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Abstract 

Similarity-based semantic interference (SI) hinders memory recognition. Within 

long-term visual memory paradigms, the more scenes (or objects) from the same semantic 

category are viewed, the harder it is to recognize each individual instance. A growing body 

of evidence shows that overt attention is intimately linked to memory. However, it is yet to 

be understood whether SI mediates overt attention during scene encoding, and so explain 

its detrimental impact on recognition memory. In the current experiment, participants 

watched 372 photographs belonging to different semantic categories (e.g., a kitchen) with 

different frequency (4, 20, 40 or 60 images), while being eye-tracked. After 10 minutes, 

they were presented with the same 372 photographs plus 372 new photographs and asked 

whether they recognized (or not) each photo (i.e., old/new paradigm). We found that the 

more the SI, the poorer the recognition performance, especially for old scenes of which 

memory representations existed. Scenes more widely explored were better recognized, but 

for increasing SI, participants focused on more local regions of the scene in search for its 

potentially distinctive details. Attending to the centre of the display, or to scene regions 

rich in low-level saliency was detrimental to recognition accuracy, and as SI increased 

participants were more likely to rely on visual saliency. The complexity of maintaining 

faithful memory representations for increasing SI also manifested in longer fixation 

durations; in fact, a more successful encoding was also associated with shorter fixations. 

Our study highlights the interdependence between attention and memory during high-level 

processing of semantic information.  

 

Keywords: long-term visual memory; semantic interference; visual saliency; eye-

tracking. 

 

 

 

 

 

 

 

 



 Introduction 

 

When recalling the memory of a certain episode, other episodes sharing a similar 

context may interfere with it. For example, when trying to remember the specific image of 

a kitchen, memories of images from the same semantic category (i.e., other kitchens) may 

also get activated, and so interfere with the recognition of this exemplar. This cognitive 

phenomenon, identified for the first time by Müller and Pilzecker (1900), has been ever 

since at the heart of memory research (see Dewar, Cowan, & Della Sala, 2007 for a review) 

and attributed to either mental activities intervening between the encoding of a stimulus 

and its retrieval, such as comparing periods of wakeful rest versus cognitive engagement 

(Cowan et al., 2004; M. Dewar et al., 2012) or to response competition due to the content 

similarity of the stimuli that are memorised (Craig et al., 2013; Underwood, 1945), such as 

semantically related vs. unrelated word lists (Baddeley & Dale, 1966; McGeoch & 

McDonald, 1931 and see Ishiguro & Saito, 2020 for a recent review). 

Memory interference has historically been investigated using verbal recall or picture-

word associations tasks (Dale, 1964; Rosinski et al., 1975; Shulman, 1971). In recent years, 

interest grew around the impact of similarity-based semantic interference on long-term 

memory for visual information, which also constitutes the focus of the present research.  

In a series of studies, Konkle, Brady, Alvarez, and Oliva (2010a, 2010b) 

demonstrated that the fidelity of memory representations for arrays of standalone objects, 

or naturalistic scenes, critically depends on the semantic interference occurring between 

stimuli that have been encoded in memory: an increase in the frequency of scenes (or 

objects) per semantic category was associated with a systematic decrement in the 

recognition of each individual exemplar encoded in that category.  

Beside their semantic content, visual images also convey low-level information (e.g., 

colour or luminosity), which can be computationally quantified in a synthetic measure 

known as visual saliency (see, Itti et al., 1998 for a well-known model). When looking at 

the impact of low-level information on memorability, however, research seems to indicate 

no significant correlations between the two (see Isola et al., 2014, for natural scenes, Dubey 

et al., 2015, for objects, and refer to Bainbridge, 2019 for a review on the topic of 

memorability). Instead, visual images own an intrinsic memorability strength that is 

independent of their high- or low-level characteristics or to the type of tasks and the depth 



of cognitive processing involved (Bainbridge, 2020). The memorability of visual 

information also relies on patterns of extrinsic responses, e.g., eye-movements, that 

participants generate when encoding such information in memory (e.g., Bylinskii, Isola, 

Bainbridge, Torralba, & Oliva, 2015; and see Hannula, 2018, for a review of the topic). For 

example, a higher number of fixations, or smaller pupil dilations while scenes are studied 

in preparation for a recognition test are associated with a better memory performance 

(Kafkas & Montaldi, 2011).  

Global measures of exploration as obtained from attention maps (Pomplun et al., 

1996), in which all fixations on a given image are portrayed along its two-dimensions, are 

an important predictor of its memorability too. In this context, the more spread out fixations 

were on an image during encoding, which implied that several regions were attended to, 

the better this image was later recalled (e.g., Damiano & Walther, 2019; and Lyu et al., 

2020, for another application of attention maps in the context of image memorability).  

The duration of individual fixations can also express ongoing memory processes. 

Meghanathan et al. (2015), for example, showed that fixation duration linearly increases as 

the number of target distractors present in the context also increases in a change detection 

task. Or Loftus et al., (1992) where increasing fixation durations were associated with the 

amount of degradation in low-level features of images to be later remembered. 

