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Abstract—For optimal healthcare management and counter-
measures, it is essential to monitor and predict severe disease
at the right time, before it becomes pandemic. In this research
work, the most recent pandemic is considered as an example, as
the viral coronavirus disease (COVID-19) prognosis is crucial to
learn from. The severe COVID-19 threat has had a substantial
influence on the global health security scene, forcing the creation
of cutting-edge computer models to improve monitoring, control,
and mitigation measures. The research study aims to develop a
generalized model assessing the healthcare parameters at a per-
sonalized and community dimensions and predicting the severity
of the disease before becoming pandemic. To achieve this aim,
this paper has systematically evaluated the outcomes of different
experiments utilizing the ResNet, DenseNet, and ensemble models
using a variety of performance criteria. The ensemble model con-
sistently demonstrated superior performance across all metrics,
exhibiting an accuracy and fl-score of 97 %. In comparison, the
DenseNet model earned an accuracy and fl-score of 93%, while
the ResNet model achieved an accuracy of 89% and a f1-score of
88%. All models in this paper demonstrated promising accuracy
and the potential to aid in COVID-19 prediction. Chest x-ray
images were employed to experiment the computational models
of accurately predicting the disease. Such experiment allows us to
have a better understanding of the advantages and disadvantages
of various computer models for predicting sever disease, which
will help create more precise and effective prediction systems for
any medical condition. The achieve result highlights the efficacy
of ensemble techniques for exploiting the synergistic benefits of
multiple models. The knowledge gained from this study aims to
go beyond the theoretical sphere and expand its influence into
the real world of hospital administration.

Index Terms—Healthcare Management, CNN, Deep Learning,
Ensemble, AL

I. INTRODUCTION

One of the most contagious illnesses in human history, and
more significantly in the twenty-first century, is COVID-19.
The World Health Organization (WHO) formally labeled this
lethal illness a pandemic after it had worldwide economic,
social, and environmental effects on everyone in the world
in recent years [1]. To be able to implement healthcare and
epidemical treatment plans, accurate disease prediction is now
more important than ever thanks to COVID-19. This research’s
goal is to provide thoughtful, well-reasoned responses to
pressing problems by thoroughly examining the computational
models now in use for the precise forecasting of COVID-19.
This research will shed light on the benefits and drawbacks
of these carefully chosen models by contrasting their perfor-
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mances over a wide variety of criteria and indicators. This
study will offer a convincing body of work supported by facts
gathered during this journey, so to speak, in finishing this
study by carefully examining their approaches, architectures,
structures, layers, and datasets. By integrating the strengths
of diverse algorithms and datasets, deep learning approaches
have recently demonstrated considerable promise in improving
the performance of disease prediction models. The number of
computer models for COVID-19 prediction has increased, but
this has also resulted in a lack of comprehensive, in-depth
examination and comparison of the models’ performance.
Many of the models were developed independently using
various techniques, datasets, and assumptions. It is now more
difficult to assess the usefulness, accuracy, and applicability
of these models in the real world due to this unexpected
segregation. Additionally, this field necessitates clear precepts
on the benefits and limitations of these computational models,
which makes it challenging for researchers and healthcare
practitioners to select the best model for each circumstance [2].
The rapid evolution of the COVID-19 also necessitates ongo-
ing evaluation and improvement of the current computational
models. To enhance the models’ predictive power, it is vital
to identify areas where they excel and those where they fall
short. Therefore, the issue is typically the lack of a thorough
knowledge of computational models for COVID-19 prediction.
Effective model application and design are hampered by this
information gap. This problem will be resolved and helpful
insights for enhancing prediction accuracy

will be produced by a thorough review of the benefits and
shortcomings of various computational models.

II. LITERATURE REVIEW

Using an unsupervised machine learning approach called K-
means clustering on the attributes or features that were highly
associated, Mujumdar et al. [3] conducted a study on the
prediction of diabetes. When it came to properties like blood
pressure and glucose level, which could not have empty or
zero values, certain entries had some missing and inconsistent
data. The data was also normalized using a scaling approach.
They then built the models and assessed their accuracy using a
variety of machine learning algorithms. Support Vector Clas-
sifier achieved an accuracy rate of 60%, followed by Random
Forest Classifier (91%), Decision Tree Classifier (86%), K-



Nearest Neighbor (90%), Gaussian Nave Bayes (93%), and
Logistic Regression (96%), which had the best accuracy. To
ensure evaluation at several stages to promote consistency, they
adopted a pipeline technique, which is relatively prevalent in
machine learning. Finding the elements that influence non-
diabetics to develop diabetes is the next goal for their research.

