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Title: Changes in behaviour and salivary cortisol following targeted cognitive training 

in typical 12-month-old infants.  

 

Abstract: Previous research has suggested that early development may be an optimal 

period to implement cognitive training interventions, particularly those relating to 

attention control, a basic ability that is essential for the development of other 

cognitive skills.  In the present study, we administered gaze-contingent training (95 

minutes across 2 weeks) targeted at voluntary attention control to a cohort of typical 

12-month-old children (N = 24) and sham training to a control group (N = 24). We 

assessed training effects on (a) tasks involving non-trained aspects of attention 

control: visual sustained attention, habituation speed, visual recognition memory, 

sequence learning and reversal learning; (b) general attentiveness (on-task behaviours 

during testing) and (c) salivary cortisol levels. Assessments were administered 

immediately following the cessation of training and at a 6-week follow-up. On the 

immediate post-test infants showed significantly more sustained visual attention, 

faster habituation and improved sequence learning.  Significant effects were also 

found for increased general attentiveness and decreased salivary cortisol. Some of 

these effects were still evident at the 6-week follow-up (significantly improved 

sequence learning and marginally improved […] sustained attention). These findings 

extend the emerging literature showing that attention training is possible in infancy.  

 

Keywords: Infancy, attention, cognitive training.   
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Introduction 

 

A number of authors in recent years have advocated the desirability of early 

interventions (Heckman, 2006; Shonkoff & Levitt, 2010; Sonuga-Barke, Koerting, 

Smith, McCann, & Thompson, 2011). The arguments that they present can be 

summarised in two strands. First, that development is an ongoing, dynamic, 

interactive process, and so targeting causal mechanisms early in disordered 

development may be more effective than waiting until outcomes are established and 

then trying to reverse the pathogenic process (Karmiloff-Smith, 1998; see also Stipek 

& Valentino, 2015). Second, that convergent evidence from lesion studies (Spencer-

Smith et al., 2005), computational modelling (Baughman & Thomas, 2008) and 

functional neuroimaging (Johnson, 2015) suggests that plasticity (i.e. the capacity to 

effect change) in brain and behaviour should be greater early in development (see 

Sonuga-Barke et al., 2011; Wass, 2014).  

 

Consistent with this, a recent systematic review looked at the effects of cognitive 

training – i.e. training one cognitive domain to assess the degree to which 

improvements are observed as a result of training to other, disparate cognitive 

domains (Wass, 2014). The review evaluated how the effects of cognitive training 

varied as a function of age (comparing children, young adults and older adults). It was 

found that studies targeting younger participants reported significantly more 

widespread transfer than studies targeting older participants (Wass., Scerif, & 

Johnson, 2012). 
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Cognitive training studies with older children have tended to focus on the cognitive 

domains of attention control (e.g. Rueda, Checa, & Combita, 2012) and working 

memory (e.g.	Klingberg et al., 2005). This is because these cognitive domains are 

thought to play a special role as ‘domain-general’ skills that are involved in mediating 

subsequent learning across a variety of disparate cognitive domains (Johnson, 2012; 

Rose, Feldman, & Jankowski, 2012; Scerif, 2010). Recent research has suggested that 

this ‘domain-general’ role for attention control and working memory may be more 

important during early development. For example, Stipek and Valentino, using data 

from 6000 children who were assessed 5/6 times between the ages of 3 and 15, found 

that the relationship of working memory and attention with academic outcomes was 

strong and positive in early childhood, but declined in later years (Stipek & Valentino, 

2015). This is consistent with evidence from other sources suggesting that early 

voluntary attention mediates learning in other domains (Cornish, Cole, Longhi, 

Karmiloff-Smith, & Scerif, 2012; Rose, Feldman, & Jankowski, 2012; Scerif, 2010; 

Wass, 2014).  

 

While a number of studies have examined the effects of applying targeted cognitive 

training targeting attention control and working memory to children aged four years 

and above (Astle, Barnes, Baker, Colclough, & Woolrich, 2015; Dunning, Holmes, & 

Gathercole, 2013; Karbach & Unger, 2014; Rueda, Posner, & Rothbart, 2005), only a 

relatively small body of literature has examined these effects in young children aged 

0-4 years. Wass and colleagues used an eyetracker to administer gaze-interactive 

training to typically developing 1-year-old infants (Wass, Porayska-Pomsta, & 

Johnson, 2011). Four tasks were presented that were designed to train different 

subcomponents of voluntary attention control, namely interference resolution, 
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inhibition, task switching and short-term memory for objects embedded in scenes. 95 

minutes’ training was administered across four visits spread over 2 weeks. 

Immediately after training, relative to an active control group, increased cognitive 

control and visual sustained attention as well as reduced attention disengagement 

latencies and saccadic reaction time latencies were observed:  no changes in short-

term memory were found (Wass et al., 2011). Similar training effects were found in 

studies by Ballieux and colleagues, in a small cohort of infants from low socio-

economic status backgrounds (Ballieux et al., 2016). Forssman and colleagues 

observed similar behavioural changes following training, and also assessed transfer to 

table-top assessments of naturalistic social attention (Mundy et al., 2003). They found 

that training led to significant changes in responding to social communication, but to 

no changes in infants’ initiating of social communication (Forssman, Wass, & 

Leppanen, (under review)).  

