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Abstract  

Alcohol is one of the most widely used and socially acceptable drugs in the world. 

However, its chronic use can lead to serious problems including the development of 

tolerance. Acute and chronic use of ethanol leads to short-term and long-term changes 

in gene expression in the brain resulting in cellular and molecular adaptations that are 

associated with addictive behaviours. Our understanding of the mechanisms by which 

alcohol produces these changes in the brain is not fully understood.  Ethanol affects the 

function of receptors including G protein-coupled receptors that activate heterotrimeric 

G proteins. The aim of this thesis is to understand whether ethanol can cause changes in 

G protein gene expression using Drosophila melanogaster as a model. 

Drosophila is a genetically tractable organism suitable to investigate the neural 

substrates of neuroadaptive responses to ethanol. The response to ethanol and the onset 

of tolerance was measured in wild-type and mutant Drosophila. While tolerance was 

consistently observed in all fly populations, individual differences in sensitivity to 

alcohol were observed, which prompted the isolation of subpopulations of Drosophila 

with distinct ethanol characteristics.  Relative mRNA expression in G protein subunits 

was measured using quantitative real-time polymerase chain reaction in different 

Drosophila strains (wild-type, subpopulations of early and late responders, G protein 

mutants and dopamine 1-like D2 receptor mutants) that have received zero, one, two or 

three ethanol exposures at 24 h intervals.  

When measured in the wild-type strains, changes in G protein subunits expression were 

variable. However in a subpopulations of early responders that were selected for high 

ethanol sensitivity, a non-statistically significant decrease  of   two  Gα-protein subunits: 

Gi and Gq were observed. When measured in two Drosophila mutant strains, flies with 
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either deletion of dopamine D2 receptor or a mutated Gi gene subunit, statistically 

significant changes were observed in Gi and Gq subunits. In a further study, a mutant 

expressing non-functional Gq, the Gi expression was not affected by the ethanol 

treatment suggesting a possible crosstalk between different signalling pathways. These 

results justify a more detailed investigation of changes in G protein subunits following 

acute and chronic exposure to ethanol in Drosophila, which will allow verifying the 

hypothesis that changes in gene expression of G proteins participate in addictive 

behaviours in Drosophila. These findings in Drosophila, which share genetic and 

functional characteristics with the mammalian nervous system, could translate into 

important advances in identifying targets for treatment for alcohol addiction in humans.  
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Chapter 1: Literature Review 
 

1.1.  Alcohol  

Alcohols are organic compounds containing a hydroxyl group attached to a carbon atom 

(Most et al., 2014). Ethanol (Figure 1.1), the psychoactive constituent of alcoholic 

beverages, has been consumed recreationally for tens of thousands of years (Hanson, 

1995) and can produce both positive mood states and stress relieving properties 

(Spanagel, 2009). For the remainder of this thesis, the terms alcohol and ethanol will be 

used interchangeably. Ethanol is known to act directly on the central nervous system 

(CNS) to produce changes in mood and behaviour. However, the mechanisms by which 

ethanol exerts its CNS effects are yet to be fully elucidated. Ethanol can be easily 

distinguished from other psychoactive drugs by the fact that it is both a source of 

metabolic  energy  and  a  psychoactive  molecule  and  by  the  fact  that  ethanol’s  actions  in  

the brain are not initiated by binding to its own specific receptors (Tabakoff, 1996).  

 

 

 

 

 

Figure 1.1. Ethanol structure 
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1.1.1. Alcohol absorption and metabolism  

Alcohol, when consumed, is absorbed into the bloodstream through the stomach and 

intestines, and it readily crosses the blood-brain barrier (Most et al., 2014). Metabolism 

of alcohol requires a number of processes, one of which is known as oxidation. Over 

90% of the absorbed alcohol is metabolized in the body through oxidative pathways and 

the majority of this metabolism takes place in the liver (Tabakoff, 1996). The remainder 

is eliminated in an unchanged form through non-oxidative pathways that occur mainly 

in extrahepatic tissues (Zakhari, 2013).   