The study by Kablan et al. [4] evaluated the performance of
base and meta learner models in stacked ensembles for predict-
ing clinical outcomes, specifically severe cardiac events with
COVID-19, from in-hospital patient data. Machine learning
is used to analyze clinical data and predict patient outcomes.
Stacked ensemble models are created by combining different
base learners and meta learners. The results show that the
Generalized Linear Model, Multi-Layer Perceptron, and Partial
Least Squares meta learners have the highest performance,
while K-Nearest Neighbors has the lowest. Numeric data is
imputed after removing missing features. The methodology
is designed to accurately assess the performance of base
and meta learner models in stacked ensembles for clinical
outcomes.

Suet al. [5] found that the WOCLSA model, a deep learning
model combining Convolutional Neural Networks (CNN),
Long-Short Term Memory (LSTM), and Artificial Neural
Network (ANN) outperforms other models. The model uses
the Whale Optimization Algorithm to optimize parameters,
achieving high accuracy, precision, and recall in identifying
COVID-19 patients. The research involved 18 patient indica-
tors and the team suggests that future research should focus
on increasing the sample size of hospital patients to validate
the predictive performance of WOCLSA.

Convolutional neural network architecture, a subset of deep
learning known as CovXNet, was introduced by Mahmud et
al. [6]. The CovXNet technique divides the normal, Covid-19,
viral pneumonia, and bacterial pneumonia groups based on
the varied dilation rates applied to the chest X-ray pictures.
The training, transfer-learning, and testing parts were the three
key elements that made up the CovXNet methodology’s cogent
structure. In the transfer-learning phase, the CovXNet model
was updated by being trained once more on a smaller dataset
that included both positive and negative patient Covid images.
The training phase employed a dataset of negative patient
Covid images. The model was applied to predict the class
of X-ray images during the testing phase. The employment
of two fundamental architectural components known as the
shifter and residual units, which were required to distinguish
between the different classes, was a significant component of
this paradigm. The dataset used in this study was compiled
from medical facilities in China and Bangladesh and included
305 COVID-19 X-ray pictures as well as 1583 normal, 1493
viral, and 2780 bacterial pneumonia images. 90% of the time,
the model was accurate.

In their study, Badawi et al. [7] employed DenseNet201,
VGGI16, and VGGI19 as the foundational models for con-
ducting two distinct classifications: distinguishing between
COVID-19 and normal cases, as well as performing a three-
class classification including COVID-19, normal, and pneumo-

nia cases. The pre-existing models underwent modifications
through the incorporation of additional components, including
a flatten layer, average pooling layers, a dropout layer, and
a fully linked layers which replaced the original final lay-
ers. Their dataset, consisting of 15,000 photos divided into
COVID-19, normal, and pneumonia categories, was assembled
from 11 distinct sources. The model displayed outstanding
performance in binary classification using DenseNet201, with
training and validation accuracies of 98.02% and 94.66%,
respectively. The VGG16 model, on the other hand, performed
better than expected with a training accuracy of 99.3% and
a validation accuracy of 98.75%. Additionally, with training
and validation accuracies of 99.02% and 98.59%, respectively,
the VGG19 model produced impressive results. DenseNet201,
VGG16, and VGG19 each achieved accuracy levels of 91.97%,
95.48%, and 94.96% for the multi-class classification chal-
lenge.

III. METHODOLOGY

A. Data Description

A diverse range of data sources were combined to create a
robust dataset that proved useful for COVID-19 prediction. For
a precise and efficient e xamination o f C OVID-19 prediction
models, the collecting of chest X-ray pictures from several
data sources was essential [8]. A sample of the images used
can be seen in Figure 1 and 2. To ensure variation and a sense
of representativeness in the dataset, various data sources and
medical constituencies were used [9].

