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Abstract: The general problem of controlling a non-minimum-phase plant is tackled via study of the 

classical inverted pendulum (IP).  A full nonlinear model of the IP is used for simulation and a 

linearised version is used for the controller design.  The trolley position is controlled while keeping 

the pendulum inverted by use of an input/output feedback linearisation method called Forced 

Dynamic Control (FDC).  This is generally more straightforward to apply than conventional 

techniques such as linear state feedback with pole assignment but in its basic form yields right half 

plane zero cancellation which creates an unstable closed loop mode. This is circumvented in this 

paper by creating an artificial controlled output that is a weighted sum of the state variables such that 

the right half plane zeros do not exist in the transfer function.  Furthermore a non-oscillatory response 

with a specified settling time is achieved with the aid of the Dodds settling time formula (Dodds, 

2008). The computational delay introduced to eliminate the algebraic loop in the nonlinear model is 

shown to have a negligible effect. Simulations are presented that demonstrate the correct operation of 

the control system and determine differences between the ideal and actual step responses due to the 

nonlinearities, parametric errors and external disturbances.  

 

 

1. Introduction 
 

It is well known that linear state feedback 

control (LSFC) laws for linear non-minimum 

phase plants, can be designed by pole 

assignment, an acceptable transient response 

being attainable by balancing the right half 

plane zeros by mirror image poles (Franklin et 

al., 2002). This is applicable, for example, to 

the inverted pendulum when its motion is 

restricted to small perturbations about an 

operating point. The motivation for applying 

forced dynamic control (FDC), however, is that 

it is also applicable to nonlinear plants and is 

quicker to apply than conventional LSFC. 

Since FDC is a time domain method, a 

different approach to deal with non-minimum 

phase plants is needed.  It should be noted here 

that the term ‗non-minimum phase‘, strictly 

applies to linear plants and that the equivalent 

term covering nonlinear plants in addition is 

‗unstable zero dynamics‘ (Stadler, 2008). 

The direct application of FDC to a plant of 

rank r n  where n  is the plant order will 

leave the zero dynamics of order n r  

uncontrolled in the closed loop system. The 

purpose of this paper is to investigate the 

solution of this problem by appending the 

plant state space model with an artificial 

output equation such that the ‗new plant‘ 

created is of full rank and the application of 

FDC to this achieves full state control and 

therefore avoids the closed loop instability. 

The paper addresses the choice of the closed 

loop dynamics using the Dodds settling time 

formula (Dodds, 2008). 

In this paper, the FDC design is based on a 

linearised model of the IP but the 



Advances in Computing and Technology 

The School of Computing, Information Technology and Engineering, 5
th

 Annual Conference 2010 

 

 

46 

performance of this design is assessed for 

the true nonlinear IP as well as the linearised 

model by simulation. It is intended that the 

work presented here should pave the way to 

generally applicable FDC of plants with 

unstable zero dynamics. 

 

2. Inverted pendulum modelling 
 

2.1 Nonlinear model 

 

The input force, F, is used for controlling the 

movement of the IP, as shown in Figure 11. 
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Figure 11 Inverted pendulum system 

The coordinates, θ (angle of the pendulum) 

and xT (position of the trolley), are outputs 

from the single input, multiple output 

(SIMO) plant.  

Lagrange‘s method is used to derive the 

following equations of motion:  

 
2cos sinT

T

F b x ml ml
x

M m
 (1) 

 
2

sin cosTmgl ml x

m l J
 (2)  

 

2.2 Linear IP model 

 

Linearising (1) and (2) about the operating 

point, 0 yields: 

1
T T

b m l
x x F

M m M m M m
 (3) 

 
2 2 T

mgl ml
x

J l m J l m
 (4) 

The states of the IP are chosen as 1x , 

2x , 3 Tx x  and 4 Tx x . Equations (3) 

and (4) may then be replaced by the 

following state differential equation: 

x A x B u  

1 1

0 12 2 0

3 3

2 34 4 1

0 1 0 0 0

0 0

0 0 0 1 0

0 0

x x

a ax x b
F

x x

a ax x b

 (5) 

The measurement equation is 

 y C x   

  

1

2

3

4

1 0 0 0

0 0 1 0T

x

x

x x

x

 (6) 

where 

 
0 1a M m m g l q ,

1 1a m l b q , 

2

2 2

2a m g l q , 
3

2

2a J l m b q , 

0 1b m l q ,  
1

2

2b J l m q  and 

2

1
q J M m l M m ,  

2

2
q J M m l m M  

The corresponding state variable block 

diagram used for the linear Matlab-Simulink 

simulation is shown in Figure 12. 
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Figure 12: Linear IP Simulink model 

 

3. Forced Dynamic Control (FDC) 
 

The general FDC method is fully described 

by (Vittek and Dodds, 2003). Here, the goal 

is to control the trolley position while 

keeping deviations of the pendulum position 

about the vertical within acceptable bounds.  