The first step of the oxidative pathway is the oxidation of alcohol to acetaldehyde, a 

highly reactive and toxic by-product that may contribute to tissue damage and possibly 

addictive processes. The reaction is catalysed by the enzyme alcohol dehydrogenase 

(ADH), a dimeric protein found predominately in the cytoplasm of liver cells (Zakhari, 

2006; Zakhari, 2013) (Figure1.2). Different ADH types can be divided into five classes 

based on their subunit and isoenzyme (variants) composition (Agarwal, 2001). The 

oxidation of alcohol to acetaldehyde is regulated by an intermediate carrier of electrons, 

nicotinamide adenine dinucleotide (NAD+) as a cofactor (coenzyme), which reduced by 

two electrons to form NADH (reduced form of NAD+)(Zakhari, 2006).  

The second pathway in alcohol metabolism comprises of the microsomal ethanol-

oxidizing system (MEOS), which is located in the smooth endoplasmic reticulum and 

involves the enzyme cytochrome P450 (Manzo-Avalos and Saavedra-Molina, 2010). 

This system accounts for the major non-ADH ethanol metabolic pathway in the liver 

(Lieber, 2000). In humans, various cytochrome P450 isoenzymes, including CYP2E1, 

1A2 and 3A4, have been reported (Agarwal, 2001) but have not been associated to 

susceptibility to alcoholism or alcohol-induced organ damage (Nagy, 2004). CYP2E1 is 

induced by chronic alcohol consumption and plays a significant role in the metabolism 
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of ethanol to acetaldehyde. In addition, CYP2E1-dependent ethanol oxidation may 

occur in other tissues such as the brain, where ADH activity is low. CYP2E1 also 

produces several reactive oxygen species (ROS), including hydroxyethyl, superoxide 

anion, and hydroxyl radicals, which increases the risk of tissue damage (Zakhari, 2006).   

The third pathway involves the peroxisomal oxidation of ethanol and involves the 

enzyme, catalase. Catalase is capable of oxidizing ethanol in vitro in the presence of a 

hydrogen peroxide (H2O2) generating system, such as the enzyme complex 

nicotinamide adenine dinucleotide phosphate oxidase or the enzyme, xanthine oxidase, 

into acetaldehyde and water (Cederbaum, 2012; Zakhari, 2006). This however, plays an 

insignificant role in alcohol oxidation (Cederbaum, 2012). Acetaldehyde is a highly 

toxic and reactive by-product to the hepatocytes that may contribute to tissue damage 

because it forms adducts to protein and DNA that aid lipid peroxidation, glutathione 

depletion, and mitochondrial damage (Nassir and Ibdah, 2014).  It also contributes to 

the changes in the redox state of the cell and the formation of reactive oxygen species 

(ROS) (Zakhari, 2013). The acetaldehyde produced from ADH and the peroxisomal 

pathway, is rapidly metabolized to acetate by the enzyme aldehyde dehydrogenase 

(ALDH) in humans, utilizing NAD+ as cofactor to form acetate and NADH. Acetate is 

then metabolized to acetyl coenzyme A in the tricarboxylic cycle (Figure 1.2.) (Zakhari, 

2006).   
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Figure 1.2. Alcohol metabolism 

The oxidative pathways involved in the metabolism of alcohol. The enzymes, alcohol dehydrogenase 

(ADH), cytochrome P450 (CYP2E1) and catalase, all contribute to the oxidative metabolism of alcohol. 

ADH converts ethanol to acetaldehyde in the cytosol of the cell. This reaction involves nicotinamide 

adenine dinucleotide (NAD+), which is reduced by two electrons to form NADH. In the microsomes, 

CYP2E1 metabolizes alcohol to acetaldehyde at chronic ethanol concentrations. Catalase, located in the 

peroxisomes, requires hydrogen peroxide to oxidize alcohol. Acetaldehyde is metabolized mainly by 

aldehyde dehydrogenase (ALDH2) in the mitochondria to form acetate and NADH. (With permission 

from Manzo-Avalos and Saavedra-Molina, 2010).  

