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Abstract  

Transcranial direct current stimulation (tDCS) is a novel treatment option for major depression 

which could be provided as a first-line treatment. tDCS is a non-invasive form of transcranial 

stimulation which changes cortical tissue excitability by applying a weak (0.5-2 mA) direct 

current via scalp electrodes. Anodal and cathodal stimulation leads to depolarisation and 

hyperpolarisation, respectively, and cumulative effects are observed with repeated sessions. 

The montage in depression most often involves anodal stimulation to the left dorsolateral 

prefrontal cortex. Rates of clinical response, remission, and improvements in depressive 

symptoms following a course of active tDCS are greater in comparison to a course of placebo 

sham-controlled tDCS. In particular, the largest treatment effects are evident in first episode 

and recurrent major depression, while minimal effects have been observed in treatment-

resistant depression. The proposed mechanism is neuroplasticity at the cellular and molecular 

level. Alterations in neural responses have been found at the stimulation site as well as 

subcortically in prefrontal-amygdala connectivity. A possible mediating effect could be 

cognitive control in emotion dysregulation. Additional beneficial effects on cognitive 

impairments have been reported, which would address an important unmet need. The tDCS 

device is portable and can be used at home. Clinical trials are required to establish the efficacy, 

feasibility and acceptability of home-based tDCS treatment and mechanisms. 
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Introduction 

Major depression is a common mental health disorder, affecting about 350 million people 

worldwide with a lifetime prevalence of about 1 in 7 adults, and is predicted to be the leading 

contributor to the global burden of disease (Kessler and Bromet, 2013; Vos et al., 2015; 

Whiteford et al., 2013). The disorder is the largest contributor to non-fatal health loss and the 

most significant precursor for suicide (Vos et al., 2015; World Health Organization [WHO] 

2015). There is a significant socio-economic challenge with the cost being about £9 billion in 

the UK in 2000 (Thomas and Morris, 2003) and expected to be as much as £12 billion by 2026 

in England (McCrone et al., 2008).  

The most common forms of treatments are antidepressant medication and psychotherapy. 

However, clinical response to antidepressant medication (Rush et al., 2006) or to 

psychotherapy (Cuijpers et al., 2014) is less than 50% following a full course of either 

treatment. Side effects from antidepressant medications are common, such as sexual 

dysfunction, sleepiness, and weight gain (Cascade et al., 2009; Ferguson, 2001), yet are often 

under-reported and can lead to discontinuation (Cipriani et al., 2018; Sinyor et al., 2020). 

Onset of clinically noticeable effects can take several weeks for antidepressant medication as 

well as psychotherapy, and access to treatment can be limited, in particular for psychotherapy 

(Cipriani et al., 2018; Pence et al., 2012). Providing another treatment option would be benefit 

patients who are unable to take current treatments or who prefer an alternative form of 

treatment. Transcranial direct current stimulation is a novel, non-invasive form of 

neurostimulation that is a potential first line treatment option for major depression. 

The present review evaluates the current evidence for the efficacy and adverse events 

associated with a course of tDCS treatment in major depression, potential mechanisms, 

neuropsychological effects, and initial studies of predictive biomarkers of clinical outcome. 

What is transcranial direct current stimulation (tDCS)? 
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The application of electrical stimulation for therapeutic effect has been reported since the first 

century. Placing a live electric torpedo fish over the scalp, which generates a strong electric 

current, was found to create a brief stupor and to alleviate pain from headache. In 1804, Aldini 

reported that applying electric currents to the scalp could improve melancholia (Priori, 2003). 

Non-invasive brain stimulation (NIBS) refers to stimulation that can be given without the need 

of an implant. tDCS applies a weak direct electric current through electrodes placed on the 

scalp, which modulates neuronal resting membrane potential but does not directly lead to 

neuronal discharge (Nitsche & Paulus, 2000). Transcranial alternating current stimulation 

(tACS) is similar to tDCS, but consists of a sinusoidal alternating current which can be provided 

at a selected frequency to entrain intrinsic oscillation patterns (Matsumoto & Ugawa, 2017), 

and transcranial random noise stimulation (tRNS) consists of an alternating current with a 

random frequency and amplitude (Terney et al., 2008). 

Transcranial magnetic stimulation (TMS) is another form of non-invasive brain stimulation. 

TMS uses a magnetic coil to generate a local electric current through electromagnetic 

induction. This is applied to a focal brain region leading to depolarization or hyperpolarization, 

neuronal excitation or inhibition, respectively (Hallet, 2000). In clinical practice, repetitive TMS 

(rTMS) that can be high frequency or low frequency is most common, while theta-burst TMS 

(TBS) is demonstrating potential efficacy (Mutz et al., 2019). 

