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Highlights

• Taking into consideration benign outliers into IDS design.

• Improving SOM for anomaly visualization in presence of benign outliers.

• Introducing a new visualization by SOM without additional computational costs.

• Several datasets are evaluated to show the detection efficiency and accuracy.

• Comparison with several existing methods has been done.
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An Anomaly-based Intrusion Detection System in Presence of Benign Outliers with
Visualization Capabilities

Amin Karami1

Computer Science & Informatics (CS&I) department, University of East London (UEL), University Way, E16 2RD, UK

Abstract

Abnormal network traffic analysis through Intrusion Detection Systems (IDSs) and visualization techniques has considerably become

an important research topic to protect computer networks from intruders. It has been still challenging to design an accurate and

a robust IDS with visualization capabilities to discover security threats due to the high volume of network traffic. This research

work introduces and describes a novel anomaly-based intrusion detection system in presence of long-range independence data called

benign outliers, using a neural projection architecture by a modified Self-Organizing Map (SOM) to not only detect attacks and

anomalies accurately, but also provide visualized information and insights to end users. The proposed approach enables better

analysis by merging the large amount of network traffic into an easy-to-understand 2D format and a simple user interaction. To

show the performance and validate the proposed visualization-based IDS, it has been trained and tested over synthetic and real

benchmarking datasets (NSL-KDD, UNSW-NB15, AAGM and VPN-nonVPN) that are widely applied in this domain. The results

of the conducted experimental study confirm the advantages and effectiveness of the proposed approach.

Keywords: Anomaly Detection, Intrusion Detection System, Benign Outlier, Visualization, Self-Organizing Map

1. Introduction1

Intrusion Detection Systems (IDSs) have considerably become a required asset to the computer security ianfrastructure almost2

in all organizations connected to the Internet. With the growth of Internet and computer networks technologies, infrastructures,3

applications, and protocols, network traffic analysis for detecting unauthorized accesses, misbehaving and anomalous traffic has4

recently become one of the hot research topics in network security Jia et al. (2016); Ahmed et al. (2016); Karami (2015a). IDS can5

differentiate between normal (well-behaved) traffic and abnormal (misbehaved or malicious) traffic or violations through monitoring6

a network or system. Most analysis approaches in IDS are designed to detect intrusions by misuse detection or anomaly detection.7

The misuse detection algorithms discover attacks based on the pattern extracted from known intrusions (predefined signatures),8

while anomaly detection algorithms discover attacks and abnormal traffic patterns based on the deviations from the established9

profile that contains normal patterns of well-behaved traffic Luo & Xia (2014); Yu et al. (2010). Misuse detection techniques propose10

very low false positive rate and very high detection rate for known attacks that have already been defined in the signature database,11

but cannot detect new types of attacks which do not exist in the signature database. In contrast, anomaly detection techniques12
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provide high performance by detecting unknown attacks. Nevertheless, the major drawbacks of multi-class anomaly-based IDSs13

exist in terms of lower detection precision and higher false positive rate Chen et al. (2016); Jabez & Muthukumar (2015); Powersa14

& He (2008).15

To overcome the anomaly-based IDS weaknesses, various artificial and computational intelligence algorithms either integrating16

with meta-heuristic optimization approaches or without them are investigated, such as fuzzy logic Karami & Guerrero-Zapata17

(2015b); Feizollah et al. (2013), Support Vector Machine (SVM) Kabir et al. (2017); Bao & Wang (2016), Radial Basis Function18

(RBF) Karami & Guerrero-Zapata (2015c); Bi et al. (2009), Artificial Neural Network (ANN) Subba et al. (2016); Hodo et al.19

(2016), Self-Organizing Map (SOM) la Hoz et al. (2015); Karami & Guerrero-Zapata (2014); dong Wang et al. (2007), Adaptive20

Neuro-Fuzzy Inference System (ANFIS) Devi et al. (2017); Karami & Guerrero-Zapata (2015a), and Principle Component Analysis21

(PCA) An & Weber (2017); Khalid et al. (2015). Nevertheless, the major drawbacks of anomaly-based IDSs exist in terms of the22

lower detection precision and the higher false positive rate in presence of low-frequent patterns called outliers, resulting in weaker23

detection stability Karami & Guerrero-Zapata (2015b); Jabez & Muthukumar (2015); Luo & Xia (2014).24

The low-frequent data patterns are mostly malignant outliers, which adversely affect the clustering quality because they are clearly25

so far from main data distribution. Detecting and removing such malignant outliers improves the clustering accuracy. Much of the26

research on clustering attempts to remove these using ”outlier removal techniques” Salim & Razak (2016); Hachmi et al. (2015);27

He et al. (2003) or combine meta-heuristic optimization algorithms with machine learning techniques Zhang et al. (2016); Karami28

& Guerrero-Zapata (2015c); Chen et al. (2015); Karami & Guerrero-Zapata (2015b). In contrast, benign outliers have been getting29

less attention, most approaches simply ignore them during training Karami & Guerrero-Zapata (2014); Luo & Xia (2014). Benign30

outliers are the long-term independent data points, that are mostly not included in a 90%-95% confidence interval of normally31

distributed data Jach & Kokoszka (2008). Since benign outliers are inherently a part of original data (see Figure 1 in Section 2)32

and they must be available for training purposes (i.e., they are not severe or malignant outliers), removing them might result in33

inappropriate training, unstable and diverge modelling. It means that, benign outliers exist in all the datasets and the user should34

decide to take into consideration a small portion of data (i.e., out of 95% of normal distribution) as benign or a large portion35

(i.e., out of 90% of normal distribution) as benign. In our research, we have particularly considered benign outliers to improve the36

stability and the robustness of anomaly-based intrusion detection systems in terms of the higher detection rate and the lower false37

alarm rate at the same time.38

On the other hand, the biggest challenge for network administrators is visualization capabilities of IDS Abdullah et al. (2005) to39

demonstrate useful information and insights about network traffic. End users expect to understand a greater amount of data in40

shorter time to consider an applied IDS as an useful system Elhenawy et al. (2011). Due to the limitations in human cognitive and41

perceptual ability within discovering a large amount of knowledge by IDS, visualization strategies must be taken into consideration.42

Visualization of intrusion detection enables better analysis and response because an intrusion is recognized intuitively rather than43

alert flooding to network administrator via involving a network administrator in the analysis Etoty & Erbacher (2014); Elhenawy44

et al. (2011). Hence, visualization strategies provide several advantages, mainly merging huge volumes of data into simple and45

effective graphs and providing easy-to-understand analysis format Ibrahim et al. (2017); Karami (2015b); Luo & Xia (2014); Karami46

& Johansson (2014b).47

The purpose of this paper is to develop a novel anomaly-based intrusion detection system that provides higher detection and lower48
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false alarm precision at the same time in presence of benign outliers alongside visualization capabilities. To do so, we applied a49

modified Self-Organizing Map (SOM) to be able to satisfy both mentioned objectives. SOM is a widely used unsupervised clustering50

algorithm with visualization capabilities. Its neurons are arranged in a lattice (output space) according to a given topology (often,51

grid or hexagonal) in order to visualize multi-dimensional inputs usually into a 2D format da Silva & Wunsch (2017); Faigl &52

Hollinger (2017). There are various research works using SOM for developing IDSs such as De la Hoz et al. (2014); Olszewski53

(2014); Obimbo & Jones (2012); Pachghare et al. (2009); Powers & He (2008); Kayacik & Zincir-Heywood (2006); Mitrokotsa &54

Douligeris (2005); Jirapummin et al. (2002). However, they are not fully taking into consideration benign outliers into modelling55

as well as not generating a comprehensive visualization driven by SOM.56

The contribution of this paper is summarized in four objectives. The first objective is taking into consideration benign outliers into57

IDS design. The second objective is particularly improving SOM method in presence of benign outliers. The evaluation through an58

extensive implementation and analysis over 2D synthetic and multi-dimensional benchmarking datasets shows that the proposed59

method outperformed effectively several existing approaches in terms of the applied performance metrics. We firstly evaluated60

the proposed method over 2D synthetic datasets to observe that how the SOM lattice is adjusting among data points labelled as61

benign outlier, then into all input vectors (either benign or normal). The proposed method could successfully outperformed the62

standalone SOM and Fuzzy SOM techniques that have been widely applied into learning systems. Afterwards, we employed the63

proposed method over four IDS benchmarking datasets (NSL-KDD, UNSW-NB15, AAGM and VPN-nonVPN) as the principal64

reason for this contribution to be able to design a robust IDS. The third objective is considering and introducing new visualization65

capabilities for multi-class datasets by SOM without additional computational costs. Finally, we used a usability test to assess the66

proposed visualization-based IDS from experts’ point of view in terms of the learnability and the satisfaction.67

The rest of this paper is organized as follows. Section 2 discusses benign outliers. Section 3 presents the SOM algorithm. The68

proposed method is given in Section 4. Section 5 provides the details of experimental results over synthetic and real benchmarking69

datasets. The embedded visualization approach in the proposed method is critically considered in Sections 6 and 8, respectively.70

Section 7 presents the effectiveness of the proposed IDS method through usability test. Section 9 investigates the proposed method71

on the recent and custom network traffic datasets. Finally, Section 10 concludes the paper and discusses future work.72

2. Benign Outliers73

Outliers are data points that are distant from other data and may indicate experimental error, often resulting in exclusion from74

the data set. Outliers may occur due to several reasons, such as, measurement error, incidental systematic error, or by chance. It75

is often not trivial to ascertain the cause of an outlier, resulting in no straightforward way to express rules for their removal. For76

instance, a person with an IQ of 130 is not an outlier. Outliers may or may not be a problem depending on several factors Marr77

(2015):78

• Some statistical tests are robust and can accommodate outliers, others may be severely influenced by outliers.79

• Some data types will naturally contain extreme values which are entirely inherent.80

• The presence of outliers may, in fact, be of interest.81

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 1: A sample of normal distribution

Figure 1 depicts a sample of data distribution with a set of data samples that are far from the 90%-95% of the normal distribution;82

however, they are not malignant or severe outliers. Hence, we cannot remove them because they are inherently a main part of the83

original data. In our research, we call them Benign Outlier, that removing them might result in inappropriate training, unstable84

and diverge data modelling. To be able to deal accurately with benign outliers, we would initially need to identify them. To do so,85

we employ Hotelling’s T -squared distribution technique Yi et al. (2016).86

2.1. Hotelling’s T-squared distribution87

The Hotelling′s T 2 distribution is a multivariate generalization of the Student t − test. The form of the Hotelling′s T 2 is as88

follows:89

T 2 = (X − X̄)W−1(X − X̄) (1)

where, X is the original data matrix, X̄ is the mean of the dataset, and W is the covariance matrix of X. The Hotelling′s T 2
90

statistic is approximately F -distributed as follows:91

Fp,n,α ∼ T 2 (n− a)

a(n− 1)
(2)

Any sample that has a F -value that exceeds the critical F -value can be considered as an outlier.