 

1.1.2. Alcohol abuse and addiction  

Many consumers lose control over their intake of alcohol, with enormous health and 

socioeconomic impacts on the world population. Excessive alcohol intake can produce a 

multiplicity of medical complications to the liver, cardiovascular system, gonads and 

the brain (Spanagel et al., 1996). Alcohol-induced brain damage is a particular problem 

in pregnancy, resulting in fetal alcohol syndrome, which represents the most common 

form of acquired mental disability, affecting 7/1,000 infants (Niccols, 2007). During 

adolescence, the consequences of alcohol drinking, especially binge drinking, on organ 



 
 

5 
 

dysfunction and damage are largely unknown. The adolescent brain displays higher 

sensitivity to alcohol-induced brain damage and cognitive impairment than the adult 

brain, in humans as well as in rodents (Crews et al., 2000). Furthermore, the onset of 

alcohol use during adolescence leads to a higher susceptibility to stress-induced alcohol 

consumption (Siegmund et al., 2005) and a greater risk of developing alcohol addiction 

in adulthood (Grant and Dawson, 1997).     

Alcohol use and abuse entails serious societal and economic fallout in the form of 

criminality, decreased productivity and increased health costs (Spanagel, 2009). 

Alcohol abuse has a high comorbidity with other psychiatric disorders (Kessler et al., 

1994). Due to the anxiolytic effects of alcohol, people who suffer from anxiety 

disorders and depression often use alcohol as a kind of self-medication but in most 

cases, the driving force of alcohol abuse is the development of an addictive behaviour 

(Spanagel, 2009). Alcohol addiction, also known as alcohol related disorder (Diagnostic 

and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V) in 2013) is 

characterized by repetitive alcohol drinking which leads to a loss of control over the 

consumption of alcohol (Moonat et al., 2010).  

Some aspects of alcohol addiction can occur relatively swiftly in response to acute 

administration of alcohol, however, most changes in brain function associated with 

addiction occur gradually over time in response to prolonged alcohol exposure (Nestler 

et al., 1993; Most et al., 2014). These gradual developing changes can persist for a long 

time after cessation of chronic ethanol administration and are described as tolerance, 

sensitization, dependence and withdrawal (Nestler et al., 1993). Tolerance refers to 

ethanol-induced adaptations that lead to diminishing response to a constant ethanol dose 

(Chao and Nestler, 2004; Pietrzykowski and Treistman, 2008).  Sensitization or reverse 

tolerance refers to ethanol-induced adaptations that increase ethanol responsiveness 

with repeated drug exposure (Chao and Nestler, 2004; Nestler et al., 1993). Dependence 
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describes the need for continued drug exposure to avoid withdrawal symptoms, which 

causes a significant negative affective state and some cases profound somatic 

abnormalities (Chao and Nestler, 2004).  

The prominence of delayed, progressively developing and persistent adaptations in 

brain function during alcohol addiction suggests that long term changes in the brain are 

important in mediating addictive phenomena (Kaewsuk et al., 2001). Addiction 

processes can be thus viewed as a drug-induced neural plasticity and as such can serve 

as a model system to investigate the types of neurobiological mechanisms involved in 

plasticity (Nestler et al., 1993).  

There are two major brain regions involved in drug addiction behaviours, the 

mesocorticolimbic dopaminergic system and the locus coreuleus (Nestler et al., 1994). 

The mesocorticolimbic dopaminergic system has been reported to be the key mediator 

in the rewarding effects of alcohol and it comprises of the ventral tegmental area and its 

targets, the nucleus accumbens and the amygdala (Flatscher-Bader et al., 2006). 

Molecular and cellular changes in the nucleus accumbens with acute and repeated 

alcohol exposure may underline certain aspects in the development of alcohol addiction 

(Moonat et al., 2010).   