Vagus nerve stimulation (VNS) and deep brain stimulation (DBS) are forms of invasive brain 

stimulation techniques. In VNS, an electrical stimulation is delivered to the vagus nerve via a 

stimulator implanted under the skin, and DBS involves the implantation of electrodes in 

specific areas in the brain.  

Electroconvulsive therapy (ECT) is applied through electrodes placed on the scalp, which 

induce general convulsive activity leading to a seizure and is provided under a general 

anaesthetic. While it could be considered to be a non-invasive form of brain stimulation, ECT 
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is usually placed in between categories as it does not require a surgical procedure but is more 

invasive than tDCS and TMS, leads to a seizure, and is applied under anaesthesia. 

All of these methods can be grouped within the umbrella term of transcranial electric 

stimulation (TES). tDCS has benefits in cost-effectiveness, portability, and a low side effect 

profile (Tortella et al., 2015). 

How doe tDCS affect neuronal activity? 

The current is typically in the range 0.5 – 2 mA and is applied through electrodes placed on 

the scalp with a conductive substance such as a saline solution or gel. The current flows from 

the anode electrode to the cathode electrode (and electrons flow from the cathode to the 

anode). The stimulation is non-focal. The surface area of the sponge-electrode used in studies 

in depression are typically large, approximately 25 – 35 cm², and sponge-electrode size can 

range from 3.5 – 100 cm² (Dedoncker et al., 2016; Turi et al., 2014).  

The current passes through the skin, subcutaneous tissue and skull with high impedance. It is 

estimated that 25 – 50 % of the given current reaches through the cerebrospinal fluid (CSF) 

to gray matter (Rush & Driscoll 1968; Vöröslakos et al., 2018). Factors such as area of 

stimulation, electrode size, distance between electrodes, as well as individual differences 

contribute to the final current intensity (Dedoncker et al., 2016; Rush & Driscoll 1968; Turi et 

al., 2014; Woods et al., 2015). 

Anodal stimulation typically leads to depolarisation of the neuronal resting membrane potential 

and to increased potential firing of cells. Cathodal stimulation tends to inhibit cortical 

excitability through hyperpolarisation to decreased potential cell firing (Creutzfeldt et al., 

1962). tDCS changes neural activity by modulating the resting membrane potential, rather 

than directly stimulating an action potential. However, factors including orientation of the 
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neuronal axon to the current and neuron type impact on the activity and directionality (Jefferys, 

1981).   

Does tDCS affect neuroplasticity? 

Neuroplasticity is a general term that refers to our ability to learn as a result of cellular and 

molecular changes in neurons leading to alterations in regional brain activity or structure.  

Synaptic plasticity includes synaptogenesis, forming and fitting new synapses together, and 

non-synaptic plasticity includes neural migration and neurogenesis. In brain imaging, this can 

be observed by persistent changes in regional neurofunction or neuroanatomy (Zatorre et al., 

2012). While neuroplasticity has typically been described in rehabilitation following brain injury, 

it is also seen as a mechanism for treatments, such as antidepressant medication, 

psychotherapy, and mindfulness (Davidson & McEwen, 2012; Lomas et al., 2015; Fu et al., 

2020). 

The neurophysiological effects of tDCS typically last beyond the immediate stimulation period 

(Nitsche et al., 2003). Long-term potentiation (LTP) describes the sustained increase in 

synaptic transmission that is the cellular correlate of learning and memory, first described in 

neuronal cells in the hippocampus (Bliss & Lømo, 1973). Cortical LTP and long-term 

depression (LTD)-like changes are modulated by glutamatergic and GABAergic neurons (Trepel 

& Racine, 2000). Anodal tDCS-enhanced excitability in the primary motor cortex is LTP-like, 

which is dependent on N-methyl-D-aspartate (NMDA) receptor and calcium channel activity 

(Leibetanz et al., 2002; Monte-Silva et al., 2013). Stimulation strength, duration and direction 

have a non-linear relationship impact on whether excitatory or inhibitory effects are generated 

(Batsikadze et al., 2013; Jamil et al., 2017; Monte-Silva et al., 2013).  

Anodal tDCS stimulation to the primary motor cortex (M1) results in a significant decrease in 

gamma-aminobutyric acid (GABA) concentration in the stimulated region as measured by 

magnetic resonance spectroscopy (MRS), suggesting a mediating effect that is in part due to 
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reduced GABAergic inhibition, while cathodal tDCS stimulation is associated with a significant 

decrease in glutamate with a seemingly counterintuitive correlated decrease in GABA, indicating 

a mediating effect of a reduction in excitatory glutamatergic function. Effects on GABA levels have 

been observed in the stimulated primary motor cortex as well as in the non-stimulated but 

functionally connected contralateral motor cortex demonstrating that neurochemical changes are 

also evident outside of the targeted region during plasticity induction (Bachtier et al., 2018).  