Figure 2: An illustration of the training of a self-organizing map

92
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3. Self-Organizing Map (SOM)93

Self-Organizing Map (SOM, also known as Kohonen network) Kohonen & Honkela (2007) is an unsupervised competitive94

learning algorithm. The goal of SOM is to convert a complex high-dimensional input data into a simpler low-dimensional (usually95

2D) discrete map, building a topologically preserving map. Figure 2 illustrates an example of SOM training. At first (left) the96

SOM nodes are arbitrarily positioned in the data space. One SOM node which is nearest to a randomly picked training datum97

is selected. It is moved towards the training datum and absorbed its neighbours towards picked training datum on the grid (two98

middle illustrations). After many iterations the grid tends to approximate the data distribution (right). To do so, SOM includes99

four processes in a row: initialization, competition, cooperation, and adaptation.100

• Initialization: all the connection weights are initialized with small random values.101

• Competition: one training data is randomly selected and calculated a distance-based similarity (Often by Euclidean distance)102

to each neuron weight to find the Best Matching Unit (BMU) as the winner neuron.103

‖X(t)−Wj(t)‖ =

√√√√
k∑

j=1

(X(t)−Wj(t))2 (3)

where, at iteration t, X(t) is the random selected data, W (t) is all the neuron weights, and k is the number of SOM neurons.104

• Cooperation: the closest neighbours of winner neuron are willing to relocate more than far neighbours alongside with winner105

neuron towards the data point X(t). This is a topological neighbourhood that decays with distance. For the size of the106

neighbourhood, we employed the Gaussian function that shrinks on each iteration until eventually the neighbourhood is just107

the BMU itself, as follows:108

TI(w),j = exp(
−d2

I(w),j

2σ2
) (4)

where, I(w) is the index of the winning neuron, j is the list of all neurons, dI(w),j is distance between winning neuron and all109

the neurons, and σ is the neighbourhood size which is decreased with time.110

In this paper, we apply a temporal scaling function to decrease the σ over time:111

V aluei + Tfrac ∗ (V aluef − V aluei); (5)

where, V aluei is the initial value of σ, V aluef is the final value of σ, Tfrac is the time fraction which is calculated by iter
T ,112

iter is the current iteration of the running algorithm, and T is the maximum number of iteration.113

• Adaptation: All the nuerons will be updated according to:114

∆Wji = η(t) TI(w),j(t) (X(t)−Wj(t)) (6)

where, ηt is the learning rate which is decreased over time. We apply the same strategy given in Eq. 5.115

The last three phases are repeated, until the maximum number of iterations is reached or the changes become smaller than a116

predefined threshold.117
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Algorithm 1 The pseudocode of the proposed visualization-based IDS (The time complexity is O(N + 2T ))

Input: Training dataset

Output: Well-separated clusters with visualization capabilities

1: N ; The number of training data

2: T ; The maximum number of iteration

3: Iter; The counter

4: Set initial parameters for SOM

Phase 1: Identify Benign Outliers

5: for (iter = 1 to N ; iter + +) do

6: Identify Benign.Outliers (Eqs. 1 and 2)

7: end for

Phase 2: Run SOM over Benign Outliers

8: for (iter = 1 to T ; iter + +) do

9: Run SOM algorithm (Section 3) over DataBenign.Outliers

10: end for

Phase 3: Run SOM based on Roulette Wheel (RW)

11: Define roulette wheel for both Benign.Outliers and rested normalities

12: for (iter = 1 to T ; iter + +) do

13: Run SOM algorithm (Section 3) over picked data points by RW mechanism

14: end for

15: return Well-separated clusters

16: return Visualize 2D output of the designed multi-class IDS by SOM capabilities (A sample of visualizations is in Section 6).

4. The Proposed Detection Method for IDS Design118

This section presents the details of the proposed detection method for IDS design using a modified Self-Organizing Map (SOM).119

The algorithm pseudocode is shown in Algorithm 1. Basically, the proposed training algorithm consists of three stages. The first120

stage is identification of benign outliers (O(N)). Second stage is running SOM over benign outliers (O(T )). Finally, the third121

stage is re-running SOM over those data picked by Roulette Wheel (RW) selection method (O(T )). With the RW-based data point122

selection, the SOM can search more in sparse area (low-frequent patterns or benign outliers) rather than select all data points123

randomly with the same selection probability. To do so, we give a pre-defined percentage of roulette space to those data labelled124

as benign outliers, and rested for normalities. For instance, if the predefined roulette size goes 60% for benign outlier data points125

(i.e., the entire 60% are equally divided between them), the rested 40% goes for rested normalities (i.e., the entire 40% portion are126

equally divided between them). Figure 3 illustrates the concept of the roulette wheel selection method. The time complexity of the127

proposed method is O(N + 2T ) which is linear and affordable. The proposed method consists of two phases: offline training and128

online detection. Algorithm 2 shows the proposed training method and Algorithm 3 shows the threshold-based detection technique129

for monitoring new data pattern (including known and unknown) which may not exist in the training phase. Once the optimal130
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Figure 3: The concept of roulette wheel selection

placement of neurons (cluster centroids) from the training phase is constructed, they are sent to the detection phase for anomaly131

detection purposes when new monitoring data enters the system. If a new monitoring data is close to a normal cluster with less132

than a predefined threshold value (we selected Threshold = 0.4), we label it as normal traffic; otherwise in case it is bigger than133

the predefined threshold, it is considered as anomaly. Similarly, if a new monitoring data is close to a cluster labelled attack, it is134

considered as a known attack.135

5. Experimental Results136

The experiments have been firstly conducted on several synthetic datasets to show the effectiveness of the proposed method in137

2D datasets. Furthermore, we applied four computer network intrusion detection benchmarking datasets as NSL-KDD NSL-KDD138

(2014), UNSW-NB15 Moustafa & Slay (2015), AAGM Lashkari et al. (2017), and VPN-nonVPN Draper-Gil et al. (2016) to assess139

the performance and robustness of the proposed method over real network data.140

Table 1: Datasets’ characteristics

Data set classes size

Crescent Full Moon 4 1200

Half Kernel 4 1000

Pin Wheel 5 1000

Aggregation 7 788

Compound 6 399

D31 31 3100

Flame 2 240

Jain 2 373

5.1. Synthetic datasets141

To assess the performance of the proposed method, we firstly applied four 2D artificial data sets from Karami & Johansson142

(2014a) and rested four from Fränti (2015) which include rare and low-frequent patterns as well as very close data samples143
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Algorithm 2 Training phase of the proposed detection method for IDS

Input: Training dataset

Output: Well-separated cluster centroids

STEP 1: Initialization:

1: Load dataset for training, N= the number of input data

2: Initialize lattice (2D) and neurons’ weight, T is the number of iteration

3: Declare initial learning rate (µi) and final learning rate (µf )

4: Declare initial Sigma (attraction rate between points) (σi) and final Sigma (σf )

5: Define the roulette size between [0 100] (RouletteSizeBenign.Outliers) for Benign.Outliers, while rested goes for normalities

(RouletteSizeNormalities)

STEP 2: Identify Benign Outliers:

6: Declare F -value as threshold for outlier detection

7: for (iter = 1 to N ; iter + +) do

8: Identify Benign.Outliers by Eqs. 1 and 2

9: end for

STEP 3: Run SOM over Benign Outliers:

10: for (iter = 1 to T ; iter + +) do

11: Run Competition phase by Eq. 3

12: Scale µ and σ by Eq. 5

13: Run Cooperation phase by Eq. 4

14: Run Adaptation phase by Eq. 6

15: end for

STEP 4: Run SOM over all data points:

16: for (iter = 1 to T ; iter + +) do

17: Pick randomly a data point by Roulette Wheel (Fig. 3)

18: Run Competition phase by Eq. 3

19: Scale µ and σ by Eq. 5

20: Run Cooperation phase by Eq. 4

21: Run Adaptation phase by Eq. 6

22: end for

23: return Well-separated cluster centroids with visualization capabilities

from different classes. The characteristics of the artificial data sets are summarized in Table 1 and depicted in Figure 4. All144

the experiments were performed on Intel(R) Core(TM) i5-6300HQ CPU 2.30 GHz with 16 GB RAM on the platform Microsoft145

Windows 10. We have conducted this experiment in MATLAB R2016b. To compare the performance of the proposed algorithm146

with some pre-existing algorithms, we used several metrics, such as Detection Rate (DR), False Positive Rate (FPR), Mean of errors147
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Algorithm 3 Detection phase for new monitoring data