Due to the complexity of alcohol addictive processes, it cannot be modelled in animals 

as a whole (Vengeliene et al., 2008). However, the initiation and maintenance of 

alcohol consumption can be successfully mimicked or modelled in animal models 

(Segura and Spanagel, 2006) and the results obtained from these models provides an 

empirical framework for understanding the molecular basis of addiction (Koob et al., 

1998). The underlying molecular and cellular changes that occur with the transition 

from occasional alcohol use to pathological abuse and addiction are only partially 

understood.    
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1.1.3. Genetics of alcohol addiction  

Alcohol addiction is influenced by both genetic and environmental factors. Alcohol 

addiction tends to run in families and studies of twins, family, adoption, linkage and 

association suggest a genetically transmitted susceptibility for alcoholism (Diamond 

and Gordon, 1997). Twins studies demonstrated that the amount of alcohol one 

consumes has a genetic influence (Kendler et al., 2011). Identical twins have a 

significantly higher concordance of alcoholism than fraternal twins, even when 

environmental factors, such as the greater frequency of social contact between identical 

twins, are taken into account (Heath et al., 1989). The twins studies provide information 

on the genetic impact on addiction, which aspects of addiction are most heritable, 

whether the same genes are influencing disease in both genders, and whether multiple 

disease share any common genetic influences (Anderson et al., 2005). Schuckit (1994) 

reported young men with a positive family history for alcoholism have a diminished 

ataxia response after drinking a test dose of alcohol (Schuckit, 1994).  

Adoption studies have provided evidence that alcoholism in the biological father 

predicts alcoholism in the children even when the child is raised by unrelated adoptive 

parents (Diamond and Messing, 1994; Sher, 1997). These types of studies provide some 

of the strongest evidence for heritability of alcoholism (Diamond and Gordon, 1997), 

and studies have reported reductions in alcoholism occurrence in consequent generation 

after removal from home with alcoholic fathers (Cloninger et al., 1981).  

Linkage studies have also been employed to identifying candidate chromosomal regions 

susceptible to alcoholism. Studies have shown alcoholism is linked with the 

chromosome 4q blood group marker MNS and the esterase D marker on chromosome 

13q (Hill et al., 1988; Tanna et al., 1988). Other studies implicated chromosomes 1, 2, 

3, 7 and 8 in relation to alcoholism (Edenberg, 2002; Foroud et al., 2000).   



 
 

8 
 

Unlike linkage studies, association studies are able to accurately associate gene or genes 

contributing to a disorder or phenotype of interest (Dick and Foroud, 2002). This 

usually involves the analysis of candidate genes to test the association between a 

particular allele of a candidate gene and a specific behaviour. The candidate gene is 

selected based on its supposed role in the behaviour or other known information relating 

to the behavioural outcome (Dick and Foroud, 2002).  

Recently, genome-wide association studies have been used to identify genes across 

chromosomes and pathways important in alcohol addiction (Edenberg and Foroud, 

2014; Schuckit, 2014). In these studies, the association of a phenotype with hundreds of 

thousands of single nucleotide polymorphisms (SNPs) distributed throughout the 

genome is evaluated (Manolio, 2010). Previous study has reported an association of 

alcohol intake levels with a variation in the autism susceptibility candidate 2 (AUTS2) 

gene (Schumann et al., 2011).  Other GWAS have highlighted associations to alcohol 

dependence, including NMDA-dependent AMPA receptor (Karpyak et al., 2012), 

alcohol-metabolizing genes (Edenberg, 2012; Jairam and Edenberg, 2014), GABRA 2 

gene (Bierut et al., 2010). There are no reports at the moment on the identification of G 

proteins by GWAS. In summary, GWAS approaches have highlighted some potentially 

promising genes that might contribute to alcohol drug-related problems.  

 

1.1.4. Targets of alcohol  

Ethanol is thought to exert its effects on cells by altering the physical properties of lipid 

bilayer membranes of the cells, however, a wide array of studies have reported that 

ethanol interacts with and modifies the functions of receptor proteins of the nervous 

system including ion channels and second messenger proteins (Harris, 1999; Peoples et 

al., 1996).  
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Due to the unspecific pharmacological nature of alcohol, ethanol is known to modulate 

the functions of several neurotransmitter receptors including N-methyl-D-aspartate 

(NMDA),   γ-aminobutyric acid A (GABAA), 5-hydroxytryptamine-3 (5HT3), nicotinic 

acetylcholine (nAChR) receptors and voltage-dependent channels (Figure 1.3). 