LTP is further dependent on the neurotrophin, brain-derived neurotrophic factor (BDNF), in 

motor skill learning (Fritsch et al., 2010). Anodal tDCS applied to the primary motor cortex 

enhanced motor learning as long as activity-dependent BDNF secretion was present, which 

was evident in animal studies and behaviourally in human participants with the BDNF 

Val66Met polymorphism.  

In neuroimaging studies, effects have been observed as changes in brain function, for 

example tDCS modulates distinct resting state networks as measured by functional magnetic 

resonance imaging (fMRI) (Keeser et al., 2011). Active anodal tDCS applied to the left 

dorsolateral prefrontal cortex has been associated with significant changes in connectivity in 

the default mode network, self-referential network and frontal-parietal networks in comparison 

with sham tDCS.  

Does tDCS treatment improve depressive symptoms? 

Meta-analyses of sham placebo controlled RCTs 

In our meta-analysis, we examined the efficacy and acceptability of non-invasive brain 

stimulation in adults with major depressive disorder or bipolar depression (Mutz et al., 2018). 

We obtained data from 56 randomised sham-controlled trials which included a total of 131 

treatment arms and 66 treatment comparisons, consisting of tDCS, TMS (repetitive TMS, deep 
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TMS, and synchronised TMS) and theta-burst stimulation (TBS), without co-initiation of 

another treatment.  

3,058 participants (mean age = 45.0 years; 61.7 % female) had been randomly assigned to 

active treatment (n = 1,598) or sham therapy (n = 1,460). In our main analysis of response 

rates, defined as a minimum of 50% reduction in symptom scores, at the primary study 

endpoint, we found evidence of antidepressant efficacy for high frequency rTMS over the left 

dorsolateral prefrontal cortex (OR = 3.75, 95% CI 2.44 to 5.75), right-sided low frequency 

rTMS (OR = 7.44, 95% CI 2.06 to 26.83), bilateral rTMS (OR = 3.68, 95% CI 1.66 to 8.13), 

deep TMS (OR = 1.69, 95% CI 1.003 to 2.85), intermittent TBS (OR = 4.70, 95% CI 1.14 to 

19.38) and tDCS (OR = 4.17, 95% CI 2.25 to 7.74). We did not find evidence that continuous 

TBS, bilateral TBS or synchronised TMS were more efficacious than sham. We also did not 

find evidence of differences in all-cause discontinuation rates between active and sham 

treatment for any of the protocols. 

tDCS was associated with higher response rates (k = 9, OR = 4.17, 95% CI 2.25 to 7.74), 

higher remission rates (k = 8, OR = 2.88, 95% CI 1.65 to 5.04), and lower post-treatment 

depression severity scores (k = 7, Hedge’s g = -0.76, 95% CI −1.31 to −0.21) relative to sham 

therapy. The overall number of patients included in the tDCS trials was n = 456 (n = 246 

participants randomised to active treatment and n = 210 participants randomised to receive 

sham therapy). Sample sizes of the trials varied substantially, ranging from 10 to 151 

participants (median = 35 participants, IQR = 30.25). Most trials (80%) recruited only 

participants with major depressive disorder, although one trial recruited exclusively 

participants with bipolar depression. tDCS was applied in an outpatient setting, and trials had 

excluded patients who had reported psychotic symptoms. In 7 out of 10 trials, tDCS was 

applied as monotherapy; in 1 trial, tDCS was added to stable pharmacotherapy, and in 2 trials, 

tDCS was given as monotherapy or augmentation treatment.  
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The number of tDCS treatment sessions ranged from 5 – 22 (median = 10, IQR = 5.75), 

applied over the course of 1.5 – 10 weeks (median = 2, IQR = 3.63). Treatment duration was 

20 minutes in 6 out of 10 trials and 30 minutes in the remaining 4 trials. The anode was applied 

over F3 (according to the EEG 10/20 coordinate system), generally referred to as left 

dorsolateral prefrontal cortex, while the cathode/reference electrode was located over F4 (6/10 

trials), FP2 (3/10 trials) or F8 (1 trial). tDCS was most frequently applied with a current strength 

of 2 mA (in 70% of trials), although 3 trials applied tDCS at 1 mA. 70% of trials used an 

electrode size of 35 cm2 and three trials used an electrode size of 25 cm2. Current density 

ranged from 0.028 – 0.080. 

In subgroup analyses, we found evidence that tDCS was associated with higher response 

rates only in trials which had recruited participants with a non-treatment resistant form of 

depression or which had recruited patients with either treatment resistant or non-treatment 

resistant depression. We did not find evidence of differences in all-cause discontinuation rates 

between active treatment and sham treatment in any of the treatment protocols. 