Another important aspect of oculo-motor control, which has been relatively neglected 

in the context of memory processes, is the tendency of observers to re-orient their overt 

attention towards the centre of the display during scene viewing (i.e., centre bias, Tatler, 

2007). To the best of our knowledge, Lyu et al., (2020) is the only study that has examined 

the role of centre bias on memory recognition. A centre proximity map was computed to 

weight low-level saliency maps generated with the Graph-Based Visual Saliency (GBVS) 

algorithm (Harel et al., 2006) and a single value, representing the probability of salient 

regions to be positioned in the centre of the display, generated. Their result did not show 

any significant relationship between centre bias and memorability, which seems to confirm 

the marginal role played by low-level visual features on scene memorability.        

Attending and memorising are indeed closely coupled; but high-level semantic 

mechanisms of interference may influence overt attention as memories get formed. If this 

supposition is true, we should be able to bridge the expected decrement in recognition 

memory onto eye-movement responses. Our proposition is that as the fidelity of individual 



memory representations (e.g., the specific image of a kitchen) degrades under the influence 

of semantic interference (i.e., a memorised pool of kitchens), oculo-motor compensatory 

strategies are adopted to cope with the increased complexity of discriminating the memory 

of each individual instance from a pool of semantically overlapping competitor instances.     

Thus, the current study aims at demonstrating that semantic interference on long-term 

visual memory directly mediates overt attention at encoding of visual information. Most 

importantly, our goal is to gauge the oculo-motor dynamics that underlie the successful 

formation and later access of memory representations as they degrade due to semantic 

interference.  

We manipulated semantic interference of naturalistic images following the procedure 

by Konkle et al., (2010b), but tested recognition memory on an old/new paradigm rather 

than a two-alternative forced choice (2AFC), which elicits recollection more than 

familiarity mechanisms (for a direct comparison of these two paradigms see Bayley, 

Wixted, Hopkins, & Squire, 2008 and Cunningham, Yassa, & Egeth, 2015). Eye-tracking 

was included in the procedure to examine oculo-motor patterns associated with the 

encoding of visual information in memory. Departing from previous work, we examined 

the impact of semantic interference as a continuous, rather than as a categorical, variable. 

This approach allowed us to estimate the incremental (trial-by-trial) impact of semantic 

interference on recognition accuracy and how this is accommodated by changes in eye-

movement responses. 

On recognition accuracy, we expect to replicate the semantic interference effect 

observed by Konkle, et al., (2010b), whereby the higher the interference of the semantic 

category a scene is encoded into, the worst it would be its future recognition. However, if 

this effect truly relates to memory representations, then it should more strongly manifest in 

old rather than new images. Moreover, even though images are intrinsically memorable 

(Bainbridge, 2020), in our paradigm, we expect their memorability to reduce under the 

influence of semantic interference, and so observe a lower inter-participant correlation than 

Isola et al. (2014), where the semantic interference between images was not manipulated. 

On the eye-movement data collected while scenes were viewed for the first time (i.e., 

at encoding), we focus on four complementary measures: (a) the amount of visual 

information that was attended to, by looking at the overall spread of fixations across the 

scene, (b) the attentional effort to acquire visual information from the scene, by looking at 



fixation duration,  (c) the reliance of participants on low-level visual features of the scene, 

by looking at the correspondence between fixation positions and visual saliency at such 

locations and (d) the tendency of participants to re-orient their overt attention towards the 

centre of the screen, by looking at the correspondence between fixation positions and a 

centre proximity map (see section Dependent Variables for formal definitions of these 

measures).  

In line with Damiano & Walther (2019), a high spread of the fixation distribution 

across a scene during its encoding, which indicates that it was widely inspected, should 

reflect a later better recognition. However, as the exposure to scenes from the same 

category increases (i.e., semantic interference) the representational fidelity of each 

individual scene decreases, and so we expect participants to attend more local regions in 

search for its potentially distinctive features. This suggestion would theoretically 

corroborate that the repeated exposure to the same visual scene is associated with a 

systematic reduction in the number of regions explored (see Althoff & Cohen, 1999 and 

Ryan et al., 2000 for an example using naturalistic scenes). This strategy may support the 

successful encoding of an image up to a certain level of semantic interference though. As 

fixation entropy is expected to drop due to semantic interference, it may reach the same 

level for scenes that will and scenes that will not be later correctly recognised, and so lose 

discriminative power.  

Semantic interference degrades the representational fidelity of individual instances 

by reinforcing their categorical overlap, and so we expect fixation duration to significantly 

increase to keep instances discriminable as a response. This prediction will conceptually 

align with the study by Ryan et al. (2007), showing that the repeated exposure to familiar 

faces resulted into progressively longer fixation durations; and connect with Loftus et al. 

(1992) showing that degradation, albeit in the perceptual domain, was associated to an 

increase in fixation duration in a long-term visual memory task. Moreover, as fixation 

duration is an index of processing effort (see Coco et al., 2020 for an example in the context 

of object-scene semantic integration), we expect it to be negatively associated with 

recognition accuracy, whereby the longer the average fixation duration is, the less likely 

the scene was efficiently encoded into memory.   

Moreover, if participants indeed search for potentially diagnostic features in scenes 

as semantic interference increases, they would rely more on low-level visual features of the  



Figure 1 

 
Figure 1: Visualisation of the experimental design, procedure and example images used in this study.  
 

scene, i.e., a higher correspondence between fixation position and low-level visual saliency. 