1) National Institutes of Health - Clinical Center: Some
chest X-ray images were retrieved via vetted resources
such as the NIH chest X-ray collection [10]. The dataset
consists of two distinct classes, encompassing a total
of 1,327 CT images and 263 Chest X-Rays text-mined
samples that have been labelled as positive for COVID-
19.

2) Kaggle: This well-known data science and analysis site
gave users access to datasets with chest X-ray pictures
pertinent to COVID-19 cases, which were thoroughly
investigated [11]. The dataset has three unique cate-
gories, including 137 photos of COVID-19 and a total
of 317 images comprising Viral Pneumonia and Normal
Chest X-Rays. These images are organised into separate
directories for testing and training purposes.

A range of chest X-ray pictures particularly collected for
COVID-19 prediction make up the dataset used for the models.
To facilitate later comparison, all the models were trained on
the same set of data. A total of 2000 chest X-ray pictures
collected from various sources make up the collection. To
improve the robustness and generalizability of models, a wide
variety of COVID-19 examples were offered by the images
chosen. A subfolder of normal and COVID-19 instances from
the dataset was fed into the models for training before being
randomly assigned to test and validate them.
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Fig. 1. Sample chest X-ray images Datset 1 [11]

Fig. 2. Sample CT and chest X-ray images Dataset 2 [10]

B. Data Preprocessing

Preprocessing measures were conducted to produce industri-
ally approved standard chest X-ray pictures, which was more
critical given the utilization of various data sources, to ensure
data quality and integrity, which was required for an impactful
and accurate analysis.

« Image Cleaning and Enhancement: To preserve the in-
tegrity and uniformity of the dataset across the board.
A rigorous denoising, image-enhancing, and sharpening
process was necessary for some photos.

» Image Standardization: Having a constant resolution of
the photos to speed up model training is a typical ap-
proach in data science and analysis, which we also used.
Grayscale conversion was required due to this uniformity
requirement, which increased the computing effort.

« Augmentation: Data augmentation, which includes rota-
tion, flipping, and zooming to mention a few, is another
popular and useful strategy to prevent overfitting of the
models on the dataset [12].

« Normalization and Anomaly Detection: The pixel inten-
sity normalization method was required to provide uni-
form pixel values across all photos. Additionally, anomaly

detection was required to remove potentially false data.

« Data Balancing: It has been demonstrated that a balanced
dataset is advantageous for model training, which helps
the model avoid biases during the testing phase.

» Resizing: To establish a consistent dimension scaling
and eliminate computational model mistakes caused by
varying image resolutions, the dataset’s photos needed to
be resized.

The photos were treated to standardized preprocessing pro-
cesses before the data was utilized as input for the computa-
tional models to ensure compatibility and uniformity.

C. Model Design

1) Model Selection: For accurate and thorough examina-
tion of a variety of computational models for the reliable
forecasting of COVID-19, the choice of appropriate compu-
tational models is of the utmost importance. We looked at
several computational model types, but we ultimately chose
to employ pretrained deep learning models as they can be
used as a starting point because they have previously learned
and retrieved effective and useful features. The ResNet and
DenseNet models are the base models used in this paper for
the following reasons.

e CNNs, or convolutional neural networks: Convolutional
neural networks will be a crucial component of this study
because they are appropriate for picture classification and
analysis projects [13]. Diverse models and architectures,
including ResNet and Inception architectures, will also
be assessed. DenseNet is a deep convolutional network
with several layers.

» Transfer Learning: Convolutional neural networks that
have already been trained, especially those that have
been pretrained on ImageNet, will be fine-tuned on chest
X-ray pictures [14], allowing models to use significant
features discovered from datasets to enhance performance
in prediction.

« Ensemble Models: The performance of models in the
prediction of COVID-19 can be improved by combining
numerous convolutional neural network models, as shown
by an analysis of ensemble methodologies.

« Pretrained Models: Traditional pretrained learning models
like ResNet and DenseNet will be used to create a base-
line for comparison because they are extremely relevant
for image classification tasks.

In the context of transfer learning, the entire procedure
includes utilizing a model that has already been trained for
one segment to tackle a related issue. To do this, the pre-
trained models’ architecture must be modified to fit the new
task at hand.