In a subsequent meta-analysis, we estimated the comparative clinical efficacy and 

acceptability of non-surgical brain stimulation treatments more broadly, using network meta-

analysis (Mutz et al., 2019). We included clinical trials in which adult patients with major 

depressive disorder or bipolar depression were randomly assigned to ECT, TMS (repetitive, 

accelerated, priming, deep, and synchronised), TBS, magnetic seizure therapy, tDCS, or 

sham therapy.  

113 trials (262 treatment arms) that randomised n = 6,750 patients (mean age = 47.9 years, 

59% women) met our inclusion criteria. The most studied treatment comparisons were high 

frequency left rTMS and tDCS compared to sham therapy (40 and 11 treatment comparisons, 

respectively). In our primary analysis of response rates, 10 out of 18 treatment protocols were 

associated with higher response rates relative to sham therapy: bitemporal ECT (OR = 8.91, 
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95% CI 2.57 to 30.91), high dose right unilateral ECT (OR = 7.27, 95% CI 1.90 to 27.78), 

priming TMS (OR = 6.02, 95% CI 2.21 to 16.38), magnetic seizure therapy (OR = 5.55, 95% 

CI 1.06 to 28.99), bilateral rTMS (OR = 4.92, 95% CI 2.93 to 8.25), bilateral TBS (OR = 4.44, 

95% CI 1.47 to 13.41), low frequency right rTMS (OR = 3.65, 95% CI 2.13 to 6.24), intermittent 

theta-burst stimulation (OR = 3.20, 95% CI 1.45 to 7.08), high frequency left rTMS (OR = 3.17, 

95% CI 2.29 to 4.37), and tDCS (OR = 2.65, 95% CI 1.55 to 4.55).  

Active tDCS treatment was also associated higher remission rates (OR = 2.18, 95% CI 1.18 

to 4.04) and lower post-treatment depression severity scores (SMD = -0.55, 95% CI -0.96 to -

0.14) relative to sham treatment. All treatment protocols included in this study were at least as 

acceptable as sham treatment, estimated from all-cause discontinuation (i.e. discontinuation 

of treatment for any reason). We did not examine specific undesired and adverse effects in 

this study, and future research should systematically evaluate specific cognitive and adverse 

effects associated with these treatment modalities (Kiebs et al., 2019). 

There is a suggestion of a synergistic potential of tDCS with antidepressant medication 

(Brunoni et al., 2013; Shiozawa et al., 2013).  Combination of tDCS with an antidepressant 

medication, sertraline, demonstrated a significantly greater early improvement in depressive 

symptoms following 2 weeks of treatment in comparison with placebo only, sertraline only, 

and tDCS only treatment arms. Factor analysis revealed a main effect of tDCS, indicating that 

this was driving the initial antidepressant effect (Brunoni et al., 2013). Meron et al. (2015) 

meta-analysis similarly found active tDCS to be superior to sham tDCS in the treatment of 

depression, ranging from 1 – 4 weeks of treatment. However, an overall benefit of tDCS 

combined with antidepressant medication was not observed. The observation of an early 

improvement in depressive symptoms is an important potential advantage of tDCS relative to 

current treatment options for depression. 

Recent clinical trials 
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Brunoni et al. (2017a) investigated the efficacy of the antidepressant medication, escitalopram 

(a selective serotonin-reuptake inhibitor), and tDCS, in patients with major depressive 

disorder. Participants were enrolled into a non-inferiority, parallel, placebo-controlled trial. 

There was random allocation to one of three treatment arms for 10 weeks: 1) tDCS group: 

active tDCS and placebo medication (n=91), 2) escitalopram group: sham tDCS and 

escitalopram (n=94), and 3) placebo group: sham tDCS and placebo medication (n=60). Active 

anodal tDCS was administered to the left DLPFC at 2 mA for 30 minutes per session, with 

sessions on five consecutive weekdays in the first three weeks, and one session per week for 

the remaining seven weeks. Escitalopram was prescribed daily at 10 mg for the first three 

weeks and then increased to maximum dose of 20 mg daily until week 10. Clinical 

improvements were highest for escitalopram, followed by tDCS and then placebo. As the 

improvement in depressive symptoms in the tDCS group was not 50% or less than in the 

escitalopram group compared to placebo, the findings failed to show non-inferiority of tDCS 

as compared with escitalopram.  

Loo et al. (2018) conducted a two-arm, parallel, randomised, sham-controlled trial to compare 

the efficacy of tDCS as treatment for unipolar and bipolar depression. All patients were in a 

current depressive episode and had a diagnosis of recurrent depression, with historic 

treatment profiles indicating that many had a form of depression approaching treatment 

resistance. Participants in both unipolar and bipolar samples were randomised to receive 

either active or sham tDCS for 5 consecutive weekdays over a 4-week period. tDCS was 

administered for 30 minutes with the anode centered over the left DLPFC. Active tDCS was 

delivered at 2.5 mA, whilst sham tDCS was set at 0.034 mA for the majority of the session (a 

current strength thought to be a negligible) with a 10 second ramp up to 1 mA at the start of 

the session, followed by a 60 second ramp down; this was reversed at the end of the session. 