Building upon Isola et al. (2014), however, we do not expect low-level image features to 

significantly contribute on whether the scene will be later correctly recognised, or not.  

Finally, an increased tendency to re-centre gaze during the encoding of the scene may 

indicate that it was not exhaustively explored, and so, along with our prediction about 

fixation entropy (Damiano & Walther, 2019), we would expect it to be negatively 

associated with memory recognition, i.e., the greater the centre bias the poorer memory 

recognition. This may especially be true if fixation responses and centre-bias are analysed 

in tandem. Instead, if centre-bias is considered as independent from eye-movement 

responses, in line with Lyu, et, al., (2020), we would predict a lack of its association with 

recognition memory.  

 

Method 

Participants 

Twenty-five native English speakers (17 females, age = 21.95 ± 3.47 SD, range: 20-

36) with normal or corrected to normal vision took voluntarily part in the study. 

Participants’ sample size and number of trials were based on Konkle et al. (2010b), as our 

aim was to replicate as close as possible the original design, even if with a different memory 



paradigm, and so draw sounded comparisons between the original study and our results1. 

As the eye-movement data of 2 participants were not correctly acquired, they were 

excluded from these analyses (i.e., N = 23) and kept in for the analyses of their manual 

recognition responses. The Psychology and Research Ethics Committee of the University 

of Edinburgh approved the study before data collection, and all participants gave their 

written consent at the start of the experimental session.  

 

 

Material and Apparatus 

We selected 1,488 naturalistic images from SUN database (Xiao et al., 2010) with a 

minimum of 550 x 550 pixels resolution and which did not include animate objects like 

humans or animals. All images were cropped and rescaled to 800 x 800 pixels to collect 

finer-grained eye-movement responses, and were equally drawn from one of twelve 

categories, six human-made environments (i.e., amusement park, bathroom, gas station, 

highway, kitchen, library) and six natural environments (i.e., beach, desert, field, forest, 

mountain, river). Miniatures of all scenes by category are reported in Appendix A and with 

a greater resolution in the Supplementary Materials2 (S1).  

Images (800 x 800 pixels) were centrally presented on a black background at their 

resolution3 with a 19'' Dell Monitor (16.2-inch x 7.2 inch) screen resolution of 1920 x 1024 

and set at a viewing distance of ~60 cm. Eye-movement data was recorded binocularly 

using a Gazepoint GP3 HD eye-tracker sampling 150Hz. The experiment was built on 

OpenSesame 3.1.9 (Mathôt et al., 2012) and the acquisition of eye-tracking data made 

possible through the PyGaze Python plug-in (Dalmaijer et al., 2014). Each participant was 

calibrated on a 9-points, and recalibrated if necessary. The mean degree of visual angle 

deviation accepted for the calibration was 0.37 degrees on the x-axis (SD = 0.15) and 0.53 

degrees on the y-axis (SD = 0.29). 

 

 

 
1 The power and p-value in 100,000 simulated experiments based on the same number of conditions and participants of 
our study show that it is possible to detect a significant effect with a power above .3 assuming a p-value < 0.05, which 
should minimize the chance of incurring into Type 2 errors. 
2 The full stimuli dataset will be made available upon request. 
3 Images were not scaled to fit the display dimensions. 



Procedure 

Participants were administered the WASI-II test of intelligence4 (Wechsler, 1999) 

at the start of each session (Full Scale = 117.79 ± 10.25; 97-140) and then completed a 

long-term visual memory task which assessed their recognition accuracy using an old/new 

approach (see Figure 1 for a visualisation of the experimental design). Each participant 

watched a stream of 372 images, each presented for 3 seconds with 800ms fixation 

crosshair inter-trial, during encoding. After a short 10 minutes break, she/he was tested on 

744 images, presented one-by-one. Half of these scenes were the 372 images seen during 

the encoding phase and the remaining 372 were novel scenes. They were asked to indicate 

whether they remembered or not the image using the keyboard (> yes; < no). The image 

was visible until a recognition response was made. To implement the semantic interference 

manipulation, we varied the frequency of images of each semantic category that 

participants were exposed to. In line with Konkle et al. (2010b), we varied SI in 4 levels 

(4, 20, 40 or 60 images per category). The total of 1,488 scenes was obtained by selecting 

124 unique scenes for each of the 12 different categories (124 * 12), which is the number 

of images needed to cover all 4 levels of semantic interference, distributed across 8 

randomization lists. Each level of interference was distributed in each list to 3 different 

categories (4 * 3) and all 4 levels of interference were counterbalanced across semantic 

categories by rotating such levels onto 4 different lists (e.g., if the kitchen category had an 

SI of 4 in list 1, the same category had an SI of 20 in list 2, an SI of 40 in list 3 and of 60 

in list 4). Four additional lists were created by swapping old with novel scenes between the 

encoding and the recognition phase to ensure that all scenes were seen in both conditions. 

Images from each semantic category and level of interference were randomly assigned to 

the lists making sure that they were never repeated within each list. Images in both phases 

of encoding and recognition were presented in randomized order, i.e., we did not block 

images sharing the same semantic category to appear contiguously, and equal frequency 

per semantic category (e.g., for 20 kitchen images in the encoding phase, there were 20 old 

and 20 novel kitchen images in the testing phase). The experimental session took 

approximately 2 hours. 