 

The present study aimed to extend this work in three ways: First, by examining  

transfer of training to previously untested aspects of attention control; second, by 

examining the effect of training on salivary cortisol, a potential neurobiological 

correlate; third, by assessing the persistence of training effects over time.   

 

To address the first aim we administered a number of previously untested pre-post 

assessments that are thought to depend on voluntary attention control. These included: 

(1) habituation speed (number of looks required to reach a criterion of diminished 

attention to repeated presentations of the same object) (Colombo & Mitchell, 2009); 

(2) sequence learning (rate of correct anticipations during the presentation of an 

ABABAB sequence) (Dilalla et al., 1990); and (3) visual recognition memory 
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(preferential looking to a novel, relative to a previously familiarised image) (Rose, 

Feldman, & Jankowski, 2012). Performance on several of these tasks during infancy 

has been shown to associate positively with long-term developmental outcomes: for 

example, infants’ rate of change of looks upon repeated presentations of a stimulus 

shows reliable long-term associations with IQ and other general cognitive measures 

(Colombo & Mitchell, 2009); and visual recognition memory during infancy 

selectively associates with working memory, as assessed at 11 years (Rose, Feldman, 

Jankowski, & Van Rossem, 2012). We also included two measures used in previous 

studies, to assess whether previous training effects replicated in this, new sample. 

These were (4) visual sustained attention (infants’ peak look duration towards a novel, 

previously unseen object) (Wass et al., 2011) and (5) reversal learning (speed of 

unlearning a previously learnt rule) (Kovacs & Mehler, 2009). Finally, we included a 

more general behavioural measure, namely (6) attentiveness (looking behaviour 

towards the stimulus presentation area) during the administration of the entire testing 

battery. This measure can be compared to similar measures of on-task behaviours 

(general attentiveness during the experimental testing procedure) used in older 

children with Attention Deficit Hyperactivity Disorder (Green et al., 2012).  

  

To address the second aim we measured infants’ resting salivary cortisol before and 

after training. A number of recent studies have shown that lower levels of resting 

salivary cortisol associate with better performance on assessments of executive 

functions (Blair et al., 2011; Skosnik, Chatterton, Swisher, & Park, 2000). However, 

direct causal relationships between early executive control and salivary cortisol levels 

have not previously been explored. One proposed causal mechanism underlying this 

relationship is that superior attention skills may allow the child to better regulate their 
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physiological reactivity by adopting self-regulation strategies in naturally occurring, 

stressful contexts (Aksan & Kochanska, 2004; Rothbart, Ellis, Rueda, & Posner, 

2003; Sheese, Rothbart, Posner, White, & Fraundorf, 2008). These include presenting 

unfamiliar, aversive masks to infants (Sheese et al., 2008) – or simply attending a lab-

based testing session, surrounded by unfamiliar people, places and equipment (Blair, 

2010). Previous research has suggested that attention training may led to an increased 

use of social referencing during the exploration of novel objects (Wass et al., 2011), 

and to an increased likelihood of following social cues (Forssman et al., (under 

review)). This hypothesis would predict that training an infant’s attention control 

would lead, via altered self-regulation strategies in naturally occurring stressful 

contexts, to reduced levels of salivary cortisol. Of note, related forms of attention and 

training have been shown, in adults, to lead to reductions in resting salivary cortisol 

(Tang et al., 2009; Tang & Posner, 2009), but to our knowledge no previous work has 

explored these relationships in younger populations.   

 

To address the third aim, the persistence of the effects of training, we tested not only 

immediately after the cessation of training, but conducted a follow-up assessment 6 

weeks after the completion of the initial, two-week training phase. Comparable 

studies with older children have generally found that training effects, where 

detectable, tend to be maintained at intervals ranging from two months to a year 

(Dunning et al., 2013;	Klingberg et al., 2005; Rueda, Rothbart, McCandliss, 

Saccomanno, & Posner, 2005). However, it is unknown whether training effects are 

as persistent in infants.  
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As in the previous studies, five training sessions were administered over an average of 

two weeks. Half the participants completed a battery of gaze-contingent attention 

training tasks; the other half were controls, who attended the same number, duration 

and spacing of visits as the trained infants. Pre-post tests were administered at the 

beginning and end of the initial 2-week training phase, and at follow-up 6 weeks after 

the final training session.  

 

Based on previous research (Ballieux et al., 2016; Forssman et al., (under review); 

Wass et al., 2011) we predicted that training would lead to changes in behaviour on 

all the behavioural measures of attention control. Of note, one previous study found 

that training led to no changes in working memory (Wass et al., 2011), but these were 

thought to be due to methodological problems with the assessment task used 

(discussed Wass, 2011), and so we predicted that training effects would be observed 

on the similar visual recognition memory task used here. We also predicted that 

training attention control would lead to reductions in salivary cortisol, although this 

prediction was based only on previous correlational evidence. Based on previous 

research with older participants we predicted that training effects would, where 

observed, still be detectable at 6-week follow-up. 
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Methods 

Participants and Study Design 

The study involved 48 typically developing infants who were each invited to visit the 

lab on six separate occasions. The sample size was selected using power analyses 

based on previous research that reported an effect size of 0.69 for the visual sustained 

attention measure (Wass et al., 2011). Based on this we calculated that a total of 48 

participants (24 per group) was required, which allowing for 10% attrition would give 

82% power for two-tailed significance of 0.05 using analysis of covariance with 

baseline-outcome correlation of 0.6. 