Interaction of alcohol with these target proteins leads to changes in the activity of many 

enzymes and regulators of gene expression (Diamond and Gordon, 1997; Erdozain and 

Callado, 2014).  

 

Figure 1.3. Representation of the number of targets that are modulated by ethanol directly or 
indirectly 

Membrane receptors, signalling elements and transcription factors in the nucleus. R: receptor, NMDA: N-

methyl-D-aspartate, NPY: neuropeptide Y, GABAA:   γ-aminobutyric acid A, CRF: corticotrophin-

releasing factor, CB1: cannabinoid receptor 1, PKC: protein kinase C, PKA: protein kinase A, cAMP: 

cyclic adenosine monophosphate, CREB: cAMP-responsive binding protein, ERK: extracellular-signal-

regulated kinase (With permission from Erdozain and Callado, 2014).  
 

1.1.4.1. N-methyl-D-aspartate (NMDA) receptor 

The main excitatory neurotransmitter in the brain is glutamate and it plays a vital role in 

the pharmacological effects of ethanol (Erdozain and Callado, 2014). NMDA receptors 
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are one of the major targets of research as they are implicated in learning and memory, 

long-term potentiation (LTP) and long-term depression (LTD) in models of synaptic 

plasticity (Diamond and Gordon, 1997). The NMDA receptor consists of four subunits, 

which form a cation channel. Glutamate binding to the NMDA receptor leads to 

increased permeability of calcium (Traynelis et al., 2010). The increase in calcium, 

initiates synaptic signalling by activating protein kinases, proteases and phosphatases 

(Diamond and Gordon, 1997).  

Ethanol’s  binding  sites  on  the  NMDA  receptor  have not been identified and there have 

been reports that suggest ethanol exerts its effect on the NMDA receptor through 

protein kinase C (Li et al., 2005). Ethanol has also been discovered to inhibit other 

ionotropic glutamate receptors, kainate and AMPA receptors (Most et al., 2014). 

Lovinger et al., (1989) demonstrated that ethanol inhibits NMDA function in a 

concentration-dependent manner over the range of 5-50mM, which produces 

intoxication. Acute exposure to ethanol antagonizes NMDA receptors, altering many 

cellular functions such as inhibition of calcium flux into cells, which in turn inhibits the 

excitatory effect of glutamate-activated NMDA receptor function (Erdozain and 

Callado, 2014; Wirkner et al., 1999).  

On the other hand, chronic exposure to ethanol in rats and in cultured cells, causes an 

up-regulation of NMDA receptors (Hoffman and Tabakoff, 1994). Similarly, an 

increase of NMDA receptors has also been observed in the brain of human alcoholic’s 

subsets (Michaelis et al., 1990). This increase in NMDA receptor function is probably a 

compensatory change induced by the inhibitory effect of acute alcohol (Fadda and 

Rossetti, 1998). NMDA receptor activation is also implicated in withdrawal syndrome, 

including delirium tremens and especially seizures (Hughes, 2009).   
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1.1.4.2. γ-Aminobutyric acid A (GABAA) receptor  

γ-Aminobutyric acid A (GABA) is the main inhibitory neurotransmitter in the 

mammalian brain and mediates its effects via GABAA and GABAB receptors 

(Stephenson, 1995).  Previous evidence suggested that GABA is associated in many 

ethanol-induced behaviours such as motor incoordination, sedation, withdrawal and 

alcohol preference (Kumar et al., 2009). For example, GABAB receptor 1 has been 

involved in behaviour-impaired effects of ethanol in Drosophila using RNAi and 

pharmacological treatments (Dzitoyeva et al., 2003).  