Input: Cluster centroids from the training phase

Output: Data type detection, either normal, attack or anomaly

Threshold = The threshold value for anomaly detection

while monitoring new data DataNew do

if distance DataNew is closer to one of the attack labelled clusters then

label DataNew as ATTACK CLASS

else if distance is smaller than Threshold to a normal cluster then

label DataNew as NORMAL

else

label DataNew as ANOMALY

end if

end while

return Detecting three types of data: normal, anomaly or multi-class attack

(a) Crescent Full Moon (b) Half Kernel (c) Pin Wheel (d) Aggregation

(e) Compound (f) D31 (g) Flame (h) Jain’s toy problem

Figure 4: Synthetic datasets from Karami & Johansson (2014a) and Fränti (2015)

between data target and training output, Standard Deviation (Std.) of the errors, Confidence Interval (CI 95%), and Topographic148

Error (TE). TE is a quantitative measure of mapping quality. The TE gives the percentage of the data vectors for which the first149

BMU and the second BMU are not neighbouring units. Lower TE values indicate better mapping quality.150
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(a) Proposed method (b) Fuzzy SOM (c) Standalone SOM

Figure 5: The Lattice of three training algorithms over Crescent Full Moon dataset

Table 2: The results for Crescent Full Moon dataset

Lattice Methods DR (%) FPR (%) Mean Std. CI (95%) TE

3x3

Proposed Method 98.61 0.96 3.074 1.776 [2.973, 3.174] 0.074

Fuzzy SOM 91.20 10.13 3.105 1.636 [3.198, 3.105] 0.12

SOM 90.04 8.94 3.129 1.671 [3.035, 3.224] 0.14

4x4

Proposed Method 98.99 0.61 1.962 1.031 [1.962, 2.079] 0.042

Fuzzy SOM 95.45 1.50 2.122 1.164 [2.056, 2.188] 0.081

SOM 93.88 1.84 2.143 1.183 [2.076, 2.21] 0.092

5x5

Proposed Method 99.45 0.11 1.576 0.905 [1.525, 1.627] 0.012

Fuzzy SOM 98.88 0.36 1.654 0.891 [1.603, 1.704] 0.028

SOM 99.00 0.26 1.572 0.772 [1.529, 1.616] 0.021

(a) Proposed Method (b) Fuzzy SOM (c) Standalone SOM

Figure 6: The Lattice of three training algorithms over Half Kernel dataset

5.1.1. The experimental results over synthetic data151

Figures 5-12 demonstrates the results of SOM lattice adjustment towards the input vectors. The lattice visualization clearly152

shows how the SOM nodes (neurons) are positioned into the 2D output according to three applied algorithms. Figures 5a-12a153
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Table 3: The results for Half Kernel dataset

Lattice Methods DR (%) FPR (%) Mean Std. CI (95%) TE

6x6

Proposed Method 94.77 1.53 2.194 1.29 [2.114, 2.274] 0.072

Fuzzy SOM 92.66 2.38 2.196 1.201 [2.121, 2.27] 0.089

SOM 92.31 1.84 2.254 1.221 [2.178, 2.33] 0.076

7x7

Proposed Method 97.57 0.80 1.75 0.984 [1.689, 1.811] 0.051

Fuzzy SOM 97.02 0.84 1.81 0.99 [1.749, 1.872] 0.055

SOM 93.12 2.01 1.924 1.085 [1.857, 1.992] 0.056

8x8

Proposed Method 99.02 0.37 1.45 0.799 [1.401, 1.5] 0.042

Fuzzy SOM 98.95 0.41 1.505 0.807 [1.455, 1.555] 0.066

SOM 98.18 0.77 1.491 0.827 [1.439, 1.542] 0.071

(a) Proposed Method (b) Fuzzy SOM (c) Standalone SOM

Figure 7: The Lattice of three training algorithms over Pin Wheel dataset

Table 4: The results for Pin Wheel dataset

Lattice Methods DR (%) FPR (%) Mean Std. CI (95%) TE

5x5

Proposed Method 99.41 0.28 0.124 0.081 [0.119, 0.129] 0.017

Fuzzy SOM 98.38 0.31 0.137 0.082 [0.131, 0.142] 0.048

SOM 96.67 0.32 0.134 0.077 [0.129, 0.138] 0.05

6x6

Proposed Method 99.48 0.09 0.101 0.065 [0.097, 0.105] 0.013

Fuzzy SOM 99.11 0.16 0.104 0.061 [0.1, 0.108] 0.042

SOM 98.83 0.09 0.12 0.059 [0.103, 0.11] 0.05

7x7

Proposed Method 99.83 0.042 0.088 0.054 [0.085, 0.091] 0.011

Fuzzy SOM 99.71 0.052 0.089 0.053 [0.086, 0.093] 0.039

SOM 99.68 0.049 0.086 0.051 [0.084, 0.09] 0.047

shows the results of the proposed algorithm based on finding benign outliers. The bold and highlighted input vectors are the154

benign outliers that the modified SOM described in Section 4 firstly distributes SOM nodes across them, afterwards it adjusts SOM155

nodes and lattice over normalities together with benign outliers with the incorporated Roulette Wheel (RW) mechanism. As shown156

in Figures 5-12, the proposed method provides better lattice adjustment with a few overlapped connections among neighbours and157

well-separated nodes in the sensitive spots (highlighted inputs). The obtained results in terms of the connections between nodes and158
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(a) Proposed Method (b) Fuzzy SOM (c) Standalone SOM

Figure 8: The Lattice of three training algorithms over Aggregation dataset

Table 5: The results for Aggregation dataset

Lattice Methods DR (%) FPR (%) Mean Std. CI (95%) TE

4x4

Proposed Method 99.54 0.19 2.159 0.921 [2.095, 2.224] 0.056

Fuzzy SOM 99.39 0.22 2.224 0.942 [2.158, 2.29] 0.089

SOM 98.3 0.91 2.267 1.051 [2.193, 2.34] 0.094

5x5

Proposed Method 99.77 0.19 1.66 0.73 [1.609, 1.711] 0.068

Fuzzy SOM 99.65 0.22 1.724 0.788 [1.669, 1.779] 0.081

SOM 99.37 0.27 1.724 0.76 [1.671, 1.777] 0.086

6x6

Proposed Method 99.94 0.004 1.371 0.549 [1.333, 1.41] 0.043

Fuzzy SOM 99.56 0.084 1.424 0.657 [1.378, 1.47] 0.055

SOM 99.63 0.11 1.429 0.633 [1.384, 1.473] 0.06

(a) Proposed Method (b) Fuzzy SOM (c) Standalone SOM

Figure 9: The Lattice of three training algorithms over Compound dataset

their neighbours from two other methods are somehow disordered, because they have no preliminary knowledge of benign outliers159

to be able to perform well. Tables 2-9 show the best result out of 10 times independent running algorithms with different lattice160

sizes. The proposed method significantly outperformed fuzzy SOM and standalone SOM in terms of the higher detection rate,161
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Table 6: The results for Compound dataset

Lattice Methods DR (%) FPR (%) Mean Std. CI (95%) TE

5x5

Proposed Method 97.78 1.12 1.345 0.692 [1.277, 1.413] 0.072

Fuzzy SOM 94.65 1.25 1.345 0.0775 [1.269, 1.421] 0.091

SOM 95.94 1.98 1.381 0.748 [1.308, 1.455] 0.086

6x6

Proposed Method 98.24 0.59 1.096 0.555 [1.041, 1.15] 0.6

Fuzzy SOM 97.18 0.99 1.085 0.603 [1.026, 1.144] 0.79

SOM 98.19 1.23 1.123 0.6 [1.064, 1.182] 0.88

7x7

Proposed Method 99.27 0.23 0.936 0.487 [0.889, 0.984] 0.039

Fuzzy SOM 98.81 0.64 0.904 0.501 [0.855, 0.953] 0.048

SOM 98.87 0.31 0.956 0.533 [0.903, 1.008] 0.5

(a) Proposed Method (b) Fuzzy SOM (c) Standalone SOM

Figure 10: The Lattice of three training algorithms over D31 dataset

Table 7: The results for D31 dataset

Lattice Methods DR (%) FPR (%) Mean Std. CI (95%) TE

6x6

Proposed Method 96.71 0.96 0.971 0.535 [0.952, 0.99] 0.101

Fuzzy SOM 96.67 1.16 0.921 0.482 [0.904, 0.938] 0.142

SOM 95.52 1.39 0.972 0.509 [0.954, 0.99] 0.149

7x7

Proposed Method 93.65 1.74 0.864 0.437 [0.848, 0.879] 0.087

Fuzzy SOM 92.98 2.99 0.897 0.476 [0.88, 0.914] 0.096

SOM 91.78 2.88 0.905 0.468 [0.888, 0.921] 0.099

8x8

Proposed Method 95.87 1.81 0.77 0.41 [0.756, 0.785] 0.097

Fuzzy SOM 95.08 2.62 0.75 0.397 [0.736, 0.764] 0.115

SOM 94.51 1.97 0.796 0.417 [0.781, 0.811] 0.129

the lower false positive rate, the better mapping quality (lower TE), and the better estimation of 95% confidence interval at the162

same time. Figures 13a-13h demonstrate the average MSE from 10 times independently run over applied datasets. The proposed163

method starts off with more attention to some particular data points (i.e., benign outliers) which are normally far from densities.164

As predicted, the MSE value of the proposed method within preliminary iterations are higher than other methods. Finally in the165

last iterations, the proposed method could successfully outperform fuzzy SOM and standalone SOM in terms of the MSE. It can166
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(a) Proposed Method (b) Fuzzy SOM (c) Standalone SOM