 

Participants were recruited from the volunteer participant pool at XXX. The 

recruitment area for this study, XXX, is a wealthy university town and participants 

were predominantly Caucasian. No participating families reported any major 

psychiatric or other clinical conditions within the immediate family. Following 

recruitment, and prior to their first contact with the experimental team, they were 

randomly allocated to one of three groups: the trained group (N=24), control group 1 

(N=12) and control group 2 (N=12) (see below for description of control groups). 

Participants’ mean (S.E.M.) age in days at visit 1 was: trained group - 360 (23), 

control group 1 - 363 (22), control group 2 - 358 (25) days. The gender split was 

11/24 male for the trained group, 4/12 male for control group 1 and 5/12 male for 

control group 2.  

 

Visit 1 consisted of the pre-assessment tasks, followed immediately by a training or 

control session (T/C session) 1; visits 2-4 consisted of dedicated T/C sessions; visit 5 

consisted of the post-assessment tasks (identical to pre-assessment tasks), followed 
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immediately by a T/C session  (which serves as a booster session for the intervention 

group). Visits 6 repeated the post-assessment battery. Visits 5 took place within mean 

17 (sd 8) days of visit 1, and Visits 1-5 were evenly distributed throughout this period. 

Visit 6 took place within 67 (sd 14) days of visit 1. 

  

Of 48 infants initially recruited 8 withdrew between visits 1 and 5 (4/2/3 for 

T/C1/C2), due either to the child or a member of their family falling ill during the 

initial two week-phase (N=4), meaning that they could not complete the sessions 

within the allocated time, or to infant fussiness (N=4). No further participants 

withdrew prior to visit 6.  

 

Equipment and Protocols 

All testing materials were presented using a Tobii TX300 eyetracker recording at 

120Hz and Matlab, Psychtoolbox and the Matlab SDK. The monitor subtended c.30° 

of visual angle. All external sources of lighting were occluded during testing, and 

participants were lit with a single, diffuse light source above the tracker, at c.300 lux. 

Lighting was consistent for all participants. Participants were seated on their parent’s 

lap during testing. Parents were requested not to talk to their child during testing.  

 

Training protocol. All six training tasks were presented consecutively, in a 

randomized order, until the infant no longer engaged with each task. Total mean 

(S.E.M.) training time was 12.8 (1.6) minutes at visit 1; visit 2 - 22.6 (1.7); visit 3 - 

22.6 (1.3); visit 4 - 23.3 (1.8); visit 5 14.6 (1.0). The shorter training times for visits 1 

and 5 are because the training session immediately followed the pre-post assessment, 

as described above. At each visit each training task was typically presented once, 
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although occasionally sessions were curtailed earlier if the infant became irritable. 

Screenshots of the training stimuli are shown in Figure 1, and more in-depth 

descriptions are given in the Supplementary Materials.  

 

Mean (S.E.M.) training time per task across all training sessions was 177 (13) seconds 

for the FlyMe game, 250 (14) for Puzzle Memory, 201(13) for Butterfly, 276(13) for 

Stars, 223(14) for Suspects and 262(12) for Windows.  

 

INSERT FIGURE 1 HERE 

 

Task 1 (Butterfly) – A target (a butterfly) was presented on the screen. When the child 

fixated the target it moved from left to right and distractors scrolled in the opposite 

direction. When the child looked to any of the distractors, the display froze. The 

number and salience of the distractors changed adaptively contingent on performance. 

This task requires the child to maintain their fixation on one target (the butterfly), 

whilst suppressing the pre-potent response to look to moving distractors in the 

periphery. This task requires focused attention and inhibition.  	

 

Task 2 (FlyMe) – A target was presented on-screen. When the child fixated the target 

it moved and distractors appeared. When the child looked to any of the distractors, 

they disappeared. The number and salience of the distractors changed adaptively 

contingent on performance. This task has similar cognitive demands to Task 1. 

 

Task 3 (Windows) – When the infant fixated the target, it disappeared into one of 

several windows that were covered with curtains. After a delay, if the infant looked 
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back to the cued window, s/he received an animation as a reward. The length of the 

delay, and the number of hiding locations, changed adaptively contingent on 

performance. This task requires visuospatial short-term memory.  

 

Task 4 (Puzzle Memory) – When the infant fixated a character, an animation showed 

it becoming occluded in one of several locations. After a delay, if the child looked 

back to the cued location and maintained their gaze there, a reward was triggered. 

Previously found targets remained on-screen as distractors in subsequent trials. The 

length of the delay, and the number of hiding locations, changed adaptively 

contingent on performance. This task targeted visuospatial short-term memory and 

inhibitory control.  

 

Task 5 (Suspects) - One of two possible targets (either an elephant or a chicken) was 

presented with one or more distractors. When the infant ‘found’ the target within a 

time limit, they received an animation as a reward. The number of distractors varied 

adaptively with performance. Between blocks of 12 trials, the target changed. This 

task targets attention shifting and flexible search for changing targets, whilst ignoring 

distractors. 

 

Task 6 (Stars) – One of five possible targets (cartoon characters in brightly coloured 

stars) was presented together with eight distractors. If the infant ‘found’ the target 

within a time window they received a reward. The target changed from trial to trial. 