 

 
4 WASI-II was administered as pedagogical training for the undergraduate students who helped us with the data 
collection. As this test did not show any significant link with the long-term visual memory study, we only reported the 
full-scale score for completeness.     



Analyses 

Data exclusion 

Of the 18,600 recognition trials (25 participants × 744 recognition trials), we excluded 393 

trials (2.11%) with a response time either faster than 1% or slower than 99% of all trials as 

separately computed independently per participant. The number of recognition trials 

analysed was 18,207 (an average of 728.28 ± 1.4 per participant). On 8,556 encoding trials 

(23 participants × 372 encoding trials), we excluded 255 trials (2.98%) because most 

fixations were out-of-range (i.e., bad eye-tracking), and a further 389 trials (4.54%) which 

had an average fixation duration (164), total number of fixations (48) or a subsequent 

recognition response time5 (177) below 1% or above 99% of their respective distributions. 

Thus, the number of encoding trials analysed was 7,942 trials (an average of 345.3 ± 28.17 

per participant). 

 

Independent variables 

The key independent variable of this study is SI, which was manipulated in the design 

as frequency of scenes belonging the same semantic category (i.e., 4, 20, 40, 60), and 

incrementally administered to participants during the entire experimental session (i.e., from 

1 to 60 during encoding and from 1 to 120 in the recognition phase, which were the 

maximum number of scenes belonging to the same category that could be seen in either 

phase). We treated SI as a continuous variable6 to capture its incremental impact on 

recognition accuracy and oculo-motor responses on a trial-by-trial basis (refer to 

Supplementary Material S2 for a visualization of this measure) and standardised it into z-

scores to minimize convergence issues (e.g., co-linearity) when it was introduced in the 

regression.  Image novelty (old and new, set as reference level) was another independent 

variable that we included in the analyses of recognition accuracy to distinguish between 

hits and correct rejections. The last independent variable included in the analysis of eye-

movement at encoding was the recognition accuracy of old scenes, which made possible 

to differentiate oculo-motor strategies that support effective (vs. ineffective) memory  

 

 
5 Recognition accuracy was used as predictor in all eye-movements models, and so if the response time were unrealistic 
then the associated response accuracy would also be unreliable, hence motivating the exclusion of these trials in these 
analyses. 
6 The post-hoc analysis showed corroborating results when SI was introduced in the analysis as a categorical variable, 
although its effect became weaker. 



processes. This independent variable was also scaled prior to entering it in the regression 

to minimize co-linearity with the other predictors.   

 

Dependent variables 

Manual responses: Recognition accuracy is a binomial variable which indicates 

whether a scene was correctly remembered as already seen (old) or rejected as novel (new). 

Following Konkle et al., (2010a), we also fit a general linear model (binomial link) 

predicting recognition accuracy as a function of SI independently for each participant, and 

separately for old and new trials. In this way, we derived the interference slope (i.e., the 

beta coefficient associated with SI), which reflects how much was the recognition accuracy 

of each participant impacted by increasing interference for scenes she/he already viewed 

(old) or had never seen (new).  Negative coefficients indicate that recognition accuracy 

decreased when semantic interference increased. In Appendix A, we report additional 

analyses of d-prime and criterion to explore how was the signal (hit) discriminated from 

the noise (false-alarm) by the participants of our task, whether they adopted a conservative 

or a liberal strategy, and examined the impact of semantic interference on both. Finally, 

from the recognition accuracy we obtained the intrinsic memorability of our images. We 

used the method by Isola et al., (2014) and computed the Spearman correlation between the 

recognition accuracy of each individual scene (as hits) in two randomly split sets of 

participants, and iterated this procedure 50 times to avoid that findings may spuriously 

relate to a precise random selection of the participants’ split. 

Eye-movement responses: As we were mainly interested in how the initial patterns 

of scene exploration related to memory formation, we only considered eye-movement data 

of the encoding phase in this analysis. Raw eye-movement sample were parsed into 

fixations and saccades using the I2MC algorithm by Hessels, Niehorster, Kemner, and 

Hooge (2017), implemented in MATLAB, which is suited to low-resolution data.  

From fixation events, we computed four dependent measures: (a) the average fixation 

duration of all fixations in a trial to index processing effort, (b) the entropy of the spatial 

spread of fixations to get at global patterns of scene exploration, (c) the Normalized 

Scanpath Saliency (NSS, Peters et al., 2005) to tap into the attentional guidance provided 

by low-level visual features of the scene and (d) the NSS score between a centre proximity  

 



Figure 2 
 

 
 

Figure 2. Examples of attention maps with a high and low fixation entropy (left column, right column) when images 
were encoded at a high or a low level of semantic interference (top-row, bottom row). On each panel, we present the 
attention map as an heatmap (left) and as a 3D landscape to better visualize how Gaussians were fit to fixation position 
and their height scaled by fixation duration. In bracket, we report the fixation entropy obtained from each attention map.  

 
map and fixation positions to examine the tendency of our participants to re-centre their 

gaze.  