Figure 11: The Lattice of three training algorithms over Flame dataset

Table 8: The results for Flame dataset

Lattice Methods DR (%) FPR (%) Mean Std. CI (95%) TE

3x3

Proposed Method 99.64 0.37 1.348 0.602 [1.271, 1.424] 0.033

Fuzzy SOM 95.66 2.55 1.424 0.62 [1.346, 1.503] 0.058

SOM 97.22 0.79 1.443 0.643 [1.361, 1.524] 0.069

4x4

Proposed Method 99.1 0.55 1.406 0.413 [0.988, 1.092] 0.028

Fuzzy SOM 98.47 0.83 1.094 0.491 [1.032, 1.156] 0.044

SOM 96.26 0.98 1.091 0.466 [1.032, 1.15] 0.049

5x5

Proposed Method 98.04 0.87 0.814 0.331 [0.773, 0.856] 0.021

Fuzzy SOM 96.41 0.91 0.83 0.318 [0.79, 0.87] 0.046

SOM 97.27 0.94 0.845 0.35 [0.801, 0.889] 0.049

(a) Proposed Method (b) Fuzzy SOM (c) Standalone SOM

Figure 12: The Lattice of three training algorithms over Jain dataset

confirm that the proposed method has knowingly and accurately considered all data points with different degrees of importance.167

Table 10: The distribution of data types in NSL-KDD

Classes Training data Testing data (new attack)

Normal 67,343 9,711

DoS 45,927 7,458 (1,717)

U2R 52 1,196 (1,146)

R2L 995 2,754 (555)

Probe 11,656 1,425 (319)

Total: 125,973 22,544 (3,737)
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Table 9: The results for Jain dataset

Lattice Methods DR (%) FPR (%) Mean Std. CI (95%) TE

2x2

Proposed Method 91.1 4.69 4.438 2.167 [4.218, 4.658] 0.45

Fuzzy SOM 89.83 6.17 4.529 2.203 [4.305, 4.752] 0.67

SOM 87.62 13.67 4.766 2.356 [4.527, 5.005] 0.71

3x3

Proposed Method 100.00 0.00 2.391 1.097 [2.279, 2.502] 0.009

Fuzzy SOM 100.00 0.00 2.567 1.253 [2.44, 2.695] 0.011

SOM 99.01 0.37 2.417 1.372 [2.277, 2.556] 0.024

4x4

Proposed Method 100.00 0.00 1.664 0.819 [1.581, 1.748] 0.012

Fuzzy SOM 100.00 0.00 1.664 0.821 [1.591, 1.757] 0.018

SOM 100.00 0.00 1.72 0.872 [1.632, 1.809] 0.021

5.2. NSL-KDD dataset for intrusion detection168

NSL-KDD data set is publicly used for intrusion detection purposes Tavallaee et al. (2009); NSL-KDD (2014). Table 10 shows169

the characteristics of the NSL-KDD. It is derived from KDDCUP’99 dataset that suffers from redundant data, which causes the170

learning algorithm to be biased towards the frequent patterns. The NSL-KDD dataset includes a training set (125,973 records)171

and a testing set (22,544 records). It includes 41 attributes with one normal data and twenty-four attack data samples, which is172

shown in details in Table 11. These attack data samples are divided into four major classes including Denial-of-Service (DoS),173

unauthorized access to local supervisor privileges (U2R), unauthorized access from a remote machine (R2L), and scanning network174

to find known vulnerabilities (Probing). The details of attack types are shown in Table 12.175

5.3. UNSW-NB15 dataset for intrusion detection176

The KDDCup’99 and NSL-KDD datasets have been commonly used for setting up and evaluating intrusion detection systems;177

however, they are relatively old datasets and many of normal and attack traffic have been obviously changed during the last decade.178

To be able to verify the proposed method with a new benchmarking IDS dataset, we employed a new IDS dataset called UNSW-179

NB15 created by the IXIA PerfectStorm tool in the Cyber Range Lab of the Australian Centre for Cyber Security (ACCS) for180

generating a hybrid of real modern normal activities and synthetic contemporary attack behaviours Moustafa & Slay (2015). The181

summary of the UNSW-NB15 dataset is provided in Table 13. This dataset has nine types of attacks namely, Fuzzers, Analysis,182

Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode and Worms. This dataset contains 49 features and around 2,540,044183

data instances which is shown in details in Table 14. There are a subset of training and testing sets, which contain 175,341 and184

82,332 records, respectively. This dataset is quite different from KDDCup and NSL-KDD, which reflects a more contemporary185

and complex threat environment. For instance, this new dataset introduces the increased number of attack types and highly186

imbalanced records that present a significant challenge for hybrid intelligent algorithms designed specifically for intrusion detection187

and prevention.188
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Table 11: The 41 features of NSL-KDD dataset

ID Feature name Data type Description

1 duration numeric Length of the connection

2 protocol type nominal Connection protocol

3 service nominal Destination service

4 flag nominal Status flag of the connection

5 src bytes numeric Bytes send from source to destination

6 dst bytes numeric Bytes sent from destination to source

7 land binary 1 if is from/to the same host/port; otherwise 0

8 wrong fragment numeric Number of wrong fragment

9 urgent numeric Number of urgent packets

10 hot numeric Number of hot indicators

11 num failed logins numeric Number of failed login in attempts

12 logged in binary 1 if successful logged in; otherwise 0

13 num compromised numeric Number of compromised conditions

14 root shell binary 1 if root shell is obtained; otherwise 0

15 su attempted binary 1 if su root command attempted; otherwise 0

16 num root numeric Number of root accesses

17 num file creations numeric Number of file creation operations

18 num shells numeric Number of shell prompts

19 num access files numeric Number of operations on access control files

20 num outbound cmds numeric Number of outbound commands in an ftp session

21 is host login binary 1 if the login belongs to the host list; otherwise 0

22 is guest login binary 1 if the login is a guest login; otherwise 0

23 count numeric Number of connections to the same host as the current connection in the past two seconds

24 srv count numeric Number of connections to the same service as the current connection in the past two seconds

25 serror rate numeric % of connections that have SYN error (same-host connections)

26 srv serror rate numeric % of connections that have SYN error (same-service connections)

27 rerror rate numeric % of connections that have REJ error (same-host connections)

28 srv rerror rate numeric % of connections that have REJ error (same-service connections)

29 same srv rate numeric % of connections to the same service (same-service connections)

30 diff srv rate numeric % of connections to the different services

31 srv diff host rate numeric % of connections to the different hosts (same-service connections)

32 dst host count numeric % Count of connections having the same destination host

33 dst host srv count numeric Count of connections having the same destination host and using the same service

34 dst host same srv rate numeric % of connections having the same destination host and using the same service

35 dst host diff srv rate numeric % of different services on the current host

36 dst host same src port rate numeric % of connections to the current host having the ame port

37 dst host srv diff host rate numeric % of connections to the same service coming from different hosts

38 dst host serror rate numeric % of connection to the current host that have a SO error

39 dst host srv serror rate numeric % of connection to the current host and specified service that have a SO error

40 dst host rerror rate numeric % of connections to the current host that have a RST error

41 dst host srv rerror rate numeric % of connection to the current host and specified service that have a RST error

Table 12: Four attack classes in the NSL-KDD intrusion detection dataset

Classes Intrusion types

DoS back, land, neptune, pod, smurf, teardrop, apache2*,udpstorm*, mailbomb*, processtable*

U2R buffer overflow, loadmodule, perl, rootkit, sqlattack*, mscan*, httptunnel*, ps*, xterm*

R2L ftp write, guess passwd, imap, multihop, phf, spy, warezclient, warezmaster, snmpgetattack*, snmpguess*, named*, sendmail*, worm*, xlock*, xsnoop*

Probe ipsweep, nmap, portsweep, satan, saint*

* unknown attacks available in testing dataset as anomalies for training dataset
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Table 13: The data types in UNSW-NB15

Traffic type Training set Testing set

No. of records No. of records

Normal 56000 37000

Generic 40000 18871

Exploits 33393 11132

Fuzzers 18184 6062

DoS 12264 4089

Reconnaissance 10491 3496

Analysis 2000 677

Backdoor 1746 583

Shellcode 1133 378

Worms 130 44

Total: 175,341 82,332

5.4. Performance metrics189

To assess the effectiveness and the efficiency of the proposed method, we use several performance criteria as follows:190

The detection rate is the number of intrusions detected by the system (it is also called sensitivity or True Positive Rate (TPR)):191

DR (Recall) =
TP

TP + FN
(7)

The false positive rate is the number of normal traffic that was incorrectly classified as intrusion:192

FPR =
FP

FP + TN
(8)

Precision or Positive Predictive Value (PPV) measures the exactness and quality of the correct prediction:193

Precision =
TP

TP + FP
(9)

F-measure (or F1) is the weighted harmonic mean of precision (positive predictive value) in Eq. 9 and recall (detection rate) in194

Eq. 7:195

F1− Score = 2× Precision × Recall

Precision+Recall
(10)

Accuracy (ACC) is the proportion of the true results (True Positives (TP) and True Negatives (TN)) among the total number of196

cases examined.197

Accuracy =
TP + TN

P +N
=

TP + TN

TP + TN + FP + FN
(11)

5.5. The experimental results on NSL-KDD dataset198

We randomly sampled the NSL-KDD dataset to create two subsets for training and testing. The training set is approximately199

20% of the original training instances. We trained the derived dataset 10 times independently to be able to assess the performance200

of the proposed method. The training accuracy with and without taking benign outliers into consideration is summarized in Table201

15. This table shows the number of benign outliers per class. According to the proposed algorithm in Section 4, those data202

samples labelled as benign outlier are initially trained for the preliminary SOM lattice placement, then rested data come into the203

training phase by the RW selection strategy to improve the training accuracy. The obtained results from Table 15 show that204
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Table 14: The 49 features of UNSW-NB15 dataset

No. Name Type Description

1 srcip nominal Source IP address

2 sport integer Source port number

3 dstip nominal Destination IP address

4 dsport integer Destination port number

5 proto nominal Transaction protocol

6 state nominal ”Indicates to the state and its dependent protocol, e.g. ACC, CLO, CON, ECO, ECR, FIN, INT, MAS, PAR, REQ, RST, TST, TXD, URH, URN and (-) (if not used state)”

7 dur Float Record total duration

8 sbytes Integer Source to destination transaction bytes

9 dbytes Integer Destination to source transaction bytes

10 sttl Integer Source to destination time to live value

11 dttl Integer Destination to source time to live value

12 sloss Integer Source packets retransmitted or dropped

13 dloss Integer Destination packets retransmitted or dropped

14 service nominal ”http, ftp, smtp, ssh, dns, ftp-data, irc and (-) if not much used service”

15 Sload Float Source bits per second

16 Dload Float Destination bits per second

17 Spkts integer Source to destination packet count

18 Dpkts integer Destination to source packet count

19 swin integer Source TCP window advertisement value

20 dwin integer Destination TCP window advertisement value

21 stcpb integer Source TCP base sequence number

22 dtcpb integer Destination TCP base sequence number

23 smeansz integer Mean of the packet size transmitted by the src

24 dmeansz integer Mean of the packet size transmitted by the dst

25 trans depth integer Represents the pipelined depth into the connection of http request/response transaction

26 res bdy len integer Actual uncompressed content size of the data transferred from the servers http service.