The salience of the distractors changed adaptively. This task requires flexible search 

for changing targets, whilst ignoring distractors. 
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Control protocol.  

All control participants attended the same number of sessions, with the same 

equipment and testers as the trained infants. Control sessions had the same duration 

and spacing as the training sessions. This was ensured by pairing control participants 

individually with trained participants, to ensure that each control session had the same 

duration as that of a paired trained infant.  

 

Control group 1 (N=12) watched non-contingent infant-appropriate animations and 

TV clips on the eyetracker, following the protocol used for the active control group in 

previous studies (Wass et al., 2011; Ballieux et al., 2016). A variety of clips were 

selected from YouTube and TV programs. No single clip lasted more than 2 minutes 

in duration.  Control group 2 (N=12) viewed stimuli that were identical with the 

training stimuli except that they did not respond contingently to the child’s gaze. 

Instead of triggering responses based on the eyetracking data being recorded live, 

changes in the presentation were instead triggered from the pre-recorded gaze data for 

a matched participant from the trained group.  

 

Control group 1 follows the control protocol used in previous studies with both 

infants (Ballieux et al., 2016; Wass et al., 2011) and children (Rueda, Rothbart, et al., 

2005). Control group 2 follows what is recognised as the ‘gold-standard’ procedure 

for cognitive training research (e.g. Holmes, Gathercole, & Dunning, 2009; Klingberg 

et al., 2005) – insofar as participants are exposed to visually identical stimuli across 

the trained and control groups. We wished to examine whether any possible 

differences might be attributable to the control protocol used. In the Supplementary 

Materials (Figure S1) we present the results for all tasks, sub-divided between Control 
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Groups 1 and 2. A series of analyses were conducted using the same analytical 

strategy as used for the main results below, in order to examine whether any 

difference in performance could be observed between the two control groups. No 

significant differences were observed (all ps>.15), and so results have been pooled for 

the main analyses. (See Supplementary Materials for further details.) 

 

Pre-post assessments 

Figure 2 shows a schematic of the pre-post assessments administered. The battery 

lasted approximately 20 minutes and consisted of a series of experiments in which 

different blocks were presented inter-leaved. The order of block presentation (shown 

on Figure 2) was identical for all participants. All experimenters were blinded to 

expected study outcomes. All Matlab scripts used for stimulus presentation and data 

analysis have been supplied with this manuscript.  

 

INSERT FIGURE 2 HERE 

 

In addition to the measures presented here, three further elements were included. 

First, autonomic data (heart rate and GSR) were recorded, throughout the pre- and 

post-assessments. Results from these measures will be included in a separate report. 

Second, as shown in Figure 2, a number of TV and video clips were interspersed 

between the blocks of the testing battery in order to prevent infants becoming fussy 

and to allow for the recording of baseline autonomic data. Third, a naturalistic (table-

top) word learning task was presented, to examine social referencing during learning 

in naturalistic contexts. However, due to an error with the sound recording equipment, 
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complete data were only available for 18 of the 48 participating infants, and so results 

from this experiment have been excluded.  

 

Visual sustained attention/Habituation. 

A still image was presented, subtending 7°, consisting of a child’s face against a white 

background (see Figure 2 for example). The image was presented in silence. An 

experimenter, watching a live video feed of the child from behind a curtain, coded 

whether they were looking at the screen using a key press. When the child had looked 

away for one second or more, this marked the end of the trial. The same image was 

then presented again. The same image was presented until the child had completed 

two consecutive looks at less than 50% of the longest look that trial (Colombo & 

Mitchell, 2009). If the child has not met the habituation criteria within 120 seconds of 

accumulated looking time or within 12 trials, the habituation protocol was aborted and 

the block was excluded. A refixation target was presented between trials, to ensure 

that the infant was looking at the screen at the start of each trial. The fidelity of the 

hand-coding was assessed by comparing the hand-coding with the eyetracker coding 

(the automatic detection of whether the child was looking at the screen), giving an 

acceptable reliability of .78. […] Three blocks of this experiment were presented, at 

different stages of the testing protocol (see Figure 2). 

 

Two measures were derived from this experiment. First, peak look, calculated as the 

duration of the single longest unbroken look towards each stimulus, in seconds (Wass 

et al., 2011). Second, looks to criterion, calculated as the number of looks required to 

fulfil the habituation criterion (Colombo & Mitchell, 2009). Both measures were 

calculated independently for the three blocks, and then averaged. Consistent with 



Running Head: INFANT ATTENTION TRAINING  16

previous research, looks to criterion was found to be heavily positively skewed; this 

was corrected for by taking the reciprocal.  

 

Visual recognition memory 

This task was presented in three blocks, immediately following the visual sustained 

attention/habituation experiment. The previously familiarised image was presented 

concurrently with a novel image – each subtending 7°. The images were presented in 

one Left-Right order for 8000 ms, and then the order was swapped for the subsequent 

8000 ms (Rose, Feldman, & Jankowski, 2012). Piloting work ensured that the pairs of 

stimuli used were of equal salience (i.e. attracted equal attention when both were 

unfamiliar). A refixation target was presented between trials, to ensure that the 

participant was looking to the screen at the start of each trial.  