The GABAA receptor is a rapid acting ligand-gated chloride channel, composed of five 

subunits (Erdozain and Callado, 2014; Stephenson, 1995). Ethanol allosterically 

potentiates the action of GABA, or any other activator of this receptor such as 

benzodiazepines or barbiturates, increasing the influx of chloride via GABAA receptors 

(Aguayo, 2002). In addition, the effect of ethanol on GABAA receptors is affected by 

the composition of the subunits that make up the receptors (Spanagel, 2009) which vary 

in different brain regions or in cell types in the same region (Grobin, 2000).  

The molecular actions by which ethanol may exert its effects on GABAergic activity are 

by binding directly to the receptor, increasing the presynaptic release of GABA or 

releasing GABAergic steroids (Lobo and Harris, 2008). Acute ethanol administration 

has been reported to enhance the function of GABAA receptors in rats, thereby 

increasing the chloride influx through the ligand-gated ion channel and increasing 

GABAergic inhibition (Mihic et al., 1997). In contrast, chronic ethanol administration 

causes a decrease in the sensitivity of GABAA receptor-mediated responses (Kumar et 

al., 2009). Additionally, chronic ethanol exposure differentially affects the expression 

of distinct GABAA receptor mRNA and protein levels in various brain regions and 

results in CNS excitability during and after withdrawal from exposure to ethanol 

(Kumar et al., 2009).  
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GABAB receptors are metabotropic receptors responsible for mediating the slow onset 

and extended effects of GABA in the brain (Li et al., 2005; Most et al., 2014).  The role 

of GABAB receptors in   ethanol’s   effects   is   still unclear, however, acute ethanol 

exposure enhances the GABAB-induced synaptic responses in a concentration-

dependent manner in rat midbrain dopaminergic neurons (Federici et al., 2009). The 

GABAB receptor might also play a vital role in controlling the levels of chronic ethanol 

exposure. For example, the GABAB agonist, baclofen, suppressed voluntary ethanol 

consumption in ethanol preferring rats (Vengeliene et al., 2008).  

 

1.1.4.3. 5-Hydroxytryptamine-3 (5HT3) receptor 

5-Hydroxytryptamine-3 (5HT3), a subtype of serotonin receptor has been identified in 

several brain regions particularly the hippocampus and it is structurally similar to the 

GABAA and nicotinic acetylcholine receptors (nAChR) (Diamond and Gordon, 1997). 

Ethanol administration has been shown to potentiate the activity of 5-HT3 and the 

somatodentritic 5-HT1A receptors (Lovinger, 1999). Lynch et al., (2011) demonstrated 

amygdalar 5-HT3 signalling may be involved in controlling ethanol consumption. 

Additionally, an increase in the extracellular levels of serotonin levels has been reported 

in the nucleus accumbens after alcohol treatment (Yan, 1999).  

Acute ethanol exposure was found to potentiate the effect of 5HT3 receptor in oocytes 

(Harris et al., 1995), frontal cortex neurons (Sung et al., 2000), ganglion neurons 

(Lovinger and White, 1991) and human embryonic kidney cells (Lovinger and Zhou, 

1994).  In contrast, repeated ethanol administration has been associated with a decrease 

in serotonin functions in the nucleus accumbens in mice by reducing the extracellular 

concentration of serotonin (Ward et al., 2009).  
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1.1.4.4. Nicotinic acetylcholine receptor (nAChR) 

The nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel with 

excitatory effects in the mammalian brain (Dick and Agrawal, 2008). It is structurally 

related to GABAA receptors (Narahashi et al., 1999). nAChRs are widely distributed in 

the peripheral and CNS (Chatterjee and Bartlett, 2010). They are expressed primarily in 

the cerebral cortex and some limbic regions with ethanol sensitivities affecting some 

brain regions more than others (Spanagel, 2009). Ethanol has been reported to act on 

neuronal nAChRs by enhancing the function of some subtypes and inhibiting the 

activity of others (Narahashi et al., 1999; Davis and de Fiebre, 2006). Neuronal 

nAChRs have been implicated in acute locomotor response to ethanol effects in both 

humans and animal models (Kamens and Philips, 2008).  