To compute (b), we first built a fixation probability map of each trial by placing at 

fixation coordinates, Gaussian kernels with a bandwidth set at 1 degree of visual angle 

(roughly 27 pixels) to approximate the size of the fovea. The height of the Gaussian was 

weighted by the proportion of time spent fixating at that location to better integrate 

differences in the amount of overt attention deployed across the scene. Then, the entropy 

of the resulting fixation map was calculated as -∑ p�Sx,y�log2x,y p�Sx,y�, where p�Sx,y� is 

the normalized fixation probability at the coordinates of the fixation (x, y) in the scene S 

(see Castelhano et al., 2009; Coco & Keller, 2014 or Henderson, 2003 for related 

examples). Thus, the higher the fixation entropy, the more spread out fixations across the 

scene are. In Figure 2, we visualize four example heatmaps of fixation distributions in low 

vs. high entropy organized as columns and low vs. high interference organized as rows and 

report the value of fixation entropy for each map.  

The NSS score (c) was instead obtained by first computing a visual saliency map of 

each scene using the Fast and Efficient Saliency model (FES, Tavakoli et al., 2011), where 



saliency is estimated from contrasts of local features (centre-surround) in a Bayesian 

framework and central bias in eye movement responses taken into account by using an 

average fixation map. Then, saliency maps were normalized to have zero mean and unit in 

standard deviation, and saliency values at fixation positions of each trial extracted and 

averaged to the NSS score (refer to Bylinskii et al., 2019 for the implementation we used). 

NSS is invariant for linear transformations and positive scores indicate above chance 

correspondence between fixation positions and visual saliency of the image.  

Finally for (d), we created a centre proximity matrix (800 x 800 pixels) by first 

calculating the Euclidian distance of each pixel with respect to the centre pixel, then 

normalizing this distance map to range between 0 and 1 and inverting it (see Hayes & 

Henderson, 2020). As a second step, we computed the NSS score between fixation 

positions and the centre proximity map for each scene and each participant. Note, this 

approach differs from Lyu et al., (2020) and Hayes & Henderson, (2020), as we only used 

the centre proximity map to isolate the tendency of viewers to re-centre their gaze, 

independently of any other low-level features of the scene. See also Supplementary 

Material S4, replicating the approach by Lyu et al. (2020), and confirming: (1) a lack of 

association between centre bias and memorability when eye-movement responses are not 

taken into account and (2) a clear effect of visual saliency on memorability with, and 

without, weighting the saliency maps by centre bias when eye-movement responses are 

instead integrated in the analysis.  

 

Inferential statistics 

We used linear mixed-effects models (LMM) and generalized linear mixed-effects 

models (GLMM) as implemented in the lme4 package in R (Bates et al., 2015) to conduct 

the statistical analyses of our dependent measures. The fixed effects of our models, i.e., our 

independent variables, were introduced as main effects as well as in interaction. The 

random effects were Participant (23) and Scenes (1,488), which were nested into their 

respective Categories (12) and introduced as intercepts. In the table of results, we reported 

the beta coefficients, t-values (LMM), z-values (GLMM), and p-values for each model. 

The level of significance was calculated from an F-test based on the Satterthwaite 

approximation to the effective degrees of freedom (Satterthwaite, 1946), whereas p-values 

in GLMMs were based on asymptotic Wald tests. Interference slopes were instead analysed  



Figure 3: 

 
 
Figure 3: Recognition accuracy. (A) Percentage recognition accuracy (y-axis) as a function of Semantic Interference (a continuous 
variable ranging from 2 to 120, z-scored) grouped by the Image Novelty (new scenes, green circles; old scenes, yellow triangles). 
Each individual point represents the average across participants and trials for that level of interference. Lines indicate the estimates of 
a linear model fit to the data and the shaded bands represent the 95% confidence intervals. We mark 50% recognition accuracy in the 
plot using a dotted line. (B) Percentage recognition accuracy (y-axis) as a function of the Interference Slope (x-axis), calculated by 
fitting a general linear model of recognition accuracy (binomial link) as a function of Semantic Interference at testing (z-scored) 
independently for each participant. Each point in the plot represents an individual participant for the two levels of Image Novelty 
(new scenes, green circles; old scene, yellow triangles). We mark with dotted lines the 50% recognition accuracy and when 
interference slope is 0, i.e., semantic interference has no effects on recognition accuracy.    
 

 

using general linear models because they were obtained from by-participant linear 

regressions (i.e., we have no random effects, see section Dependent Variables). We 

predicted recognition accuracy, expressed as a probability, as a function of the interference 

slope separately for old and new trials to examine whether semantic interference was 

stronger in any of these two conditions. These models will be directly reported in the text.  

 

Results 

 

Recognition Accuracy and Interference Slope: We found significant main effects of SI 

and image novelty. The higher the SI, the worse the recognition performance was. New 

images were more likely to be correctly rejected as not seen, than old images being 

correctly recognized as seen. Interestingly, we observed a significant interaction between 

SI and image novelty, such that the effect of semantic interference was stronger for old than 

new images (refer to Figure 3A for a visualisation and Table 1 for the model coefficients). 