Once the data cleaning and model selection procedures have
been accomplished, the training and testing of the models can
be viewed. The complete process of creating the model is
depicted in its entirety in Figure 3.
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Fig. 3. Model Flowchart

D. Performance Evaluation

1) Evaluation Metrics: The effectiveness of the imple-
mented computational models for COVID-19 illness prediction
will be evaluated utilizing a comprehensive and detailed set of
assessment measures and the dataset of chest X-ray images.
These metrics will facilitate the creation of analyses and
insights into many facets of model performance and will also
be applied subsequently to carry out a comparative analysis.

« Accuracy: One of the measures used for evaluation will

be the models’ accuracy, which will show the proportion
of instances in the dataset that were properly predicted
out of all instances. This explains how we should evaluate
and understand the model’s overall accuracy.

(TP +TN)
(TP+FP+TN +FN)

« Specificity and Sensitivity: These metrics are frequently
combined because they exhibit tradeoffs that can be seen
in the model and are associated. Sensitivity, which is
sometimes referred to as recall, tells us how well the
model can identify COVID-19 positive cases among the
overall positive cases. On the other hand, specificity
accomplishes the opposite because it tells us whether the
model accurately distinguishes COVID-19 negative cases
from the overall negative cases.

Accuracy = (1)

TP
TN
Specificty = (7 1) ®

« Precision and F1 Score: The precision evaluation metric
measures the percentage of correctly predicted instances
among all the postulated cases. This is particularly essen-
tial when there are a lot of false positives. The F1 score

where beta is 1 depends on recall and precision in that
it is the harmonic mean of both and offers an accurate
evaluation of the model’s performance.

precision X recall

Fg=(1+p%) x 4)

(B2 x precision) + recall

« Confusion Matrix: This provides a visual summary of
the model’s performance and displays the number of
true positives, true negatives, false positives, and false
negatives. It is more visually appealing but still contains
numerical analytical content. This makes the types of
errors the model makes easier to see and comprehend
[15].

2) Transfer Learning Approach: In the context of transfer
learning, the entire procedure includes utilizing a model that
has already been trained for one segment to tackle a related
issue. To do this, the pre-trained models’ architecture must
be modified to fit the new task at hand. As an illustration,
we may use an image classification model that was initially
trained on the massive ImageNet dataset (which consists of
millions of labeled photos) and use it as a solid foundation
for the specialized job of recognizing COVID-19 using a
smaller dataset. When training data is limited, transfer learning
is very helpful, especially in specialist fields like medical
picture categorization for developing disorders. With deep
neural network-based models, which have many parameters,
this problem is extremely severe. A pre-trained model can be
used for a particular task in one of two ways. The internal
weights of the pre-trained model stay unchanged for the new
task in one method where the pre-trained model functions as
a feature extractor. To accomplish classification, a classifier
is then trained on top of this feature extractor. An alternative
strategy involves fine-tuning the entire network or a portion of
it for the new purpose. We chose to just make minor changes to
the convolutional neural network’s final layer. The pre-trained



models were essentially employed as feature extractors. We
compared ResNet50 [14] and DenseNet-201 [16], two popular
pre-trained models. The architectures of these models and how
they were used to predict COVID-19 are briefly described in
the section that follows.

IV. RESULTS

In this section, we present the results of the ResNet model,
the DenseNet model, and the ensemble model, along with an
analysis of their predictions for COVID-19 using the chest X-
ray dataset. The dataset was randomly divided into training
(60%), testing (20%), and validation (20%) sets using the
pandas and scikitlearn libraries in python.

A. ResNet Model

The ResNet model was trained, tested, and validated using
the chest X-ray dataset. It was implemented in the MATLAB
software environment with appropriate adjustments made to
the dataset for uniform dimensions. Preprocessing was applied
to meet the model’s input size requirement, and modifications
were made to the final classification and fully connected
layers. The model’s performance was evaluated using relevant
criteria and produced the results the shown in Figure 4.
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Fig. 4. ResNet Confusion matrix

The depth of the ResNet architecture distinguishes it; for
example, ResNet-50 and ResNet-101 have 50 and 101 layers,
respectively. Residual blocks, consisting of multiple convo-
lutional layers, batch normalization, and ReLU activation
functions, are the fundamental units of the network. Each stage
is composed of these residual blocks, and each stage typically
reduces spatial dimensions while increasing the number of
filters. This can be seen in Figure 5.
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Fig. 5. ResNet Architecture [17].