27 Sjit Float Source jitter (mSec)

28 Djit Float Destination jitter (mSec)

29 Stime Timestamp record start time

30 Ltime Timestamp record last time

31 Sintpkt Float Source interpacket arrival time (mSec)

32 Dintpkt Float Destination interpacket arrival time (mSec)

33 tcprtt Float ”TCP connection setup round-trip time, the sum of ’synack’ and ’ackdat’.”

34 synack Float ”TCP connection setup time, the time between the SYN and the SYN ACK packets.”

35 ackdat Float ”TCP connection setup time, the time between the SYN ACK and the ACK packets.”

36 is sm ips ports Binary ”If source (1) and destination (3)IP addresses equal and port numbers (2)(4) equal then, this variable takes value 1 else 0”

37 ct state ttl Integer No. for each state (6) according to specific range of values for source/destination time to live (10) (11).

38 ct flw http mthd Integer No. of flows that has methods such as Get and Post in http service.

39 is ftp login Binary If the ftp session is accessed by user and password then 1 else 0.

40 ct ftp cmd integer No of flows that has a command in ftp session.

41 ct srv src integer No. of connections that contain the same service (14) and source address (1) in 100 connections according to the last time (26).

42 ct srv dst integer No. of connections that contain the same service (14) and destination address (3) in 100 connections according to the last time (26).

43 ct dst ltm integer No. of connections of the same destination address (3) in 100 connections according to the last time (26).

44 ct src ltm integer No. of connections of the same source address (1) in 100 connections according to the last time (26).

45 ct src dport ltm integer No of connections of the same source address (1) and the destination port (4) in 100 connections according to the last time (26).

46 ct dst sport ltm integer No of connections of the same destination address (3) and the source port (2) in 100 connections according to the last time (26).

47 ct dst src ltm integer No of connections of the same source (1) and the destination (3) address in in 100 connections according to the last time (26).

48 attack cat nominal ”The name of each attack category. In this data set, nine categories e.g. Fuzzers, Analysis, Backdoors, DoS Exploits, Generic, Reconnaissance, Shellcode, and Worms”

49 Label binary 0 for normal and 1 for attack records

U2R and Probing classes have the highest representations of benign outliers by 78.43% and 72.24% (for F-Value=30), respectively.205

In contrast, R2L and DoS classes have the lowest benign outliers by 23.12% and 11.29%, respectively. On the other hand, by206

decreasing the sensitivity of benign outlier threshold to 35 (F-Value=35), Probing and U2R classes have the highest rate of benign207

outliers by 96.19% and 82.36%, respectively. It confirms that Probing and U2R data samples are the most important bunches of208

benign outliers that are mostly out of 90%-95% of the main distribution. R2L and DoS classes by 23.12% and 11.29% have much209

dissimilarities to benign outliers.210

Table 16 illustrates the confusion matrix for the training phase based on the recall and the precision metrics per class. Table 17211

presents the comparative results of recall and precision for various studies. As seen in this table the proposed method outperformed212

the other methods in the most cases. The only drawback of the proposed method based on the recall is its performance for DoS213
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Table 15: The training accuracy of IDS with (without) Benign Outliers Consideration in NSL-KDD

The number of benign outliers per class

Lattice F-Value Benign Outliers Normal DoS U2R R2L Probing Accuracy

20 × 20 99.49 (92.19)

30 23.87%
3229

23.97%
1037

11.29%
40

78.43%
184

23.12%
1684

72.24%

18 × 18 98.95 (90.15)

20 × 20 97.88 (91.03)

20 34.68%
4150

34.24%
1558

18.85%
42

82.36%
194

21.65%
2018

96.19%

18 × 18 95.19 (90.44)

and R2L classes where their values are a little less than Ramp-KSVCR algorithm. In terms of the precision results, the proposed214

method clearly outperformed other methods, except for Normal and R2L classes that are a little less than Ramp-KSVCR algorithm.215

However, the proposed method scores over these methods in the majority of cases. The additional important comparison is given216

in Table 18 based on the total accuracy, detection rate (DR), false alarm rate (FPR) and F1-Score. It can be seen that the217

applied performance metrics on the proposed method is higher than several existing algorithms except for overall DR that is in218

the second rank. It can be concluded that the proposed method is better considering its performance levels across both attack219

and non-attack classes and the advantages incurred by discovering the number of data in each class acting as benign outlier that220

degrade considerably the training accuracy.221

Table 16: Confusion Matrix of training process for NSL-KDD

Normal DoS U2R R2L Probing Recall (%)

Normal 7083 6 0 6 7 99.73

DoS 67 4868 0 0 3 98.58

U2R 5 1 45 5 0 80.36

R2L 19 0 0 94 0 83.19

Probing 46 6 0 0 1180 95.78

Precision (%) 98.10 99.73 100 89.52 99.16

Table 17: The training results on NSL-KDD based on each class

Method Normal DoS U2R R2L Probing

Proposed method (20 × 20)
Recall (%) 99.73 98.58 80.36 83.19 95.78

Precision (%) 98.10 99.73 100 89.52 99.16

Proposed method (18 × 18)
Recall (%) 98.11 98.19 69.54 79.57 94.79

Precision (%) 97.20 99.02 90.88 77.96 95.10

Fuzzy SOM (20 × 20) Karami & Guerrero-Zapata (2014)
Recall (%) 96.19 96.34 63.89 82.12 94.45

Precision (%) 95.67 98.89 87.11 80.14 96.21

SOM (20 × 20)
Recall (%) 94.44 93.19 59.34 77.19 89.45

Precision (%) 93.12 91.02 80.87 70.18 89.16

Ramp-KSVCR Bamakan et al. (2017)
Recall (%) 99.14 99.49 68.75 91.09 93.58

Precision (%) 98.69 98.94 86.84 90.64 98.31
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Table 18: The results of overall training performance (%) on NSL-KDD

Method Accuracy DR FPR F1-Score

Proposed method (20 × 20) 99.49 91.53 0.7 92.32

Proposed method (18 × 18) 97.88 88.04 0.92 89.62

Fuzzy SOM (20 × 20) Karami & Guerrero-Zapata (2014) 95.87 86.60 3.18 88.43

SOM (20 × 20) 91.72 82.72 5.73 83.47

Ramp-KSVCR Bamakan et al. (2017) 98.68 90.41 0.86 N/A

LMDRT-SVM2 Wang et al. (2017) 98.47 99.85 2.96 N/A

HG-GA SVM Raman et al. (2017) 96.72 97.14 0.83 N/A

5.6. The experimental results on UNSW-NB15 dataset222

We randomly sampled the UNSW-NB15 dataset to create two subsets for training and testing processes. The training set is223

approximately 15% of the original training instances. This configuration is applied for each of 9 classes except for the ”Worms”224

class, where all the instances were used for training. The reason is the less number of Worms instances in the original training225

dataset. We trained the derived dataset 10 times independently to be able to assess the performance of the proposed method.226

The training accuracy with and without taking benign outliers into consideration is summarized in Table 19. This table clearly227

shows the number of benign outliers per class. According to the proposed algorithm, the labelled data as benign outliers are initially228

trained for the preliminary lattice placement (i.e., the second and the third steps in Algorithm 2), then rested data come into the229

training phase (i.e., the fourth step in Algorithm 2) by the RW selection strategy to improve the training accuracy. The obtained230

results from Table 19 show that Exploits and Generic classes have the highest representations of benign outliers by 84.64% and231

72.92% (for F-Value=30), respectively. In contrast, Reconnaissance and Shellcode classes have the lowest benign outliers by 10.10%232

and 9%, respectively. On the other hand, by decreasing the sensitivity of benign outlier threshold to 35 (F-Value=35), Exploits233

and Normal classes have the highest rate as benign outliers by 70.38% and 58.10%, respectively. Reconnaissance and Shellcode234

classes by 7.85% and 7.71% have much dissimilarities to benign outliers. Consequently, Exploits, Generic and Normal classes have235

the highest degree of importance on the training accuracy; however, Reconnaissance and Shellcode classes effects on the training236

accuracy with the lowest degree of importance. On the other hand, a few attack classes such as Fuzzers, Reconnaissance, and237

DoS with the largest number of data for training have had the lowest number of benign outliers that confirm these classes do not238

degrade significantly training accuracy.239

Table 19: The training accuracy of IDS with (without) Benign Outliers Consideration in UNSW-NB15

The number of benign outliers per class

Lattice F-Value Benign Outliers Normal Backdoor Analysis Fuzzers Shellcode Reconn. Exploits DoS Worms Generic Accuracy

25 × 25 98.26 (89.91)

30 26.7%
1008
60%

55
12.59%

87
17.40%

1067
23.49%

26
9%

265
10.10%

2220
84.64%

451
15.77%

34
26.15%

875
72.92%

20 × 20 92.54 (89.74)

25 × 25 94.12 (89.02)

35 22.24 %
976

58.10%
50

11.44%
79

15.80%
991

21.81%
22

7.61%
206

7.85%
1846

70.38%
380

13.29%
34

26.15%
491

40.92%

20 × 20 91.94 (86.11)