 

Binocular eyetracking data were averaged to monocular data, and smoothed using a 

continuous 150ms moving window. Proportion looking to the novel target was 

calculated as time spent viewing the unfamiliar target, divided by the time spent 

viewing both the familiar and the unfamiliar target combined. 

 

Sequence learning 

This task was presented in four blocks, at different stages of the testing protocol. One 

of the blocks was pseudo-randomised; the other three blocks followed a LRLRLRLR 

sequence (following Dilalla et al., 1990). Only data from the non-random blocks has 

been analysed. Each block consisted of 8 trials. At the start of each trial a fixation 

target was presented to ensure that each trial started with the participant looking at the 

central area of the screen. Two coloured rectangles were then presented, left and right, 
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subtending 8°. After 2000ms a target (subtending 3°) appeared in one of two locations 

(following a LRLRLRLR sequence that was counterbalanced between blocks). As 

soon as the participant had looked to the target (or immediately if they had looked 

during the 2000ms anticipatory window), a reward lasting 2500ms was triggered in 

which the object became larger on screen (up to 8°) and an entertaining sound was 

played. The next trial started immediately, on completion of the previous trial.  

 

Binocular eyetracking data were averaged to monocular data, and smoothed using a 

continuous 150ms moving window. Anticipatory looks were defined as a look in 

which the gaze entered the target location either during the 2000ms anticipatory 

window or within 300ms of the target appearing. Within-block learning was indexed 

by calculating the change in proportion of correct to incorrect anticipations between 

the second half and first half of each block. 

 

Reversal learning 

This task was presented in three blocks, at different stages of the testing protocol. 

Each block consisted of 12 trials. The video target was presented on one side (e.g. 

left) for the first six trials, before swapping sides and appearing on the other side (e.g. 

right) for the subsequent six trials (the ‘reversal’ phase) (Kovacs & Mehler, 2009). At 

the start of each trial a fixation target was presented, to ensure that each trial started 

with the participant looking at the central area of the screen. Two coloured rectangles 

were then presented, left and right, subtending 6°. After 300ms, the sound-track to the 

video clip started. If the participant looked to the target side within 2000ms, the 

accompanying picture to the video clip appeared immediately. If the participant did 

not look to the correct side within 2000ms, the picture appeared non-contingently. 
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The duration between the start of the audio and the end of the trial (i.e. the end of the 

video) was 5000ms.  

 

Binocular eyetracking data were averaged to monocular data and smoothed using a 

continuous 150ms moving window. Anticipatory looks were defined as a look in 

which the gaze entered the target location either during the 2000ms anticipatory 

window or within 300ms of the target appearing. Reversal learning was indexed by 

calculating the proportion of correct to incorrect anticipations after the reversal had 

taken place. 

 

On-task behaviours 

In order to provide a general index of each child’s attentiveness towards the stimulus 

presentation area during the administration of the complete pre- and post-testing 

battery, the average duration of all the periods during which the child attended to the 

screen during the entire session was calculated. In all infants, periods of general 

attention towards the tasks were interspersed with periods of fussiness, during which 

they refused to participate in testing and had their attention re-attracted to the screen 

before the start of the next trial. This measure can therefore be compared to other 

studies that measure the frequency of on-task behaviours (including the absence of 

behaviours such as fidgeting and getting up and moving) in older children with 

ADHD (Green et al., 2012).  

 

The measure was derived from the eyetracker data obtained during the presentation of 

the test battery. Interpolation was first performed to cover periods of missing data 

<2000ms, in order to cover periods of data loss due to blinks and unreliable contact 
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with the eyetracker (Wass, Forssman, & Leppanen, 2014). The average duration of 

data segments obtained after interpolation was then calculated. The measure was 

found to be independent of between-individual variations in eyetracking data quality – 

such as flickeriness (a measure of the reliability of contact with the eyetracker) 

(p=.18) (Wass et al., 2014).  

 

Salivary cortisol 

Cortisol was recorded twice at each pre-post test session: once immediately following 

the child’s arrival at the lab and once on the completion of the testing battery. Two 

measures were calculated based on these data: first, average cortisol levels, calculated 

as the average of the first and second readings; second, cortisol reactivity, calculated 

as the difference between the first and the second readings.  

 

Parents were instructed to ensure that their child had not eaten or drunk within 30 

minutes of their arrival at the lab, and experimenters verbally confirmed this on the 

child’s arrival. Samples were collected using a hydrocellulose microsponge 

(Salimetrics). Saliva samples were frozen and then transported on ice to the Core 

Biochemical Assay laboratory at Addenbrooke’s, Cambridge, where they were 

processed. All samples were assayed in duplicate for salivary cortisol using a 

commercially available immunoassay without modifications to the manufacturer’s 

recommended protocol (Salimetrics, State College, PA). Sample test volumes were 25 

ml, and range of sensitivity was from .007 to 3.0 mg/dl. The average of the duplicate 

samples was used in all analyses.  
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Due to a delay in obtaining ethical permission for the cortisol collection component of 

the study, cortisol collection was not attempted for the children enrolled early in the 

study. In addition a small number (<10%) of infants refused to provide a sample, or 

provided insufficient saliva for analysis (similar to as previously – see e.g. Goldberg 

et al., 2003). 32 (15 T/17 C) participants provided usable cortisol data at pre-test, 31 

(15 T/16 C) at post-test, and 28 (13 T/15 C) at 6-week follow-up.  