This interaction is substantiated by recognition probability being significantly predicted by  
 



Table 1: 

 
  Response Accuracy 

Predictors Estimates SE z-value 

(Intercept) 1.47 0.11  13.97*** 

SI -0.08 0.03 -2.96** 

Image Novelty -1.51 0.04 -42.14*** 

SI × Image Novelty -0.09 0.04 -2.68** 

(*) p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table 1. Generalised linear-mixed model of recognition accuracy (a binomial variable; 0 = Incorrect, 1 = Correct) as a 
function: Semantic Interference (a continuous variable, 1-120, z-scored) and Image Novelty (Old, Novel; with Novel as 
the reference level). Random intercepts included in the model are Participant (25) and the Scenes (1,488), which are 
nested into their respective Categories (12). 
 

interference slopes only in old trials [β = .3, t(24) = 2.53, p = .02] compared to new trials 

[β = .15, t(24) = 1.67, p = .11], which corroborates that the effect of SI was more prevalent 

for images previously seen (see Figure 3B for a visualisation). When looking at the intrinsic 

memorability of our images, we confirmed that there is a significant correlation between 

the split halves (rs = .2, p < 0.001), i.e., there is consistency in the images that are better 

remembered, but the strength of our correlation was much weaker than the one originally 

reported (rs = .72, p < 0.001; refer to Isola et al., 2014). 

 

Fixation entropy7: The spread of fixations, indexed as entropy, was significantly greater 

for images that were later better recognized. Most importantly, entropy significantly 

decreased as a function of SI, and the slope of this decrease was steeper for images that 

were better recognised (refer to Figure 4A, Table 2 for the model coefficients and to 

Supplementary Material S3 for additional visualisations).  

 

Average fixation duration: Fixations had a significantly shorter duration in images that 

were subsequently correctly recognized compared to those that were not (Table 2). Again, 

we observed a significant main effect of SI, whereby the duration of individual fixations 

increased as SI also increased (refer to Figure 4B, and inferential results in Table 2). 

 

 
 

7 We also examined number of fixations, which correlates with fixation entropy (r = 0.76) and found a very similar 
pattern of results.  



Figure 4: 
 

 
Figure 4. Eye-movement measures during the encoding of images as a function of Semantic Interference (a continuous 
variable ranging from 1 to 60, z-scored). (A) Entropy of the distribution of fixations across the image, (B) Average 
fixation duration in milliseconds, (C) Normalized Scan-Path Saliency score and (D) Normalized Scan-Path for central 
bias. Each individual point represents the average of each dependent measure across participants for that level of 
interference, and distinguishing images that were later correctly recognised (blue circle, solid line) or not (red triangle, 
dashed line). The lines indicate the fit of linear regression models with 95% confidence interval represented as shaded 
bands. 

 

Table 2: 

  Fixation Entropy Fixation Duration (ms) NSS (fixation/saliency) NSS (fixation/centre bias) 

Predictors Estimates SE t-value Estimates SE t-value Estimates SE t-value Estimates SE t-value 

(Intercept) 10.43 0.03 356.59*** 313.32 4.12 76.09*** 0.93 0.05 18.77*** 0.95 0.05 28.93*** 

SI -0.03 0.004 -6.49*** 2.43 0.7 3.54*** 0.01 0.007 2.08*  0.01 0.005 1.52 

Accuracy  0.04 0.004 10.73*** -3.86 0.73 -5.29*** -0.03 0.006   -5.05*** -0.05 0.005 -10.38*** 

SI:Accuracy -0.01 0.004    -2.11* -0.06 0.7    -0.08 0.008 0.006     1.4  0.01 0.005 0.94 

(*) p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 
 
Table 2. Linear-mixed model outputs for fixation entropy, average fixation duration, normalized scan-path saliency and 
normalized scan-path for centre bias as a function: Semantic Interference (a continuous variable, 1-60, z-scored) and 
recognition Accuracy scaled to reduce collinearity (Incorrect = -1, Correct = 1). Random intercepts included in the model 
are Participant (23), and the Scenes (1,488), which are nested into their respective Categories (12).  



NSS (fixation/saliency): The correspondence between fixation position and low-level 

visual salient regions of the scene was also significantly related to the memorability of the 

scene and it was impacted by semantic interference. NSS was significantly lower for later 

correctly recognized scenes, and higher for increasing SI (refer to Figure 4C and Table 2).   

 

NSS (fixation/centre bias): The higher the correspondence between fixation locations and 

the centre proximity map during the encoding of the scene, the less likely it would be that 

a scene is later correctly recognized. We did not find any significant main effect of semantic 

interference, nor this factor interacted with memory recognition (refer to Figure 4D and 

Table 2)8. 

 

Discussion 

 The concept of interference has played a pivotal role in the theories of memory since 

its very beginning (e.g., McGeoch & McDonald, 1931; Müller & Pilzecker, 1900; Skaggs, 

1933), and helped framing the processes that may hinder, or aid, the formation and access 

of information in memory (e.g., mental activities, Cowan et al., 2004, or competition 

between stimuli sharing content, Craig et al., 2013). Similarity-based semantic interference 

of visual information, operationalised as the frequency of images (or objects) belonging to 

the same category that participants are asked to memorise, for example, was shown to be 

detrimental to recognition processes: the higher the semantic interference, the poorer the 

recognition performance (Konkle et al., 2010a, 2010b). Most importantly, the information 

we store in memory is acquired through our senses and so, memory for different types of 

stimuli (e.g., words or images) is known, for example, to be linked to eye-movement 

responses (see Hannula, 2018 or Ryan & Shen, 2020 for reviews).  