Table 20 presents the confusion matrix for the training phase based on the recall and the precision metrics per class. Table 21240

presents the comparative results of recall and precision for various studies. As seen in this table the proposed method outperformed241
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the other methods in the most cases. The only drawback of the proposed method based on the recall is its performance for Normal242

and Exploits classes where their values are a little less than Ramp-KSVCR algorithm. As the precision point of view, the proposed243

method clearly outperformed other methods, except for Backdoor, Fuzzers, and DoS classes that are lower than Ramp-KSVCR.244

However, the proposed method scores over these methods in the majority of cases. On the other hands, the additional important245

comparison is given in Table 22 based on the total accuracy, detection rate (DR), false alarm rate (FPR) and F1-Score. It can246

be seen that the applied performance metrics on the proposed method is higher than several existing algorithms except for overall247

DR that is in the second rank. Overall, it can be concluded that the proposed method is better considering its performance levels248

across both attack and non-attack classes and the advantages incurred by discovering the number of data in each class acting as249

benign outliers that affect negatively on the training accuracy.250

Table 20: Confusion Matrix of training process for UNSW-NB15

Normal Backdoor Analysis Fuzzers Shellcode Reconn. Exploits DoS Worms Generic Recall (%)

Normal 1593 1 0 73 0 1 12 0 0 0 94.82

Backdoor 0 302 2 9 0 1 108 15 0 0 71.11

Analysis 0 1 446 0 0 0 49 4 0 0 89.20

Fuzzers 0 11 2 4330 3 55 126 15 0 1 95.31

Shellcode 0 0 0 19 246 23 1 0 0 0 85.12

Reconn. 0 16 2 152 0 2331 112 10 0 0 88.87

Exploits 0 42 9 249 1 28 8113 101 2 0 94.94

DoS 0 30 4 36 1 11 300 2484 0 0 86.67

Worms 0 1 0 4 0 4 33 0 88 0 67.69

Generic 0 0 0 1 0 0 3 0 0 1196 99.67

Precision (%) 100 74.75 96.91 88.86 98.01 94.99 91.60 94.48 97.78 99.92

Table 21: The training results on UNSW-NB15 based on each class

Method Normal Backdoor Analysis Fuzzers Shellcode Reconn. Exploits DoS Worms Generic

Proposed method (25 × 25)
Recall (%) 94.82 71.11 89.20 95.31 85.12 88.87 94.94 86.67 67.69 99.67

Precision (%) 100 74.75 96.91 88.86 98.01 94.99 91.06 94.48 97.78 99.92

Proposed method (20 × 20)
Recall (%) 92.38 67.35 71.08 92.38 64.41 79.17 77.81 86 62.31 98.75

Precision (%) 99.95 75.40 83.39 80.32 93.97 79.40 88.13 73.82 97.59 99.50

Fuzzy SOM (25 × 25)

Karami & Guerrero-Zapata (2014)

Recall (%) 91.78 55.81 52.35 83.99 60.15 70.25 81.42 73.50 50 98.84

Precision (%) 96.82 91.47 91.89 70.61 66.61 86.26 78.39 76.91 96.33 98.88

SOM (25 × 25)
Recall (%) 91.03 44.99 47.83 85.35 49.51 61.69 91.77 55.84 54.81 98.39

Precision (%) 97.37 78.45 67.43 63.41 86.32 86.37 72.18 83 91.36 98.82

Ramp-KSVCR Bamakan et al. (2017)
Recall (%) 97.38 70.44 69.83 87.5 58.2 83.8 95.61 84.81 38.24 97.81

Precision (%) 97.54 97.33 96.89 91.93 97.93 66.18 90.73 98.51 81.25 98.60

6. Visualization Capacities in the proposed IDS251

One of the common ways to assess the performance and effectiveness of the IDS from end users’ point of view is visualization252

capabilities. Up to present, there have been no inspiring visualization-based IDSs to propose all the possible knowledge required253

from multi-dimensional and big datasets applied for intrusion detection purposes with less computational costs. For instance,254

Principle Component Analysis (PCA) projection in Jia et al. (2016); la Hoz et al. (2015); Corchado & Álvaro Herrero (2011);255
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Table 22: The results of overall training performance (%) on UNSW-NB15

Method Accuracy DR FPR F1-Score

Proposed method (25 × 25) 98.26 87.44 1.95 89.17

Proposed method (20 × 20) 94.12 79.17 5.38 80.62

Fuzzy SOM (25 × 25) Karami & Guerrero-Zapata (2014) 90.61 71.81 9.42 75.93

SOM (25 × 25) 89.20 68.12 12.67 73.14

Ramp-KSVCR Bamakan et al. (2017) 93.52 78.44 2.46 N/A

PSI-NetVisor Mishra et al. (2017) 94.54 N/A 2.81 N/A

GAA-ADS Moustafa et al. (2017) 92.8 91.3 5.1 N/A

Kiziloren & Germen (2009) and Curvilinear Component Analysis (CCA) projection in Corchado & Álvaro Herrero (2011); Herrero &256

Corchado (2011); Shakhatreh & Bakar (2011) have been frequently used and incorporated into SOM algorithm for IDS visualization.257

However, they add additional computational costs into IDS. In our research, we used SOM visualization capabilities to demonstrate258

important and useful information to be easy for interpretation by end users who need to get well enough knowledge timely. Among259

the conducted experiments with different lattice sizes, the results of developed IDS with the lattice sizes of 20× 20 and 25× 25 are260

depicted in Figures 14 and 17 for NSL-KDD and UNSW-NB15, respectively. Figures 14a and 17a show the SOM neurons’ labels261

for both IDS datasets. The hexagonal shapes with grey colour are non-selected and empty nodes. The neighbour of each neuron is262

intuitively visible in order to find the neurons (nodes) with attack labels in the neighbourhood of normal neurons. Figures 14b and263

17b show the purity of each SOM nodes for both IDS datasets. A pure black colour means a pure cluster (100% similar data points264

within a cluster) while a pure red colours mean an impure cluster (All the data points are dissimilar and have different labels).265

There is a hue ranges between red and black to express the percentage of a pure cluster. White hexagonal shapes are empty nodes.266

An additional useful graphical representation based on the 2D SOM lattice is shown in Figures 15 and 18 for NSL-KDD and267

UNSW-NB15 datasets, respectively. The left sub-figures show the 2D lattice adjustment derived from 41D NSL-KDD and 49D268

UNSW-NB15, respectively. The user can zoom in to some regions, such as very dense nodes to be able to have a deeper vision269

into clusters. Moreover, the user can select each cluster (neuron) to get a useful message in the same screen, such as the label270

and the purity of the cluster. This design displays a high-level view of entire 41D for NSL-KDD and 49D for UNSW-NB15 input271

vectors. Preliminary results can confirm that the proposed method produces satisfactory outcomes. In addition, end users can see272

the results of anomaly detection from new monitoring data (i.e., testing set) graphically in Figures 16 and 19, together with the273

numerical results for classification accuracy displayed in Tables 23 and 24 for NSL-KDD and UNSW-NB15, respectively.274

Figures 16 and 19 illustrate the graphical representation of normal and attack traffic, as well as anomaly detection from new275

monitoring data (testing set) for NSL-KDD and UNSW-NB15, respectively. The black hexagons are normal classes that act as276

anomalies because of some new attack data samples from testing set are closer to them than attack classes (i.e., detection phase in277

Algorithm 3). The associated labels can visually help end users for understanding the classification results. The neurons with grey278

colour are empty. Simultaneously, the users can figure out the purity of each clusters (hexagonal nodes) for new monitoring data279

intuitively in Figures 16b and 19b for NSL-KDD and UNSW-NB15, respectively. These graphical representations through neuron280

projections steer the user’s attention towards the most reliable clusters storing either normal or attack data points to drill down281

anomalous data. End users can visually see the results of these figures in parallel, to be able to figure out some hidden knowledge282

in each cluster.283
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(a) Neurons’ labels

(b) Neurons’ purity

Figure 14: Visualization results of the proposed method for NSL-KDD (lattice size 20 × 20)
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Figure 15: A 20 × 20 lattice visualization with user interaction capabilities in NSL-KDD

Finally, a classification is performed on testing sets to determine exact normal and attack categories with a five-fold cross284

validation. We randomly created 30% of the testing set in each validation step. The classification accuracy with the exact number285

of classes in each validation step is presented in Tables 23 and 24 for NSL-KDD and UNSW-NB15, respectively. Table 23 shows286

the number of sampled data together with the percentage of misbehaving samples as anomaly per class in NSL-KDD testing set.287

Obviously, only attack classes misbehave as anomaly, where some of them are closer (more similar) to normal clusters than attack288

ones. According to the experimental results, Probing and U2R have more misbehaved data samples with the average of 11.41%289

and 9.46%, respectively. Overall, the average accuracy and F1-score for new monitoring data (testing set) are 95.45% and 89.03%,290

respectively.291

Table 24 shows the number of sampled data together with the percentage of misbehaving samples as anomaly per class in UNSW-292

NB15 testing set. According to the experimental results, Exploits, Generic, and Fuzzers have more misbehaved data samples with293

the average of 16.48%, 15.53%, and 11.49% respectively. In contrast, Reconnaissance and Shellcode have less misbehaved data294

samples with the average of 4.15% and 2%, respectively. Overall, the average accuracy and F1-score for new monitoring data295

(testing set) are 95.24% and 81.50%, respectively. A future work is needed in the proposed detection phase (see Algorithm 3) by296

replacing a new intelligent reaction mechanism with the threshold-based solution to improve the accuracy and the harmonic mean297

of precision and recall (F1-score) of classification.298

Table 23: The classification performance results on NSL-KDD

The number of data in each class (anomalous data (%))