 

Consistent with previous research (Blair et al., 2011) we found a weak positive 

association in our pre-test data between the time of day of the sample collection and 

cortisol level (r=.18). In order to preclude the possibility that this factor might 

influence our results we ensured that, as far as possible, the time of day of each pre- 

and post-assessment was kept constant for each participant. Results showed a high 

degree of consistency: average visit time was 12:05 for the pre-assessment and 11:55 

for the post-assessment for the trained group, and 11:55/11:30 for the pre-/post-

assessments for the control group. In addition, the change in time of day between pre- 

and post-assessment has been calculated for each individual and included as a 

covariate in the analyses presented below.  
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Results  

 

Performance at training tasks. In order to assess whether infants were improving with 

repeated training, the performance levels for the six training tasks were collapsed in z-

scores (separately for each task) and pooled into a single, composite measure to index 

how well that individual had performed at each training session. To examine change 

in performance over time a repeated measures ANOVA was conducted. This was 

conducted just on the data from training sessions 2, 3 and 4, as at visits 1 and 5 infants 

had already completed a 20-minute pre- and post-test assessment battery and so were 

already fatigued before the start of training. Sessions 2, 3 and 4 were, in contrast, 

dedicated training sessions, and so performance changes across these sessions could 

be directly compared. A RM ANOVA suggested that significant improvements in 

performance were observed across the training sessions (F(2,42)=9.19, p<.001).  

 

INSERT FIGURE 3 HERE 

 

Analytical strategy for pre-post tests.  

To examine the effects of the training intervention on the different tasks, we 

conducted a set of ANOVAs with the factor Group (trained vs control), post-

assessment scores as the dependent variable and pre-assessment scores as the 

covariate (following	Klingberg et al., 2005). Outliers were first excluded according to 

the +/-1.5 Inter-Quartile Range (IQR) criterion. Separate ANOVAs were conducted 

for the two post-assessments administered: immediate post-test and 6-week follow-up 

(following Dunning et al., 2013). Figure 3 shows the raw scores obtained for the 

training and control group on the pre- and post-assessments. In the following text, 
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effect sizes are given as partial η2, reflecting the proportion of explained variance in 

the dependent measure.  

 

Visual sustained attention 

IQRs were inspected. No outliers were excluded at pre-test, one outlier (1T) was 

excluded at post-test and 2 (1T/1C) were excluded at the 6-week follow-up. At post-

test a significant effect of Group was observed, suggesting an increase in visual 

sustained attention as a result of training: F(1,39)=6.67, p=.01, partial η2=.15. At 6-

week follow-up a marginally significant effect of Group was observed: F(1,38)=4.03, 

p=.052, partial η2=.10.  

 

Habituation (looks to criterion) 

IQRs were inspected and no outliers were excluded. At post-test a significant effect of 

Group was observed, with training resulting in faster habituation (fewer looks to 

criterion): F(1,40)=4.60, p=.04, partial η2=.11. At 6-week follow-up no significant 

effect of Group was observed: F(1,40)=1.67, p=.20, partial η2=.04.  

 

Visual recognition memory 

IQRs were inspected and one outlier was excluded (post-test, 1 T). At post-test no 

significant effect of Group was observed F(1,39)=1.45, p=.24, partial η2=.04. At 6-

week follow-up no significant effect of Group was observed: F(1,40)=1.45, p=.24, 

partial η2=.04.  

 

Sequence learning 
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IQRs were inspected and one outlier was excluded (6-week assessment, 1 C). At post-

test a significant effect of Group was observed, with training leading to faster 

sequence learning: F(1,40)=4.60, p=.038, partial η2=.11. At 6-week follow-up a 

significant effect of Group was observed: F(1,39)=10.7, p=.002, partial η2=.23.  

 

Reversal learning 

IQRs were inspected and no outliers were excluded. At post-test a marginally 

significant effect of Group was observed, with training leading to faster reversal 

learning: F(1,40)=3.00, p=.09, partial η2=.073. At 6-week follow-up a marginally 

significant effect of Group was observed: F(1,40)=3.73, p=.061, partial η2=.089.  

 

On-task behavior 

IQRs were inspected and three outliers were excluded: pre-test: 0; post-test: 2 (1T, 

1C); 6-week: 1 (1C). At post-test a significant effect of Group was observed, with 

training resulting in  an increase in general attentiveness: F(1,38)=6.26, p=.017, 

partial η2=.15. At 6-week follow-up no significant effect of Group was observed: 

F(1,39)=.68, p=.41, partial η2=.018.  

 

Salivary cortisol 

IQRs were inspected and the following outliers were excluded: pre-test: 1 (1T); 6-

week: 1 (1T); 6-week: 3 (1T, 2C). At post-test a significant effect of Group was 

observed, suggesting a decrease in salivary cortisol as a result of training: 

F(1,28)=4.25, p=.049, partial η2=.14. At 6-week follow-up no significant effect of 

Group was observed: F(1,21)=.16, p=.70, partial η2=.008. Cortisol reactivity, indexed 
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as the change in cortisol between the first and second recordings, showed no effect of 

Group: F(1,18)=.31, p=.59, partial η2=.019.  