 

1.1.4.5. Voltage-dependent channels  

Voltage-dependent channels including Ca2+ channels and K+ channels, are also known 

primary targets of ethanol (Diamond and Gordon, 1997; Spanagel, 2009). Acute ethanol 

administration has been reported to inhibit dihydropyridine-sensitive L-type Ca2+ 

channels (Wand et al., 1993). In addition, ethanol opens G protein-activated inwardly 

rectifying K+ channels (GIRKs) and has significant implications for inhibitory 

regulation of neuronal excitability (Kobayashi et al., 1999; Lewohl et al., 1999). Other 

voltage-dependent channels including N-, T and P-type channels have also been 

implicated in the acute effects of ethanol (Walter and Messing, 1999). These channels 

are activated through depolarization-stimulated calcium influx into neurons thereby 

increasing their excitability.  
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1.1.4.6. Other targets of Alcohol 

In addition, ethanol affects other neurochemical and endocrine systems. Alcohol acutely 

activates the mesocorticolimbic dopaminergeric system and upon chronic 

administration, produces functional alterations of the reward centre (Erdozain and 

Callado, 2014).  The reward centre comprises of the ventral tegmental area and its 

targets, the nucleus accumbens (NAc), the amygdala. It has been implicated in the 

rewarding and reinforcing properties of ethanol and other drugs of abuse (Boileau et al., 

2003; Chao and Nestler, 2004; Koob and Volkow, 2010). Ethanol increases dopamine 

levels in the nucleus accumbens of humans (Boileau et al., 2003). Furthermore, 

behavioural studies have demonstrated that rats, which are bred to prefer alcohol, 

produced more dopamine than wild-type rats in an alcohol self-administration study 

(Weiss et al., 1993), supporting the involvement of the dopaminergeric system in 

alcoholism.  

The opioid system has been reported to participate in the reinforcing properties of 

ethanol in both humans and animals (Arias and Chotro, 2005). The opioid system is 

associated with several behavioural effects of ethanol such as psychomotor stimulation 

and sensitization (Font et al., 2013).  In the endogenous opioid system, ethanol has been 

reported to affect its receptor subtypes (mu, delta and kappa), as well as the release of 

the three main classes of endorphins (beta-endorphin, enkephalins and dynorphins) 

(Gianoulakis, 2009). Acute ethanol stimulates the release of beta-endorphin, 

enkephalins and dynorphins in humans and animals (Gianoulakis, 1996; Marinelli et al., 

2006). Furthermore, the administration of opioid antagonists such as naltrexone reduces 

ethanol intake by decreasing the release of dopamine in the nucleus accumbens (Arias 

and Chotro, 2005).   

Several investigators have suggested that the endocannabinoid system plays an 

important role during the neurobiology of alcoholism (Al Mansouri et al., 2014; 
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Erdozain and Callado, 2011). Corticotropin releasing factor has also been implicated in 

ethanol consumption and ethanol addiction processes. In addition, its antagonists have 

potential as pharmacotherapeutics for alcohol use disorders (Gilpin, 2012a; Zorrilla et 

al., 2013). Similarly, a wide range of evidence suggests a role for neuropeptide Y 

(NPY) in the regulation of ethanol intake, anxiety-like behaviour and arousal (Gilpin, 

2012a; Hayes et al., 2012). Finally, receptors such as muscarinic (VanDemark et al., 

2009) and adenosine (Bulter and Predergast, 2012), are also affected by ethanol.  

 

1.1.5.  Pathways associated with alcohol addiction  

1.1.5.1. Cyclic   adenosine   3’,   5’-monophosphate signalling pathway (cAMP 

pathway) 

Ethanol administration has been reported to alter receptor-mediated cAMP signalling 

transduction in several biological processes and its effects differ according to the 

expression of certain types of adenylyl cyclases (reviewed in Diamond and Gordon, 