The core objective of the current study was to provide empirical links between the 

detrimental effect of similarity-based semantic interference on long-term visual memory 

and the patterns of overt attention deployed as scenes are studied to be later recalled. On 

recognition accuracy, we replicated using an old/new paradigm the effect of SI found by 

Konkle et al., (2010b) on a 2AFC, i.e., the higher the SI, the worse the memory performance 

 
8 We re-used the centre proximity map weighting FES maps to compute the NSS correspondence between such a map 
and fixation positions. We corroborated the same result shown in the main text using the weight matrix by Hayes & 
Henderson, 2020: a greater tendency to inspect the centre of the display was associated with worsen memory 
recognition (β = - .05, SE = .001, t = - 8.95, p < .001).   



is. The use of a different paradigm allowed us to discover that recognition accuracy for 

images seen during encoding (i.e., old scenes) was lower than accuracy for novel images; 

and most importantly that the detrimental effect of SI on old scenes was significantly 

stronger than on new scenes (refer also to the analysis of interference slopes). This result 

confirms that old/new paradigms probably tap into different recognition mechanisms than 

2AFC (i.e., recollection more than familiarity, Cunningham, Yassa, & Egeth, 2015), and 

that interference mostly disrupt existing memory representations. It is important to note 

that even if participants could successfully discriminate the signal over the noise, they 

became more conservative in their responses as semantic interference increased, i.e., they 

required substantial evidence before making an “old” judgment (see Appendix A for 

additional analyses of d-prime and criterion). This is in line with prior work showing that 

when distractors are highly similar to targets (Benjamin & Bawa, 2004) or scenes are 

familiar (Dobbins & Kroll, 2005), as it was the case in our study, a more conservative 

criterion is used.   

When looking at the intrinsic memorability of images in our task (Bainbridge, 2020), 

we find it to hold, even though weaker than originally reported (Isola et al., 2014). We 

qualitatively interpret this comparison as indicating that despite scenes may be intrinsically 

memorable, the effect of semantic interference in our design reduced their individual 

discriminability.  

Eye-movement measures demonstrated that four key components of fixation 

responses (overall spread, average duration, their correspondence with low-level visual 

saliency and with central bias) during encoding of images, systematically related to 

memory formation and were impacted by semantic interference. On patterns of global 

exploration, measured as entropy of fixations’ spread across the scene, we observed 

exploration to become more selective as SI increased. This result parallels the evidence that 

being exposed to the same scene induces a reduction in the number of visited regions (Ryan 

et al., 2000). As the fidelity of visual memory representations decreases due to SI, overt 

attention focuses to local regions of scenes in search for distinctive details that could boost 

their individual memorability. However, this switch from global to local processing may 

be an indicator of disrupted memory processes (Macrae & Lewis, 2002). Indeed, in our 

study, the wider a scene was explored, the more likely it was later successfully recognized 

(see Damiano and Walther, 2019, for corroborating findings). Of note, the shrinkage of 



fixations to more local regions due to semantic interference was stronger for correctly 

recognized scenes (i.e., two-way interaction SI × Accuracy). We argue that as semantic 

interference deteriorates memory recognition, it pushes fixation entropy of subsequently 

recognized scenes to approximately the same level of scenes that are later forgotten (see 

Figure 4A).  

The average duration of fixations, an index of cognitive effort to acquire visual 

information, was longer for later forgotten scenes, and increased as semantic interference 

also increased. This result resembles the finding of increased fixation durations to repeated 

exposure of the same stimulus (e.g., Ryan et al., 2007), and conceptually links with the 

evidence of increased fixation duration in perceptually degraded images (Loftus et al., 

1992). In practice, as the conceptual overlap between images grows due to semantic 

interference, i.e., they become more and more similar, a greater allocation of overt attention 

is required to accrue more information at each fixation that can in turn be used to make 

each individual image more distinct. Greater attentional effort, however, also implied lower 

recognition accuracy. Literature on object-scene integration shows that objects violating 

the contextual fit of the scene (e.g., a toothbrush in a kitchen) require longer fixations as 

are harder to be integrated (e.g., Coco et al., 2020 for recent behavioural and neural 

evidences). So, if fixation duration indexes more complex processing, it may also point at 

encoding difficulties, and hence explain why its increase may be associated with worse 

recognition accuracy.     

We also examined the reliance of participants to low-level features of images as 

evidence of strategic compensation to increasing semantic interference. Here, we found 

that indeed overt attention was allocated more frequently to regions of the images that were 

rich in low-level features as semantic interference increased. This result is intriguing 

because it points at a reduction in top-down control due to the increase in content overlap 

of the images, and a shift towards bottom-up stimulus driven control, as usually observed 

in free-viewing tasks (Parkhurst et al., 2002). However, attending to low-level features of 

the image, in general, was detrimental to its later recognition (see main effect of Accuracy).  