 

As documented in the Methods, the time of day for each visit was, as far as possible, 

kept equivalent for each infant. However, since in some cases this was not possible, in 

order to examine possible mediating effects of time of day, an additional analysis was 

conducted in which the difference in time of day between the pre- and post-test 

assessment was calculated for each participant and added as a covariate to the 

ANOVA. The effect of Group remained significant: F(1,28)=4.70, p=.040, partial 

η2=.16.  
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Discussion 

 

We administered gaze-contingent training targeted at voluntary attention control to a 

cohort of typical 12-month-old children. Training-related changes were assessed, 

relative to an active control group, by administering a pre- and post-testing battery 

consisting of non-trained tasks assessing voluntary attention control. In addition we 

recorded the frequency of on-task behaviours during testing, and salivary cortisol. 

Post-assessments were administered immediately on the completion of the 2-week 

training phase, and 6 weeks after the completion of the initial training phase.  

 

Our first aim for this study was to examine transfer of training to previously untested 

aspects of attention control. Here, we found that training led to a significantly faster 

habituation rate, to superior performance on a sequence learning task and to increased 

general attentiveness during testing (more on-task behaviours). In addition, we also 

replicated our previous findings that training led to significant changes in visual 

sustained attention and reversal learning – although in this case it should be noted that 

the reversal learning findings were only trend-level significance (Wass et al., 2011). 

Further, it should be noted that the change on the reversal learning measure was 

driven by a greater decrement in performance in the control group rather than an 

increase in performance in the trained group – a pattern that others have argued may 

lead to spurious training effects (Redick, 2015). This pattern was not observed on the 

other tasks.  

 

Across different tasks we found, therefore, that training led to increased look 

durations, to a faster rate of fall-off of looks, and to more accurate anticipatory 
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orienting. In previous research we also found that the training led to faster saccadic 

reaction times (Wass et al., 2011). What is the most parsimonious explanation of 

these diverse changes in behaviour? One possibility is that all of the changes are 

mediated by increased voluntary (endogenous) control over eye movements (Johnson, 

1990). Depending on context, this factor might lead in some situations to longer 

looking behaviour, in others to faster reaction times, and in others to more accurate 

orienting. Thus it is possible, for example, that sequence learning may have been 

improved after training, despite the fact that learning sequences was not directly a 

component of the training, because training led to an increase in the accuracy of 

endogenous anticipatory eye movements based on a previously learnt pattern 

(Johnson, Posner, & Rothbart, 1991). Of note, the capacity to make endogenous eye 

movements is thought to be trace at this age, and to only start to emerge around the 

12-month age boundary, and may therefore well be a factor limiting performance on 

the sequence learning task (Johnson et al., 1991, Colombo & Cheatham, 2006).  

 

The findings of longer look durations towards novel objects (i.e. increased peak look 

during habituation), and of a faster rate of fall-off of looks when that object is re-

presented, may appear counter-intuitive given that previous research has shown that 

infants who show shorter look durations also show a faster rate of fall-off of looks 

(Colombo & Mitchell, 2009). Also, the finding that training led to longer look 

durations may be seen as surprising given that, in younger (<9-month-old) infants, 

look duration is negatively associated with long-term cognitive outcomes. However, 

Courage and colleagues have suggested that voluntary attention control becomes an 

increasingly important influence on looking behaviour, starting from 12 months, such 

that increased voluntary attention control is associated with longer look durations 
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towards novel objects (Courage, Reynolds, & Richards, 2006). Thus, increased initial 

look duration and a faster subsequent fall-off of looks may both be effects of 

increased endogenous (voluntary) control over orienting behaviours as a result of 

training.   

 

The only task in the assessment battery not to show any changes immediately post 

training was the visual recognition memory task. This is consistent with previous 

findings, where no significant change was observed on a short-term memory task 

(Wass et al., 2011). This may be because, although closely related to attention control 

(Astle & Scerif, 2011) short-term memory is one of the hardest subcomponents of 

emergent executive function capacities, and the capacity for short-term memory 

storage is too weak at this age to show reliable training effects (although see Oakes, 

Baumgartner, Barrett, Messenger, & Luck, 2013). Of note, however, non-significant 

changes in the predicted direction were observed independently across all three post-

assessments for this task, as they had been in the previous study.  

 

Our second aim was to examine the effect of training on salivary cortisol, a potential 

neurobiological correlate. Here, we found that training led to a reduction in resting 

salivary cortisol that was detectable immediately post training but not at the 6-week 

follow-up. The reduction in resting salivary cortisol in infants is, to our knowledge, 

novel, although it can be compared with previous findings in adults (Tang et al., 2009; 

Dandeneau, Baldwin, Baccus, Sakellaropoulo, & Pruessner, 2007; although see 

Pilgrim, Ellenbogen, & Paquin, 2014). Of note, and consistent with previous research 

with adults, we found that training led to reductions in resting cortisol across the 

entire testing session (the average of the recordings taken at the start, and end of the 
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testing session, as well as in both recordings individually). We did not find that 

training led to changes in cortisol reactivity (the difference between the two 

recordings taken at the beginning and end of the session) (cf Blair, Granger, & Razza, 

2005; Haley, Weinberg, & Grunau, 2006). The mechanism underlying this change 

may be that increased attention skills induced by training may lead to better self-

regulatory capacities that extend to the child’s interactions with the natural 

environment (Rothbart et al., 2003). Consistent with this, previous research has found 

that training led to some increase in infants’ use of social referencing  (Wass et al., 

2011), as well as to greater responsiveness to social cues (Forssman et al., (under 

review)). 