It is evident by inspection of (1) and (2) that 

this plant is of order, 4. The rank w.r.t. the 

controlled output, Tx , is 2 due to the direct 

dependence of Tx  on the control force, F . 

Direct application of FDC would therefore 

yield a closed loop system of order 2 and 

therefore only two of the plant state 

variables, i.e., Tx  and Tx , would be 

controlled.  The other two state variables,  

and , are associated with the zero dynamic 

subsystem (2). The input of this subsystem 

is Tx  but this is not used to control the 

pendulum angle, , which will vary as a 

‗side effect‘.  In the linearised model, the 

zero dynamics is described by (4) and the 

natural motion of the unforced system, 

obtained by setting 0Tx , is unstable since 

the roots of the characteristic equation, 

2 2 0s mgl J l m  are 
2

1,2s mgl J l m . 

To circumvent this problem, the approach 

taken is to augment the plant model by 

creating an artificial controlled output 

 1 2 3 4T Tz C x C x C C  (7) 

where the constant coefficients are chosen 

such that a) the plant is of full rank, i.e., the 

rank with respect to z is 4, and b) controlling 

z to reach a constant demanded value results 

in Tx  reaching the same value. Figure 13 

shows a block diagram of this augmented 

plant. For conciseness, the coefficients are 

defined as 
1 1A M m , 2A b , 3A ml , 

2

4A ml J l m  and 2

5A mgl J l m . 

The standard FDC method will now be 

applied to the augmented plant of Figure 13. 

Since the plant has to be of full rank, C1, C2, 

C3 and C4 are chosen so that , z,  and zz z  

are state variables, which is achieved by 
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Figure 13: Linear IP with artificial output z. 

ensuring that none of these variables has 

direct algebraic dependence on the control 

variablrale, F.  Differentiating (7) yields 

 1 2 3 4T Tz C x C x C C  (8) 

Substituting for the derivatives of the state 

variables appearing on the right hand side of 

(8) using (5) and (6) yields:  

1 3 2 1 2 3 4T T
z C x C C A F A x A C  (9) 

From Figure 13, 

5 4 1 2 3TA A A F A x A  

4 1 3 5 4 1 4 1 21 TA A A A A AF A A A x  

 5 4 1 4 1 2 4 1 31TA A AF A A A x A A A (10) 
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Substituting for  in (9) using (10) yields 

1 3 2 1 2 1 2

5 4 1 4 1 2

4 2 1 3

4 1 3
1

T T

T

z C x C C A F C A A x

A A A F A A A x
C C A A

A A A

. (11) 

The F term in (11) must vanish in order for 

z to be a state variable.  Hence 4 2 1 3C C A A  

and 2 40 0C C  which yields 

1 3Tz C x C 1 3Tz C x C .  (12) 

Repeated substitution for Tx  and  using 

the equations implied by Figure 13 yields 

1 1 2 3

3 5 4 1 2 3

T

T

z C A F A x A

C A A A F A x A
 

 1 3 4 1 2 3 3 5Tz C C A A F A x A C A   

3 5

2

1 3 4 1 5 4 1 4 1 2
3

4 1 31

T

T

z C A

F A x

C C A A A A A F A A A x
A

A A A

 (13) 

For F to vanish, 1 3 4C C A , yielding 

3 5z C A  and differentiating again yields 

 3 5z C A . (14) 

3C  has be chosen such that Tz x  in the 

steady state assuming closed loop stability. 

Then, Tx const , 0Tx , 0  and 0  

and therefore the steady state outputs satisfy  

1 1 3 41 1
ssss Tz C x C C A . 

Summarising, the required constants are 1 1C , 

2 0C , 3 41C A  and 4 0C . Then (7) yields 

 
1 3 41T Tz C x C x A  (15) 

 
41Tz x A  (16) 

 
5 4z A A  (17) 

 
5 4z A A  (18) 

The output derivative equation for FDC is 

then obtained by a further differentiation:  

3 5z C A  

Substituting for  using (10) yields  

 5 4 1 4 1 2
3 5

4 1 31

TA A A F A A A x
z C A

A A A
 

5 5 4 1 4 1 2

4 4 1 31

TA A A A F A A A x
z

A A A A
 

Solving for F then yields the general FDC 

law in which z  has to be chosen to achieve 

the required closed loop dynamics: 

4
4 1 3

4 1 5

5 4 1 2

1
1

T

A
F A A A z

A A A

A A A A x

 (19) 