Testing set Accuracy F1-Score Normal DoS U2R R2L Probing

Test 1 95.39% 88.84% 2833 2286(5.10%) 363(10.41%) 868(10.09%) 414(11.31%)

Test 2 95.57% 89.61% 2903 2233(4.93%) 366(9.92%) 830(9.12%) 432(12.40%)

Test 3 95.33% 88.07% 2929 2218(4.76%) 349(9.34%) 846(7.93%) 422(9.81%)

Test 4 95.55% 89.39% 2887 2255(7.12%) 361(8.41%) 839(6.76%) 422(13.34%)

Test 5 95.39% 89.25% 2896 2213(6.19%) 362(9.23%) 835(10.02%) 458(10.18%)

There is an interesting finding within the experimental results. For instance in NSL-KDD testing set, Probing and U2R classes299
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(a) Neurons’ labels

(b) Neurons’ purity

Figure 16: A neuron visualization of Anomalous neurons (centres) for new monitoring data (lattice size 20 × 20) in NSL-KDD. Black hexagons in (a) are

anomalous centres.
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(a) Neurons’ labels

(b) Neurons’ purity

Figure 17: Visualization results of the proposed method for UNSW-NB15 (lattice size 25 × 25)
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Figure 18: A 15 × 15 lattice visualization with user interaction capabilities in UNSW-NB15

Table 24: The classification performance results on UNSW-NB15

The number of data in each class (anomalous data(%))

Testing set Accuracy F1-Score Normal Backdoor Analysis Fuzzers Shellcode Reconn. Exploits DoS Worms Generic

Test 1 95.25% 82.96% 11100 161(6.11%) 227(5.12%) 1797(13.72%) 125(1.12%) 1031(3.32%) 3327(15.18%) 1174(4.11%) 12(10.13%) 5746(14.17%)

Test 2 95.24% 80.25% 11054 167(6.24%) 209(4.92%) 1757(12.81%) 126(2.56%) 1021(4.09%) 3391(14.19%) 1281(4.44%) 7(12.02%) 5687(16.12%)

Test 3 95.19% 80.37% 11116 177(7.05%) 204(5.66%) 1872(12.02%) 122(1.04%) 1036(4.55%) 3270(17.73%) 1235(5.12%) 12(7.18%) 5656(15.04%)

Test 4 95.31% 82.58% 11136 166(5.41%) 184(6.81%) 1818(10.29%) 104(2.20%) 1053(3.93%) 3330(16.66%) 1230(5.08%) 10(9.93%) 5669(14.55%)

Test 5 95.21% 81.35% 11002 214(6.83%) 195(4.12%) 1821(8.61%) 118(3.11%) 1046(4.87%) 3320(18.62%) 1229(4.43%) 13(10.07%) 5742(17.78%)

with the highest ratio of benign outliers during training (see Table 15) have more anomalies in the testing sets. In contrast, DoS300

class with the lowest ratio of benign outlier has relatively the lowest anomalous data samples. On the other hand for UNSW-NB15301

testing sets, Exploits and Generic classes with the largest portion of benign outliers during training (see Table 19) have the most302

anomalies. In contrast, Shellcode and Reconnaissance classes with the least amount of benign outliers during training, have the303

lowest amount of anomalies in the testing sets.304

7. The Effectiveness of the Proposed IDS through Usability Test305

The main contribution of this research is finding a better way for detecting and visualizing intrusions and anomalies. End306

users would prefer to work with usable IDSs to be able to observe and track the status of the clusters labelled as normal or attack307

together with anomalies when new monitoring data enter. To ensure that an IDS can work properly in terms of the visualization308

capabilities without confusing the user, usability test should be performed. To measure the performance of the usability, we are309

specifically interested in two parameters: learnability (i.e., How easy is it for users to accomplish tasks the first time they encounter310

the design?) and satisfaction (i.e., How pleasant is it to use the design?) Adhy et al. (2017). These two usability parameters can311

meet our goal in this research as visualizing normal and attack traffic, and anomalies in a proper manner to end users. In our312

research, we gathered ten participators that are experts in IDS design and network security. The learnability and the satisfaction313

parameters are measured by giving out the questionnaire to participators, then counting the amount of which user can use, learn,314
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(a) Neurons’ labels

(b) Neurons’ purity

Figure 19: A neuron visualization of Anomalous neurons (centres) for new monitoring data (lattice size 25 × 25) in UNSW-NB15. Black hexagons in (a)

are anomalous centres.
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and understand the proposed IDS easily. We prepared the questionnaire with 14 questions (see Table 25), in which the first four315

questions are about learnability and the rested for satisfaction.316

Table 25: Questionnaires for Usability Testing

No. Question

Learnability Questions Adhy et al. (2017):

1 This system design is learnable.

2 I can use this system design without any help from technician or developer.

3 The information and analyses about nodes have been provided well and very understandable.

4 The graphic about data received in every node has been provided well and very understandable.

Satisfaction Questions by System Usability Scale (SUS) method Brooke et al. (1996):

5 I think that I would like to use this system frequently.

6 I found the system unnecessarily complex.

7 I thought the system was easy to use.

8 I think that I would need the support of a technical person to be able to use this system.

9 I found the various functions in this system were well integrated.

10 I thought there was too much inconsistency in this system.

11 I would imagine that most people would learn to use this system very quickly.

12 I found the system very cumbersome to use.

13 I felt very confident using the system.

14 I needed to learn a lot of things before I could get going with this system.

To analyse the results, we used the seven points of Likert scale including 1 = strongly disagree, 2 = disagree, 3 = almost317

disagree, 4 = neutral, 5 = almost agree, 6 = agree, and 7 = strongly agree. Both learnability and satisfaction criteria are measured318

using the ideal and the actual scores as follows Adhy et al. (2017):319

Ideal Score = The biggest score scale× The number of respond (12)

Actual Score = The number of score of each question (13)

Percent =
Actural Score

Ideal Score
× 100% (14)

The questionnaires results are summarized in Table 26. From the first four questions, learnability is calculated as (95.71 +320

92.85 + 100 + 80)/4 = 92.14%. Similarly, the satisfaction is calculated based on the last ten questions as (92.85 + 77.15 + 87.14 +321

84.28 + 82.80 + 72.86 + 88.57 + 72.86 + 84.28 + 81.42)/10 = 82.42%. The collected scores for learnability show that the 92.14% is322

reasonable outcome for this design. The only weak score goes for question 4 by 80% about the abstract information and knowledge323

in each cluster. It is suggested that information about clusters would be better to develop informatively, such as some descriptive324

and inferential analyses on each. The participants also expressed that we have to embed a simple and straightforward dashboard to325

present the numerical results about the number of benign outliers and anomalies beside graphical representations. It was demanded326

more when we had many clusters (neurons) that entirely occupied the screen. The collected scores for satisfaction show that the327

82.42% is a good achievement for this first design. The lowest scores are for questions 6, 10, and 12. The important comments from328

participators for satisfaction is about reading and understanding the 2D visualization for anomaly detection by user interaction329

capabilities. If the number of visualized nodes are reasonably low, they can interact better with the system. In contrast, the330
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large number of nodes are not user friendly to drill down in each. The participants suggested to use some pop-up messages for331

proposing additional useful knowledge for each classes, in particular when the number of anomalous clusters and the misbehaved332

new monitoring data samples are increasing over the time. It helps end users to understand and learn the trend of classification333

(prediction) for new monitoring data samples. At end, a few participators asked for an advanced visualization with a proper334

connection between neurons’ label, neurons’ purity, 2D lattice visualization and anomalous data samples. For instance, they like to335

get more insights by zooming into Figure 15 or 18 and select one neuron, then this neuron be fired and highlighted in some other336

figures.337

Table 26: Questionnaires Result

Question
Participants

Actual Score Percent (%)
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

1 7 7 7 6 7 6 7 7 6 7 67 95.71

2 7 7 7 5 6 7 7 6 6 7 65 92.85

3 7 7 7 7 7 7 7 7 7 7 70 100

4 6 5 6 5 6 6 6 5 5 6 56 80

5 7 6 6 7 7 7 6 6 6 7 65 92.85

6 1 1 1 2 2 2 1 1 3 2 16 77.15

7 6 7 7 7 7 6 5 5 6 5 61 87.14

8 5 6 5 6 7 5 6 7 7 5 59 84.28

9 5 6 6 7 6 6 5 5 6 6 58 82.80

10 1 1 2 2 3 3 2 2 2 1 19 72.86

11 6 6 6 7 7 7 6 5 5 7 62 88.57

12 2 3 3 2 2 1 1 2 2 1 19 72.86

13 5 5 6 6 6 7 7 5 6 6 59 84.28

14 5 5 6 6 7 7 5 5 6 5 57 81.42

8. Discussion on the proposed visualization-based IDS338

From the visualization point of view, the proposed method offers a complete and intuitive visualization of network traffic with339

a variety of patterns (normal, known and unknown attacks) by depicting the general overview of each formed clusters, the type of340

clusters, the quality of each neuron (cluster) by purity metric, the distribution of 2D lattice and the neighbours’ similarities and341

dissimilarities in one useful plot. The proposed visualization-based IDS could successfully provide the network administrator with342

a snapshot of network traffic into separated categories in order to identify the intrusions and anomalous network traffic visually343

rather than sending a massive amount of alerts to administrators. On the other hand, the proposed graphical representation of the344

multi-dimensional and the high volume of network traffic provides less computational costs as compared to dimensionality reduction345

techniques that are widely applied. To do so, we employed SOM capabilities for visualization without additional computational346

costs. Moreover, the proposed graphical representation tools (Figures 14, 15, and 16 for NSL-KDD dataset and Figures 17, 18,347

and 19 for UNSW-NB15 dataset) can provide a general, easy and understandable overview of the traffic within a network for348

even an inexperienced network administrator to identify categories (clusters), normal and anomalous traffic data just having a349

quick look at the proposed projections. Moreover, a numerical analysis has been done (Tables 23 and 24 for NSL-KDD and350

