(20.3)

80.9

(20.5)

99.6 (0.5)

FS 82.4 (7.5) 81.9

(6.1)

82.0

(5.7)

99.8 (0.1) 78.1

(18.5)

52.8

(29.5)

60.0

(30.6)

99.9 (0.1)

Average 90.7 (4.5) 91.5
(3.6)

90.8
(2.6)

99.4 (0.3) 83.3
(12.6)

76.6
(17.5)

77.9
(14.9)

98.4 (1.6)

a BS, brown spot; LB, leaf blast/blast; BH, brown plant hopper; BB, bacterial blight/bacterial leaf blight; TU, tungro; HE,

healthy; HI, hispa;NB, neck blast; SB, sheath (blight and/or rot); ST, stemborer; FS, false smut.
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semantic segmentation and generative adversarial inpainting. IEEE Access 9, 117486– 117495.
Zhang, Y., Zhong, L., Ding, Y., Yu, H., Zhai, Z., 2023. Resvit-rice: A deep learning model combining residual module

and transformer encoder for accurate detection of rice diseases. Agriculture 13, 126


	Abstract
	1.Introduction
	2.Related work
	4.Experiments
	4.1.Datasets and evaluation protocols
	5.Discussion
	5.1. Overview
	6.Conclusion