The Dodds 5% settling time formula, 

1.5 1s cT n T  (Dodds, 2008), will now be  

used to obtain the desired non-overshooting 

closed loop step response, z t .  Thus 

 

1.5 11

1 1.5 1

nn

C S

r

C S

n

z s T T

nz s
s s

T T

(20) 

Where rz  is the reference input and cT  is 

closed-loop time constant for the n-order 

system.  For n = 4, (18) becomes 

 

4

r

z s a

z s s a
 where 

15

2 S

a
T

  

from which 

4 3 2 2 3 4 44 6 4 rs as a s a s a z s a z s

so in the time domain: 

2 3 4 44 6 4 rz a z a z a z a a z  

 4 3 24 6 4rz a z z a z a z a z   

Using (13) to (16) and setting 
rr Tz x  gives 
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4 3

4 4

2 5 5

4 4

1 1
4

6 4

Tr T Tz a x x a x
A A

A A
a a

A A

(21) 

Substituting for z  in (17) using (19) yields 

the required FDC law: 

4

4 1 3

4 1 5

4 3

4 4

2 5 5

4 4

5 4 1 2

1
1

1 1
4

6 4

Tr T T

T

A
F A A A

A A A

a x x a x
A A

A A
a a

A A

A A A A x

 (22) 

To summarise, an overall block diagram of 

the control system is shown in Figure 4.  

Forced dynamic

control

(FDC)

FTr
x

Reference input:

IP plant / plant model

, , ,T Tx x

Trolley

0 X

Y

F

x
P

x
T

y
P

l m , J

P

y
T

Pivot point

Trolley mass = M

States:
 

Figure 14: FDC and IP plant 

Regarding future practical implementation, a 

rapid prototyping system such as dSPACE 

could be used. All the plant states are required 

but in the real world only the trolley position 

Tx  and the pendulum angle  would be 

measured.  The other states, Tx  and  could 

be calculated using software differentiation. 

As formulated above, the control variable is 

the force F [Nm] but in the real system this 

would be implemented as a control signal 

equivalent to the force from the processor. For 

example, if the actuator is a DC motor, the 

torque would be .m m aK i R F r  where 

ai  is the armature current, mK  is the motor 

torque constant, R  is the gearbox ratio and r  

is the truck wheel radius from which 

.a mi R r K F .  This would then be the 

current demand of a relatively high bandwidth 

current control loop as shown in Figure 15. 

 

DC

motor

FClosed loop

current

control
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current
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Gearbox

&
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m

 
Figure 15: Control force implementation. 

 

4. Simulations 
 

Parameters: 

 

The parameters used are as follows unless 

otherwise specified: Gravitational acceleration: 
29.8 secg m ;  Trolley mass: 0.4M kg ; 

Pendulum mass: 0.1m kg ; Pendulum 

length: 0.5l m ; Moment of inertia about 

the pendulums pivot point: 2 23 kgJ ml m .  

 

Simulations with linear plant model:  

 

In all the simulations presented below, all 

the state variables start at zero, the 5% 

settling time is set to 2ssT , a positive step 

truck position reference, 
rTx t  is applied at 

2st  and an equal and opposite step 

reference input is applied at 7st . 

Inspection of Figure 12 reveals an algebraic 

loop, 1 4 3 1A A A A . It is well known 

that Matlab/Simulink does not accept this.  

A simple solution of this problem is to insert 

a time delay of one numerical integration 

step, h , in the loop to render the simulation 

a causal system. But this does introduce a 

modelling inaccuracy. The authors therefore 

considered it necessary to have a linear IP 

model without such a delay to validate the 

FDCs performance and accuracy. This is 

derived in the appendix (0). Figure 16 shows 
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the response to two consecutive oppositely 

signed steps of 1m  magnitude of the FDC 

applied to the aforementioned model 

superimposed on the step response of the 

nominal closed loop system with transfer 

function (18) for 4n , which is used as a 

benchmark. These responses are not 

distinguishable from one another and pass 

through the 0.95
rTx  line at 2sst T , 

confirming their correctness. 

 
Figure 16: Validation of FDC 

 

As no error between the two responses is 

visible in Figure 16, Figure 17 shows this 

error on a visible scale, proving that it is 

negligible. The pseudo random behaviour is 

due to the numerical integration operating at 

a finite word-length.   

 
Figure 17: Error between z of simulated FDC 

without the plant delay and nominal z. 

Figure 18 shows the corresponding trolley 

position, indicating the undershoot 

following the step changes in 
rTx  that are 

typical with non-minimum-phase plants. 

 
Figure 18 Trolley position 

At less than 10%, of the step reference input 

magnitude, this undershoot is considered to 

be acceptable. The corresponding pendulum 

angle plotted in Figure 19 is kept within 

11deg.  of the vertical position, confirming 

the effective control of all the plant states.  