B. DenseNet Model

The DenseNet Model followed a similar procedure to the
ResNet Model to produce its results. Dataset expansion was
performed to ensure error-free training, and modifications were
made to the final fully connected and classification layers.
Training and testing phases were executed, and the model’s
performance was assessed. The results can be seen in Figure
6.
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Fig. 6. DenseNet Confusion matrix

DenseNet consists of dense blocks, each containing a series
of convolutional layers with batch normalization and ReLU ac-
tivation functions. Transition layers are incorporated between
dense blocks to reduce spatial dimensions and restrict the
growth of feature maps. Convolution and pooling procedures
are typically used in transition layers. Hyperparameters like the
growth rate and the number of dense blocks can be adjusted to
modify the network’s architecture. This can be seen in Figure
7.

C. Ensemble Model

The ensemble model was formed by combining the ResNet
and DenseNet models. The majority voting technique was
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Fig. 7. DenseNet Architecture [18].

employed to create the ensemble model, where the final
prediction of the ensemble is determined by the class predicted
by most of the individual models. The individual models were
saved locally and loaded into the environment for ensemble
creation. The dataset was loaded, resized, and enhanced before
using the individual models to generate predictions. These
predictions were then combined to form the ensemble model
(voting), which was evaluated using the required assessment
metrics, as seen in Figure 8. The final results are shown in
Table L.
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¥
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»  Modeld  —— (Combine lndividual — Final Prediction |
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Fig. 8. Ensemble Model Architecture [19].
TABLE I
FINAL MODEL PERFOMANCE RESULTS
Metric ResNet | DenseNet | Ensemble Model | GWOCLSA [5]
Accuracy | 89% 93% 97% 93%
Precision | 90% 91% 99% 93%
Recall 87% 95% 95% 93%
Fl-Score | 88% 93% 97% 93%

V. CONCLUSION AND FUTURE WORK

This work built the first step towards developing a general-
ized model to assess the healthcare parameters at a personal-
ized and community dimensions and predict the severity of the

disease before becoming pandemic. It focused on offering a
thorough evaluation of the effectiveness of different computer
models for predicting severe disease utilizing the dataset of
chest x-ray images. Using a variety of performance criteria, the
outcomes of trials using the ResNet, DenseNet, and ensemble
models were meticulously assessed. The ensemble model con-
sistently demonstrated superior performance across all metrics,
exhibiting an accuracy and fl-score of 97%. In comparison,
the DenseNet model earned an accuracy and f1-score of 93%,
while the ResNet model achieved an accuracy of 89% and a f1-
score of 88%. They showed encouraging accuracies and poten-
tial to help with severe disease prediction such as COVID-19.
Notably, the Ensemble Model achieved a higher performance
in all metrics outperforming the GWOCLSA model by su
et al. [5]. This study adds to the body of knowledge in the
field of medical image analysis by demonstrating how well
computational models predict COVID-19 from chest x-ray pic-
tures. On the other hand, it emphasizes how effective ensemble
techniques are for utilizing the synergistic benefits of various
models. Exploring more sophisticated designs, particularly the
area of transformer-based models, is one of the interesting
areas for future research to achieve the general model. These
architectures, which were first created for challenges involving
natural language processing, have demonstrated astounding
potential in picture analysis. The capacity to capture long-
range dependencies in images could be used to improve
disease prediction accuracy even more. Investigating these
sophisticated architectures may lead to the discovery of fresh
information that completely alters the way disease is predicted.
We are working on improving the model further by using more
sophisticated structures, such as transformer-based models, as
these architectures are made to identify enduring dependencies
in images and other clinical parameters. In conclusion, this
study acts as a steppingstone into a future that is rife with
opportunities and difficulties. It is our common responsibility
to use innovation to advance healthcare as we forge new paths
in the field of disease prediction utilizing computer models. We
can create a future in which computational models play a key
role in enhancing patient outcomes and global health through
continuous research, collaboration, and ethical concerns.
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