However, there was no significant difference in the rates of response or remission in the sham 

and active tDCS treatment groups. Loo et al. (2018) suggested that the low current of the 

sham tDCS was sufficient to lead to an improvement in depressive symptoms, however the 
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clinical history of participants seemed to be approaching a treatment-resistant form of 

depression, which could have contributed to the low response rates. 

What are the adverse effects of tDCS? 

Brunoni et al. meta-analysis (2011a) reported that the most common adverse effects are 

itching (39.3% vs. 32.9%, p>0.05) and tingling (22.2% vs. 18.3%, p>0.05) followed by 

headache (14.8% vs. 16.2%, p>0.05), burning sensation (8.7% vs. 10%, p>0.05) and 

discomfort (10.4% vs. 13.4%, p>0.05) in active tDCS as compared to sham tDCS, 

respectively. The summary is from 209 studies, consisting of 3,836 participants, in which about 

117 studies (56%) had reported side effect symptoms in some form, reflecting also how limited 

reporting of adverse effects had been in early studies (Brunoni et al., 2011a). Additional side 

effects also include headache after a tDCS session (11.8%), nausea (2.9%) and insomnia 

(0.98%) found in a study of 102 patients. Those with a history of migraines appeared to 

experience this side effect to a significantly higher degree though (55.6%), and could be 

considered an exclusionary consideration in future studies (Poreisz et al., 2007). Mild skin 

redness at the site of the electrode, which resolves following stimulation, is commonly reported 

as an issue that affects blinding in sham placebo-controlled trials (Brunoni et al., 2011a; 

Guarienti et al., 2014. Ezquerro et al., 2016).  

Erythema or redness is likely related to local vasodilatory skin changes rather than damage 

(Durand et al., 2002). In rare cases, skin lesions have been produced following poor electrode 

skin contact (Palm et al., 2014; Rodríguez et al., 2014). Diminishing electrode density, such 

as by increasing the size of the electrode, and reducing electrical resistance, such as by using 

rubber electrodes covered with sponge and conductive substance, e.g. saline, at the site can 

improve contact (Woods et al., 2015). MRI studies have not detected oedema or injury in the 

blood-brain barrier or cerebral tissue following tDCS (Nitsche et al., 2004b). Surface skin 
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lesions are not attributable to brain injury as electrochemical reactions produced at the skin 

are not expected to diffuse into the brain (Bikson et al., 2009). 

A potentially serious adverse event is treatment-emergent mania or hypomania. From a 

sample of 231 participants, 14 participants were observed to develop hypomania (n = 11) or 

mania (n = 3), following either active (n=13) or sham (n=1) tDCS in participants with bipolar 

depression (n=4) or unipolar depression (n=10) (Brunoni et al., 2017b). Most had also been 

taking adjunctive medication (n=13), namely antidepressant medication and mood stabilisers, 

whereby symptoms resolved through withholding treatment for a few days, medication dosage 

adjustment, additional pharmacotherapy or by themselves (Brunoni et al., 2011a, 2017b). 

Charge densities applied in most human clinical studies (range: 171 C/m² - 480 C/m²) are well 

below the threshold shown to cause tissue damage in rats (above 52,400 C/m²), which is at 

least 100 times higher (Liebetanz et al., 2009). The threshold might be even higher, as no 

tissue damage or changes in cerebral temperature were found when cathodal tDCS was 

applied at a greater charge density (128,571 C/m2) than the determined threshold (85,714 

C/m2) (Liebetanz et al., 2009; Rueger et al., 2012; Zhang et al., 2019). 

Overall, adverse effects have been described as being mild and there have not been any 

significant differences in discontinuation rates between active and sham tDCS treatment 

groups due to adverse events, (Aparício et al., 2016; Brunoni et al., 2016; Moffa et al., 2017; 

Alonzo et al., 2019). Standardised scales though would aid in documenting and reporting 

adverse effects (Brunoni et al., 2011a). 

Ethical concerns include how and who will deliver tDCS, necessity of regulation, particularly 

in light of a growing ‘do-it-yourself’ community in which there are no current regulatory 

requirements, and the potential of inducing maladaptive long-term neuroplastic changes. 