 
Figure 19: Pendulum position (Vertical = 0) 

Figure 20 shows the error corresponding to 

Figure 19 when the plant model without the 

algebraic loop (Figure A1 in the Appendix to 

this paper) is replaced by the basic one of Figure 

12 but with a time delay of 1msh  introduced 

between  and the gain, 3A . Although this has 

increased the error magnitude by a factor of 
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approximately 1110 , the peak error is less than  
410 m  in magnitude, which can be considered 

acceptable when compared with the position 

change of 1 m. 

 
Figure 20 Error between z of simulated FDC 

with the plant delay and nominal z. 

 

Simulations with nonlinear plant model:  

 

Figure 21 shows a step response error 

corresponding to Figure 20 but with the 

nonlinear plant model using the same FDC 

control law as applied above to the linear 

plant model. 

 
Figure 21: Error between nominal z and z of 

FDC with nonlinear plant model and delay. 

 

As can be seen, the error increases further in 

magnitude by a factor of approximately 100 

but it still only peaks at approximately 0.8% 

of the 1 m step reference magnitude, which 

is considered acceptable.   

Variation of the step responses with 

increasing reference input magnitude is 

shown in Figure 22. Despite the plant 

nonlinearity, the step response shape does 

not vary visibly with the reference input 

magnitude. 

 
Figure 22: Step responses with nonlinear plant 

model and increasing reference input magnitude. 

 

Next the robustness of the system to plant 

parameter variations from the nominal 

values has been investigated with +/- 10 % 

mismatches of the pendulum length, 

pendulum mass, trolley mass and the wheel 

bearing friction, in all combinations. Figure 

23 shows the nominal error with no plant 

parameter mismatches, identical to that of 

Figure 21, together with the errors with the 

maximum positive and maximum negative 

peaks taken from the complete set of 

simulations to show the worst cases.  



Advances in Computing and Technology 

The School of Computing, Information Technology and Engineering, 5
th

 Annual Conference 2010 

 

 

52 

 
Figure 23: Nominal error and worst case error 

envelope for +/- 10% plant parameter variations. 

 

The peak worst case errors of 0.0166 m  is 

acceptable. Figure 24 shows the 

corresponding worst case pendulum angle, 

t , taken from the complete set of 

simulations superimposed on the pendulum 

angle with no parameter mismatching. It is 

evident that the parameter mismatching has a 

negligible influence on . 

 
Figure 24: Worst case pendulum angle excursions 

for +/- 10% plant parameter variations. 

 

5. Conclusions and Recommendations 
 

The investigations show that FDC is very 

effective in controlling the non-minimum phase 

plant consisting of a trolley supporting an IP 

when the technique of creating a fictitious plant 

output with full rank is applied.  This technique 

may prove effective for many other non-

minimum-phase plants and therefore further 

investigations in this direction are 

recommended.  Regarding the IP, application of 

FDC using the full nonlinear plant model is 

recommended as this would be a useful 

preliminary study for control of other nonlinear 

non-minimum-phase plants for which the 

control system performance may more critically 

depend on use of the nonlinear model.  The 

main problem to be solved for the IP is the 

formulation of the full rank fictitious output 

equation for the nonlinear case.  Also, a 

preliminary study of FDC of the IP with the 

trolley on an inclined slope has been carried out 

by the authors and this indicates a steady state 

trolley position error.  A modification of the 

FDC method to eliminate this error would be a 

worthwhile further investigation as the general 

method could be applied to other plants with 

significant constant or slowly varying external 

disturbances. 
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7. Appendix 

 

Plant model without algebraic loop 

 

Using Masons rule on Figure 12: 

3 2 3

1 5

1 2 1 3 4 5 1 2 5

( )

( )

T
A s Ax s

F s s A A s A A A s A s A A A
 

 
0

3 2

2 1 0

5( )

( )

T
b s Ax s

F s s a s a s a
 (23) 

where 
0 1 1 3 41b A A A A , 

2 1 2 1 3 41a A A A A A , 1 5 1 3 41a A A A A  

and 
0 1 2 5 1 3 41a A A A A A A . 

For the output : 

1 4

1 3 4

3 2

2 1 0

1

A A s

s A A A

F s s a s a s a
 

           1

3 2

2 1 0

s b s

F s s a s a s a
 (24) 

where: 
1 1 4 1 3 41b A A A A A .  Figure A1 

shows the corresponding Simulink block 

diagram which is the state variable block 

diagram in the control canonical form 

realising transfer functions (23) and (24).  
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Figure A1: Linear IP model without algebraic loop 
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