	 

Although novel, and potentially exciting, there are several reasons why caution should 

be exercised with regard to the cortisol finding. First, the sample size for this analysis 

was lower than for the other measures, mainly due to technical delays in securing 

ethical approval. Second, due to random sampling differences between the groups, the 

trained group showed higher cortisol levels at pre-test than the trained group, raising 

the possibility that the training-related reduction in cortisol levels observed could 

simply be regression to the mean. However, the ANCOVA that we used controls for 

randomly occurring differences between groups at pre-test. Of note, and despite the 

consistent training-related reductions in cortisol that we identified, we also observed 

strong associations between pre- and post-test cortisol levels in the trained group 

(Pearson’s r=.65).  

 

Our third aim was to assess the longer-term maintenance of training effects. At the 

immediate post-training assessment, conducted several days after the last training 
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visit, training effects were detectable for visual sustained attention, looks to criterion, 

sequence learning, reversal learning (marginal), on-task behaviours during testing and 

resting salivary cortisol. At the follow-up assessment, changes were observed for the 

sequence learning task, and only marginal effects were observed for the reversal 

learning and visual sustained attention tasks. Thus, some dissipation of training 

effects was observed over the 6 weeks between the last training session and the 

follow-up appointment, as is consistently found in other studies. Of note, the total 

dose of training administered in the present study (95 minutes over 4 sessions) was 

substantially less than that administered in equivalent studies with older children (600 

minutes over 20-25 sessions), and it may be that training regimes that administer a 

larger dose of training would find more long-lasting training effects. Future work 

should, therefore, investigate the effects of more long-term, continuous training 

regimes. Of note, recent research has investigated the effects of applying working 

memory training to children continuously, over an entire academic year, and noted 

training-related changes in reading and maths ability (Soderqvist & Nutley, 2015) that 

were not observed in equivalent studies that administered smaller doses of training 

(Dunning et al., 2013). 

 

Given the evidence that cortical activation patterns are less localised and specialised 

early in development (Johnson, 2015), it is likely that the effects of training would  

transfer to tasks more distally related to training in younger infants than in older ones.  

That is, the effects of training would only be expected to transfer to other tasks to the 

extent that the tasks rely on overlapping neural networks (Klingberg, 2010). Future 

research may assess this possibility with a wider range of tasks than those used here. 
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Future research should also investigate mechanisms underlying possible casual 

relationships between attention control and cortisol.  
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Figure 1: Screenshots of training tasks. A) Task 1 (Butterfly). The butterfly scrolled 

left to right while the child looked directly at it, with moving distractors (trees and 

clouds) scrolling from right to left presented in the child’s peripheral field. If the child 

looked to the distractors, they disappeared and the scrolling stopped. b) Task 2 

(FlyMe). The purple character (centre) scrolled upwards as long as the child looked 

directly at it. Static and moving distractors appeared from the top and bottom of the 

screen. If the child looked to the distractors, the character sank downwards and the 

distractors disappeared. c) Task 3 (Windows). A target (the bug) was presented in one 

location on screen. All windows then closed and fixation target (a red flower) 

appeared for a variable inter-stimulus interval. After the fixation target disappeared, 
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a look back to the cued window triggered a reward. d) Task 4 (Puzzle Memory). When 

the child looked to the blue character, occluders covered the two locations, and then 

a refixation target was presented. Looking back to the cued window triggered a 

reward. Previously found targets remained on-screen, as distractors, for subsequent 

trials. e) Task 5 (Suspects). A target (the elephant) was presented along with a range 

of distractors. If the child looked to the target within a time window, they received a 

reward. Once per block of 12 trials, the target changed. Targets from the previous 

block (the chicken) were presented concurrently with the current target, as 

distractors. f) Task 6 (Stars). A target (the orange star) was presented on-screen 

along with a number of static and moving distractors. If the child looked to the target 

within a time window, (s)he received a reward. Both target and distractors changed 

between trials.   
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Figure 2: schematics showing the pre-post assessment battery. a) Visual sustained 

attention: a novel image was presented to a child, and the child’s peak look duration 

was recorded; b) Habituation: the same image was presented repeatedly to the child, 

and the change in look durations over time was recorded; c) Visual recognition 

memory: a previously habituated image was presented together with a novel image 

and the proportion of looking time to each picture was measured; d) Sequence 

learning: an object appeared in an ABABABAB sequence; eye movements during the 

anticipatory window were measured; e) Reversal learning: a reward appeared on one 

side for six trials, before swapping and appearing on the other side for the subsequent 

six trials; anticipatory eye movements were measured. f) the presentation order. 
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Tasks were presented in blocks of approximately 1-2 minutes in duration, 

interspersed with shorter video clips to maintain participant engagement.  
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Figure 3: Raw results obtained for our pre-post measures. a) Visual sustained 

attention; b) Habituation – looks to criterion; c) Visual recognition memory; d) 

Sequence learning; e) Reversal learning; f) On-task behaviours during testing; g) 

Salivary cortisol. Stars show the significance of the ANOVA analyses reported in the 

main text. * indicates an ANOVA that was significant at p<.05; (*) indicates a 

marginally significant result (p<.10).  

 