What are the potential mechanisms of tDCS in depression?  
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Neuroplasticity 

Growing evidence implicates impaired neuroplasticity in major depression (Fossati et al., 

2004; Pittenger & Duman, 2008; Player et al., 2013). Current treatments are associated with 

neuroplastic changes in the brain (Arnone et al., 2012; Joshi et al., 2016; Tendolkar et al., 

2013; Fu et al., 2020). tDCS can enhance neuroplasticity (Stagg et al., 2018), however there 

has been limited direct evidence as to whether this mechanism contributes to the improvement 

in depressive symptoms following tDCS.  

The glutamatergic system, in particular NMDA receptors, have an important role in LTP, and 

impairments in glutamatergic neurotransmission are evident in major depression (Valentine & 

Sanacora, 2009). LTP is the neural basis for memory (Bliss & Collingridge, 1993). Learning 

and memory impairments in depression may reflect impaired neuroplasticity (Pittenger & 

Duman, 2008), and LTP is instrumental to recovery in depression, in which upregulation of 

biomarkers such as BDNF are associated with increased long-term potentiation and 

neuroplasticity (Martinowich et al., 2007, Brunoni et al., 2008). As a potential mechanism by 

which tDCS contributes to recovery from depression, effects in the glutamatergic system and 

BDNF measures would be expected. 

Widespread functional and structural abnormalities are observed in major depression (Wise 

et al., 2018). In particular, bilateral reductions in hippocampal volume are one of the most 

common findings (Cole et al., 2011; Schmaal et al., 2016). Located within the limbic system 

in the medial temporal lobe, the hippocampus plays a central role in learning and memory. It 

is a plastic brain structure, in which excitatory amino acids neurotransmitters and NMDA 

receptors are involved in the damaging effects of stress and trauma effects on function and 

structure (McEwen, 1999). Neuroplastic changes in the hippocampus are associated with 

changes in mood, and hippocampal grey matter volume is state dependent (Arnone et al., 

2012). Clinical efficacy of antidepressant medication is proposed to be mediated through 
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neural plasticity (Castrén & Hen, 2013; Santarelli et al., 2003; Warner-Schmidt & Duman, 

2006; Fu et al., 2020). Treatment with antidepressant drugs can stimulate neurogenesis in the 

hippocampus and restore grey matter to a volume similar to that in both healthy participants 

and patients in remission (Arnone et al., 2012; Warner-Schmidt & Duman, 2006). At the 

cellular level, animal models show increased postsynaptic spine density and enhanced 

synaptic plasticity following treatment with fluoxetine (Ampuero et al., 2010). Increases BDNF 

serum levels, indicating increased neuroplasticity, are observed following treatment with 

antidepressant medication which are associated with improvements in depressive symptoms 

(Brunoni et al., 2008; Duman & Monteggia, 2006).  

Clinical studies of the treatment resistant form of major depression have reported increases 

in hippocampal connectivity and volume following ECT treatment (Abbott et al., 2014; Gbyl & 

Videbech, 2018; Joshi et al., 2016; Nordanskog et al., 2010; Sartorius et al., 2016; Tendolkar 

et al., 2013). ECT treatment modulates alterations in white matter microstructure in pathways 

connecting frontal and limbic areas in major depression (Lyden et al., 2014). In animal models, 

ECT has been found to stimulate neurogenesis in frontal regions (Inta et al., 2013). Moreover, 

an increase in a range of plasticity-associated transcripts, including BDNF, have been found 

after ECT (Conti et al., 2006). However, Brunoni et al. (2008) meta-analysis found that BDNF 

levels did not tend to increase following a course of ECT or TMS, suggesting that this may be 

due to an BDNF increase prior to brain stimulation as a majority of patients receiving these 

treatments had already been taking antidepressant medication.  

Relative to healthy participants, patients in a current depressive episode show reduced paired-

associative stimulation (PAS)-induced neuroplasticity in the motor cortex (Player et al., 2013; 

2014) implicating reduced neuroplasticity in major depression. Anodal tDCS to the left 

dorsolateral prefrontal cortex has been associated with increased PAS-induced neuroplasticity 

in the motor cortex of currently depressed patients in comparison to sham tDCS (Player et al., 

2014), suggesting that tDCS induces neuroplasticity. This effect was evident in a greater 
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proportion of patients who had received a longer course of tDCS with a minimum of 20 

sessions (Player et al., 2014).  

The prefrontal-limbic dysregulation model of emotion processing of major depression involves 

a dorsal component, which includes the dorsolateral prefrontal cortex, dorsal anterior cingulate 

cortex, hippocampus and middle frontal regions, implicated in attentional and cognitive 

qualities of the disorder, such as cognitive regulation when responding to emotional cues, and 

a ventral component, which includes the amygdala, subgenual anterior cingulate, anterior 

insula, orbitofrontal and ventrolateral prefrontal regions, that are involved in the production of 

emotional states (Mayberg, 1993; Phillips et al., 2003). The rostral anterior cingulate cortex is 

an important region in connecting these components, in which cognitive and emotion 

processing systems depend on coordinated interactions between these two systems, which 

are impaired in major depression (Mayberg, 1993; Costafreda et al., 2013). 