UNSW-NB15, respectively) to add more knowledge beside the graphical representations. Table 27 compares the characteristics of351

the visualization-based IDSs. The challenge of large-data visualization, which involves both human and machine limitations, will352
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remain relevant in the foreseeable future. As a future work, visual analytic features are needed to perform an interactive visual353

analysis on the network traffic data, such as through highlighting, brushing, and filtering of data or dimensions.354

Convergence of the proposed visualization-based classifier is studied for several frequently used synthetic datasets detailed in Table355

1 and Figure 4 in Section 5.1.1. Afterwards, we applied the proposed method for the benchmarking datasets in intrusion detection356

problems in Sections 5.2 and 5.3 for NSL-KDD and UNSW-NB15, respectively. To complete our extensive analysis, we employed357

two new benchmarking datasets (AAGM and VPN-nonVPN) in the next Section (refer to Section 9). Experimental results confirm358

the accuracy and the robustness of the proposed approach. On the other hand, the feasibility and efficiency of the proposed359

method was compared with some existing algorithms. The obtained results in Section 5 express that the proposed method is able360

to construct more accurate and well-tuned SOM neurons. Finally, Sections 6 and 7 helped us to discover and figure out users361

feelings and experiences while they were interacting with. It introduces new research directions and challenges within user-centered362

IDS design.363

Table 27: Comparing Visualization Capabilities for IDS design

Contribution

Visualization

method

Visualizing

Anomalous Nodes

2D Lattice

Visualization

Intrusion

Relationships

User Interaction

with 2D plot

Extra Cost

for Visual. Convergence

Jia et al. (2016) PCA 7 7 3 less 3 NSL-KDD

la Hoz et al. (2015) PCA+FDR+PSOM 7 7 7 No 3 NSL-KDD

Luo & Xia (2014) FASVFG Classifier 7 7 3 No 3 KDDcup99

Corchado & Álvaro Herrero (2011) SOM+CMLHL+CCA 3 3 7 less 3 GICAP-IDS, DARPA

Kiziloren & Germen (2009) SOM+PCA 7 3 7 No 3 KDDCup99

Proposed method A modified SOM 3 3 3 middle 7

NSL-KDD, UNSW-NB15

AAGM, VPN-nonVPN

9. Analysis on the recent and custom network traffic datasets364

There has been much effort from IDS/IPS research communities to construct new datasets to present the specific and new types365

of intrusions. The main reason is that some current benchmarking datasets such as KDD and DARPA are suffering from the lack366

of traffic diversity and volumes, and do not cover the variety of known attacks Hamed et al. (2018). NSL-KDD and UNSW-NB15367

IDS datasets could significantly improve the old IDS benchmarking datasets in terms of traffic volumes and diversity. However,368

some other researchers have been trying to generate and introduce novel datasets due to the nature of computer networks and369

Internet that they most likely bring new patterns over time. In this section, we employed two recently used network traffic datasets,370

generated and published by University of New Brunswick (UNB) UNB (2018) including Android Adware and General Malware371

(AAGM), and VPN-nonVPN datasets.372

9.1. Android Adware and General Malware (AAGM)373

AAGM is a new network traffic set with nine flow-based network traffic features for characterizing three types of malwares:374

benign, adware, and general malware Lashkari et al. (2017). AAGM dataset is captured by installing the Android apps on the real375

smartphones on NEXUS 5. The dataset is generated from 1900 applications with the following three categories:376

1. Benign (1500 apps): GooglePlay market (top free popular and top free new) in 2015 and 2016.377

2. Adware (250 apps): Airpush, Dowgin, Kemoge, Mobidash, and Shuanet378

3. General Malware (150 apps): AVpass, FakeAV, FakeFlash/FakePlayer, GGtracker, and Penetho379
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This dataset includes 75 features with apps collected between 2008 and 2016. For more information about this dataset and the380

process of traffic generation refer to the original paper in Lashkari et al. (2017). There is a dataset including 631,955 instances with381

471,597 benign, 155,613 adware, and 4,745 general malware instances. We extracted one-fifth (126,391 instances) of this big dataset382

randomly for modelling, then we divided this derived dataset to 70% (55,297 instances) for training and 30% (23,698 instances) for383

testing. We implemented a 10-fold cross validation in our experiment to propose the best achieved outcomes. A comparison with384

the proposed classifier in Lashkari et al. (2017) is given in Table 28 based on the total accuracy, DR, FPR and F1-Score, as well as385

the number of benign outliers for each class.386

Table 28: The results of overall training performance (%) on AAGM

The number of benign outliers

Method Accuracy Precision FPR F1-Score Benign Adware General Malware

Proposed method (15 × 15) 93.35 93.11 3.73 88.65 5.15 % 28.65 % 39.66 %

Lashkari et al. (2017) 91.41 91.24 0.085 N/A – – –

Figures 20a and 20b show the SOM neurons’ labels and purity after training. Similarly, Figures 20c and 20d show the labels and387

purity for anomaly detection during testing phase. The way of interpreting these figures were explained in details in Section 5.5 and388

5.6. A graphical representation based on the 2D SOM lattice is shown in Figure 22a for AAGM dataset. This illustration shows389

the 2D lattice adjustment derived from 79D dataset. We assumed Benign instances as normal and others as abnormal because the390

benign instances are less misbehaved than others. The user can zoom into some regions, such as very dense and sparse nodes to391

have a deeper vision on each cluster. In the end, Table 29 presents the classification performance results on testing data.392

Table 29: The classification performance results on AAGM

Criteria AAGM’s labels

Benign Adware General Malware

Accuracy (%) 92.92 87.65 88.51

Precision (%) 90.33 83.67 87.53

FPR (%) 1.29 5.52 4.04

F1-Score (%) 85.39 83.77 82.14

9.2. ISCX VPN-nonVPN393

We use ISCX VPN-nonVPN traffic dataset Draper-Gil et al. (2016) that consists of captured traffic of different applications394

with 24 features. The captured protocols and applications are Web Browsing, Email, Chat, Streaming, File Transfer, VOIP, and395

P2P. For each traffic types (e.g., VOIP, P2P, etc.), there are VPN and non-VPN traffic categories. For more information about this396

dataset and the process of traffic generation refer to the original paper in Draper-Gil et al. (2016). We used two different datasets397

as follows:398

1. 15-sec VPN and non-VPN instances: 9,793 VPN and 8,965 non-VPN samples (total: 18,758).399

2. 120-sec VPN and non-VPN instances: 5,631 VPN and 5,151 non-VPN samples (total: 10,782).400

We divided these datasets to 70% for training and 30% for testing. After that, we implemented a 10-fold cross validation in our401

experiment to propose the best achieved outcomes. A comparison with the proposed classifier in Draper-Gil et al. (2016) is given402

in Table 30 based on the total Recall, Precision, FPR and Accuracy, as well as the number of benign outliers for each class.403
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(a) Neurons’ labels after training (b) Neurons’ purity after training

(c) Neurons’ labels for anomaly detection (d) Neurons’ purity for anomaly detection

Figure 20: A neuron visualization for AAGM dataset (lattice size 15 × 15).
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(a) Neurons’ labels after training (b) Neurons’ purity after training

(c) Neurons’ labels for anomaly detection (d) Neurons’ purity for anomaly detection

Figure 21: A neuron visualization for VPN-nonVPN (15-sec) dataset (lattice size 9 × 9).
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Table 30: The results of overall training performance (%) on ISCX VPN-nonVPN

The number of benign outliers

Method Recall Precision FPR Accuracy VPN non-VPN

Proposed method (9 × 9) (15-sec) 91.96 92.62 6.04 90.15 23.89 % 47.11 %

Draper-Gil et al. (2016) (15-sec) 87.45 89.8 N/A N/A – –

Proposed method (9 × 9) (120-sec) 91.15 91.01 5.31 90.19 38.46 % 57.02 %

Draper-Gil et al. (2016) (120-sec) 85.5 87.35 N/A N/A – –

(a) A 15 × 15 lattice visualization15 for AAGM dataset (b) A 9 × 9 lattice visualization for VPN-nonVPN dataset (15-sec)

Figure 22: 2D lattice visualizations with user interactions for AAGM and VPN-nonVPN datasets

Figures 21a and 21b show the SOM neurons’ labels and purity after training. Similarly, Figures 21c and 21d show the labels404

and purity for anomaly detection during testing phase. A graphical representation based on the 2D SOM lattice is shown in Figure405

22b for VPN-nonVPN dataset. This illustration shows the 2D lattice adjustment derived from 24D dataset. We assumed VPN406

instances as normal and nonVPN instances as abnormal. In the end, Table 31 presents the classification performance results on407

testing data.408

Table 31: The classification performance results on VPN-nonVPN

Criteria VPN-nonVPN’s labels

VPN non-VPN

Accuracy (%) 91.06 88.12

Precision (%) 90.36 84.80

FPR (%) 4.37 2.78

F1-Score (%) 88.13 89.14
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10. Conclusions409

This research work presented a novel anomaly-based intrusion detection system by visualization capabilities using modified Self-410

Organizing Map (SOM) in the presence of benign outliers. The benign outliers refer to low-frequent data patterns resulting in weaker411

detection stability and robustness. To deal accurately with low-frequent patterns to not affect negatively on IDS performance, the412

proposed method considered benign outliers and rested normalities separately in the training phase. The experimental results show413

that the proposed approach performs well and effectively as compared to some frequently used existing approaches. Consequently,414

the proposed method visualizes useful information and insights about training and testing results. The proposed visualization415

capabilities enable better analysis and response intuitively by considering the limitations in human cognitive ability when dealing416

with IDS including the large volumes of information which are not possible to fit all the requirements into one screen.417

We can build larger and higher-resolution visual representations, however the limitations of human visual capabilities prevent the418

effectiveness of extreme-scale visual analytics. We would consider the challenges of large-scale visualization in IDS in future work.419
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