A similar negative impact on recognition memory was observed when examining the 

tendency of observers to re-orient their gaze towards the centre of the display (e.g., Tatler, 

2007). We found that a greater focus of overt attention to the centre of display during scene 

encoding indicated a worsen later recognition. This result corroborated our observation 



with fixation entropy, whereby a reduced exploration implied worse recognition accuracy 

and it confirms that scene exploration is key to the successful encoding and later retrieval 

of visual information from memory.  

Previous attempts to link the visual saliency of images, or other low-level oculo-

motor mechanisms such as the tendency to re-centre gaze, to their memorability had shown 

a lack of significant association (e.g., Isola et al., 2014; Lyu et al., 2020). A possible 

explanation of this discrepancy may relate to the fact that these studies have explored the 

relation between visual saliency, or centre-bias, and memorability without taking directly 

into account the associated eye-movement responses. In fact, when replicating the analysis 

by Lyu et al., 2020 of centre-bias, which does not include eye-movements, we confirm it 

not to be significantly associated with recognition memory. Instead, when we modeled the 

correspondence between fixation positions and GBVS maps, with (and without) centre bias 

adjustment, we confirmed a highly significant association between low-level visual 

saliency and recognition memory (see Supplementary Material S4, for greater details). 

Thus, we contribute to these previous findings by showing that the role played by low-level 

features on image memorability may be better accounted for when investigated relative to 

overt attention. However, as the study by Hayes & Henderson (2020) points out, low-level 

visual saliency and centre bias are often confounded, and so more accurate predictions of 

overt attention during scene viewing can only be obtained when the latter is used to adjust 

the former. We acknowledge that more research is needed to elucidate the patterns of 

interaction between different oculo-motor responses in face of semantic interference and in 

relation to memory recognition. One potential approach would be to compare the 

predictability of memory recognition of different models including a variety of oculo-motor 

responses (e.g., centre bias, fixation entropy, etc.) and evaluate the contribution of each 

model parameter to prediction performance (see also Coco & Keller, 2014 for an example 

application).   

Another point of caution in the results of the current study is that recognition accuracy 

for old scenes was rather low, even at low-level of interference, which may cast doubts on 

how informative eye-movement measures really are about memory processes that were 

inherently weak. It is important to note that we only considered eye-movement responses 

collected during encoding, and in this phase, the mechanisms of explicit memory 

recognition were not yet at work. Moreover, a significant main effect of semantic 



interference on eye-movement responses was observed regardless of whether participants 

successfully recalled, or not, the scenes. Thus, even though, memory for old images was 

surprisingly poor, we doubt that this may have had any important repercussion to the effects 

of semantic interference on the oculo-motor responses reported here.     

In sibling research, we investigated whether the effect of semantic interference is also 

observed in a healthy older population, and especially, whether this mechanism may be 

impacted by neuro-degenerative diseases (Coco et al., 2021). Results showed corroborating 

effects of semantic interference on recognition accuracy in the healthy older group, which 

are, however, significantly reduced in people with Mild Cognitive Impairment. We also 

replicated similar patterns of eye-movement responses, such as the decrease of fixation 

entropy and the greater reliance on low-level visual saliency for increasing semantic 

interference at encoding, while also showing subtle oculo-motor compensatory strategies 

in the MCI group.   

An outstanding question that germinates from this study regards the interplay 

between low-level and high-level features of scenes. In fact, even though two images of a 

kitchen may belong to the same semantic category, they may be very different in terms of 

their perceptual features or configurational statistics of the objects they are made of. So, 

future research should aim at developing computational measures, and novel paradigms, 

that can better disentangle the contribution of these two components in memory 

interference. 

In sum, our findings of systematic links between overt attention and memory 

mechanisms during high-level cognitive processing support the centrality of the oculo-

motor system on memory formation (e.g., Chun & Turk-Browne, 2007; Ryan et al., 2020), 

calling for more integrative research between attention and memory.  
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Figure 1A: 
 

 
Figure 1A: D-prime (left-panel) and criterion (right-panel) as a function of semantic interference at testing (a continuous variable 
from 1 to 120). Each individual point is the average across participants for that level of interference. Lines indicate the estimates 
from a linear model fit to the data and the shaded bands represent the 95% confidence intervals 
 

Appendix A 

D-prime and Criterion. 

In this analysis, we tested whether participants were able to discriminate the signal from 

the noise using d-prime, while using criterion to determine the direction of participants’ 

choices in case of uncertainty. We also examined whether the effect of semantic 

interference was confirmed by these two measures. We found a d-prime significantly 

above 0, which indicates that participants’ performance was not at random. The 

criterion showed that participants were conservative (i.e., greater tendency to respond 

“no” rather than “yes”) explaining the higher rate of correct rejections (i.e., accurate 

responses for the novel scene) than hits (i.e., accurate responses for old scenes). On 

both measures, we found a significant effect of semantic interference whereby the 

higher the SI, the smaller the d-prime and the higher the criterion (see Figure 1A and 

Table 1A for a visualisation and model coefficients).  

 

 

 



Appendix B 

Visualization of the miniatures of all scenes used in this study organized by semantic category. 

We refer the reader to Supplementary Material S1 for another version of this visualization with scenes 

displayed at a higher resolution. 

Figure 1B 

 

Figure 1B. Miniatures of all scenes used in this study organised by semantic category.  