Prefrontal-limbic dysregulation in major depression is characterised by decreased activity in 

prefrontal cortical regions and reduced inhibition in the amygdala (Ressler & Mayberg, 2008; 

Savitz & Drevets, 2009; Costafreda et al., 2013; Fidalgo et al., 2014). The amygdala shows 

increased responsivity to negative stimuli (Fu et al., 2004, 2008; Siegle et al., 2007; Arnone et 

al., 2012; Hamilton et al., 2012). Following treatment with antidepressant medication (Drevets, 

2001; Fu et al., 2004, Arnone et al., 2012), rTMS (Kito et al., 2008; Ding et al., 2014; 

Luborzewski et al., 2006) as well as cognitive behavioural therapy (Fu et al, 2008), 

normalisation in amygdala activity has been observed. 

Ironside et al. (2018) observed a direct relationship between prefrontal cortical and amygdala 

responses in participants with trait anxiety. Following anodal tDCS stimulation over the left 

dorsolateral prefrontal cortex, amygdala “hyper” responsivity was reduced to a similar level to 

that in participants with low anxiety. Behavioural data revealed that following active tDCS, 

accuracy on an attentional load task was improved, reflecting that fearful distractor faces had 
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reduced attentional capture and suggesting that the fear response associated with amygdala 

hyperactivity was reduced. Additionally, Nord et al. (2019) reported that dorsolateral prefrontal 

cortical activity was increased during an emotion processing task following active tDCS 

stimulation combined with CBT, which was not observed in patients who had received sham 

tDCS and CBT, although there were not any significant changes in amygdala activity following 

tDCS. Anodal tDCS is associated with increased activation at the stimulation site, typically left 

dorsolateral prefrontal cortex in major depression which in turn could regulate prefrontal 

cortical-amygdala function. 

Although, functional connectivity changes following tDCS treatment in major depression have 

not yet been reported, a recent TMS study observed increased global connectivity following 

active rTMS but not sham treatment, which were more in line with connectivity in healthy 

controls, in particular significant changes were noted in connectivity between amygdalae and 

contralateral dorsolateral prefrontal cortex (Eshel et al., 2020).  

While the relationship between BDNF levels and tDCS treatment have so far not demonstrated 

significant effects, sample sizes have been small (Loo et al., 2018; Palm et al., 2013; Player 

et al., 2014). As LTP is mediated by activity-dependent BDNF secretion (Fritsch et al., 2010) 

and BDNF levels correlate with amygdala responses in major depression (Lorenzetti et al., 

2020), there is a potential relationship of BDNF with prefrontal-amygdala responses in the 

clinical efficacy of tDCS treatment. 

Neuropsychology 

Anodal tDCS shows a beneficial effect on stress-related emotional reactivity, strengthening 

cognitive processes which modulate negative emotional states in response to stress reactions 

and attenuating acute stress reactivity (Smits et al., 2020). Improved recognition in an 

emotional face recognition task, most notably for positive faces with anodal tDCS in healthy 

participants (Nitsche et al., 2012), support left dorsolateral prefrontal cortical stimulation in 
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major depression. Anodal tDCS stimulation to the left dorsolateral prefrontal cortex increased 

valence ratings of negative affective images, which were perceived as being less negative, as 

compared to sham and cathodal stimulation (Peña-Gómez et al., 2011). Ratings of 

unpleasantness while viewing aversive emotional pictures were significantly decreased 

following anodal tDCS relative to sham tDCS of the left dorsolateral prefrontal cortex (Maeoka 

et al., 2012). Significant decreases in EEG alpha band power and increases in beta band 

power accompanied the subjective responses, reflecting modulation of affective processing 

networks through increased local cortical activity (Maeoka et al., 2012).  

Specific biases in processing affectively negative stimuli and information are evident in major 

depression, including difficulties in attentional disengagement from negative stimuli and 

impaired cognitive control in processing negative stimuli (Mitterschiffthaler et al., 2008; 

Foland-Ross and Gotlib, 2012).  Vanderhasselt et al., (2013) assessed the effects of tDCS on 

cognitive control by using a cued emotional conflict task (CECT). Participants responded to a 

happy or sad face by selecting the same or opposite emotion, depending on the cue they were 

given. In ‘opposite’ trials, cognitive control enables one to respond with the incongruent 

emotion to the presented emotional stimuli. A three-way interaction between cue, emotion and 

group was found in healthy participants. tDCS improved reaction times during trials that 

require an inhibition in responses to happy but not sad faces. Vanderhasselt et al. (2014) 

subsequently observed that participants with major depression demonstrated a greater 

response time to ‘opposite-sad’ than to ‘opposite-happy’ cue-emotion combination trials, in 

that response time was slower when addressed with a conflict that was negatively valenced 

than that of the positive conflict. This suggests patients had difficulty in overriding a habitual 

response to negative stimuli. Further, the contrast of ‘opposite’ was associated with greater 

activity in right middle frontal gyrus and bilateral precuneus. In comparison to cue-emotion 

‘actual-sad’, ‘opposite-sad’ also led to a stronger bilateral activation of dorsal anterior cingulate 

cortex, reflecting enhanced conflict-detection or a compensatory process. Both depression 
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and healthy control groups had greater response times for ‘actual-sad’ than ‘actual-happy’ 

trials (Vanderhassalt et al., 2014). This behavioural data support both the negative bias and 

reduced cognitive control in major depression, as the response was selectively slower when 

participants were asked to press an incongruent answer (opposite) as a response to negative 

stimuli (sad face). 

Increased accuracy in an affective go-no go task (Boggio et al., 2007) as well as increases 

response rates for negative vs. neutral and positive vs. neutral words in an emotional Stroop 

task (Brunoni et al., 2014) have been found following tDCS.  Salehinejad et al. (2017) reported 

improvements in working memory and attention along with improvements in depressive 

symptoms in participants with major depression who received 10 consecutive daily anodal 

tDCS sessions over the left dorsolateral prefrontal cortex as compared to participants who 

received sham tDCS sessions. The ability of tDCS to improve emotion processing (Peña-

Gómez et al., 2011) and affective cognitive control (Boggio et al., 2007; Brunoni et al., 2014; 

Vanderhassalt et al., 2014) in major depression, which is associated with improved depressive 

symptoms, support improved prefontal-limbic regulation following tDCS treatment. 

An area of unmet need is how to improve the cognitive impairments in major depression that 

contribute to psychosocial impairments. Impairments in executive functions, attention, 

memory and psychomotor speed are common in major depression, which can be seen during 

an acute depressive episode and can persist into recovery and remission phases (Paelecke-

Habermann et al., 2005; Hammar and Ardal, 2009; Shilyansky et al., 2016). 

Preliminary evidence suggests that tDCS could uniquely improve cognitive impairments in 

major depression (Loo et al., 2012; Moreno et al., 2015; Oliveira et al., 2013). Improvement in 

acute working memory after a single session of tDCS has been reported, with (Loo et al., 

2012) and without (Moreno et al., 2015; Oliveira et al., 2013) concurrent antidepressant 

medication. tDCS over the dorsolateral prefrontal cortex was associated with both improved 
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discriminability and response criterion in a working memory n-back task, suggesting an 

increase of signal-to-noise ratio that enables responses to be fine-tuned (Oliveira et al., 2013). 

tDCS not only modulates affective processing but also impairments in executive functions in 

major depression, which might be evident following one session and also following a course 

of tDCS treatment. Whether the improvements endure in the long term require further 

investigation. 

Is there potential for biomarkers to improve tDCS response?  

Biomarkers are objective biological measures that indicate the underlying pathogenesis of 

disease, including normal biological processes, that aid in the classification of a disease and 

risk factors (Mayeux, 2004). The measurements could be biological media, such as 

physiological or biochemical measures, or brain imaging measures, which link to changes 

neural structure or function.  

Predictive biomarkers may aid in clinical decision making for tDCS for the forms of depression 

most likely respond and those less likely to respond well to current tDCS montage, such as 

treatment resistant depression. As a predictor of clinical outcome, increased activity in the left 

dorsolateral prefrontal cortex at baseline (Nord et al., 2019) and volume (Bulubas et al., 2019) 

have been associated with improved treatment responses to tDCS. Common and distinct 

predictors to tDCS treatment in comparison with antidepressant medication and 

psychotherapy treatments (Pizzagalli, 2011; Fu et al., 2013) are continuing areas of 

investigation. 

Summary 

A course of active tDCS treatment demonstrates greater clinical efficacy as measured by rate 

of response, remission, and continuous symptom ratings in comparison to a course of placebo 

sham tDCS treatment. However, lack of inferiority to a course of treatment with antidepressant 
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medication has not yet been established. The mechanism is proposed to be through 

neuroplasticity with effects observed at the neuronal level. Evidence of neuroplastic effects 

mediating clinical outcome in major depression has been limited to date. Identifying predictive 

biomarkers is important to understanding disease pathophysiology and would aid in clinical 

decision making. tDCS is a potential treatment for individual with major depression who are 

unable to or prefer not to take current first line treatments. With high levels of acceptability, 

portability, and cost-effectiveness, tDCS is a potential first line treatment for major depression.  
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