1997). cAMP is generated by the enzyme, adenylyl cyclase, and it activates cAMP-

dependent protein kinase (PKA). Increased activity of PKA results in the 

phosphorylation of downstream targets, including cAMP-responsive element binding 

protein (CREB) (Newton and Messing, 2006).  Acute ethanol exposure has been 

reported to stimulate adenylyl cyclase activity and thus increase cAMP production, 

while chronic ethanol exposure causes a decrease in receptor-mediated cAMP 

production (Erdozain and Callado, 2014; Bellen, 1998).  Two mechanisms have been 

proposed for the acute stimulation by ethanol of the cAMP signalling. One mechanism 

involves the inhibition of the cell surface, type 1 equilibrative nucleoside transporter 

(ENT1) (one of the main transporters that regulates adenosine in the brain (Dunwiddie 

and Masino, 2001)), which results in the accumulation of extracellular adenosine and 



 
 

16 
 

thus, the stimulation of adenosine A2a receptors coupled to stimulatory G protein (Gs) . 

The other mechanism, involves the Gs subunit binding directly to and activating specific 

isoforms of adenylyl cyclases (Gordon and Diamond, 1993).  

The importance of the cAMP/PKA dependent pathway has been demonstrated in mice 

(Wand et al., 2001; Yang et al., 2003) and Drosophila melanogaster (Moore et al., 

1998).  Mice  with  one  disrupted  Gαs allele and mice with reduced neuronal PKA activity 

have decreased alcohol consumption compared with their wild-type littermates (Wand 

et al., 2001). In a follow-up  study,  mice  with  Gαs allele did not develop tolerance to the 

sedative effects of ethanol following subsequent ethanol treatments (Yang et al., 2003). 

Moore et al. (1998) provided evidence that cAMP signalling plays a role in vivo in the 

acute response to ethanol in Drosophila. They reported that lack of the amnesiac gene, a 

previously identified learning mutant, developed increased sensitivity to alcohol. 

Further investigation showed that loss of function mutants namely rutabaga and DCO, 

which encodes a subunit for cAMP-dependent protein kinase also displayed increased 

sensitivity to alcohol and were similar to that observed in the amnesiac mutants (Moore 

et al., 1998).   

Furthermore, ethanol also influences PKA and the downstream effector, cAMP-

responsive element binding protein (CREB). Studies have revealed that acute ethanol 

administration caused translocation of the PKA catalytic subunit to the nucleus 

(Constantinesu et al., 1999) and chronic ethanol administration showed no effect on the 

levels   of   the   α-subunit of the catalytic domain of PKA (PKA-Cα)   in   the   amygdaloid  

structure of rats (Pandey et al., 2003; Pandey et al., 2001) but decreased PKA activity in 

the NAc (Repunte-Canonigo et al., 2007). Similarly, a wide range of evidence suggests 

that the cAMP-responsive element binding protein (CREB) is also implicated in the 

neurobiology of alcoholism (Pandey, 2004). Chronic exposure to ethanol produces 

decreased CREB phosphorylation (Li et al., 2003; Misra et al., 2001), and remained 
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decreased during ethanol withdrawal (Li et al., 2003; Moonat et al., 2010), while no 

change was observed in total CREB protein levels (Misra et al., 2001; Pandey et al., 

2003). An increase in CREB has been reported after acute ethanol administration (Chao 

and Nestler, 2004; Pandey, 2004). Other investigators have reported increased 

expression of phospho-CREB in certain  brain  regions  of  mice  with  Gαs allele following 

tolerance (Yang et al., 2003).  

 

1.1.5.2.  Other regulatory pathways  

In addition, ethanol affects other molecular signalling pathways, including the mitogen-

activated protein kinase (MAP), specifically the extracellular signal regulating kinase 

(ERK) and the phosphatidylinositol-3-kinase (PI3K)/Akt pathways (reviewed in Ron 

and Messing, 2013). ERK phosphorylation has been reported to reduce after acute and 

chronic ethanol exposure in rats and mice (Zhai, 2008) and in postmortem brain of 

alcoholic subjects (Erdozain et al., 2014).  The PI3/Akt pathway has been implicated in 

ethanol’s   response in Drosophila melanogaster (Eddison et al., 2011) and rodents 

(Cozzoli et al., 2009).  

 

1.1.6. Regulation of gene expression  

Regulation of gene expression at the transcriptional level has been shown to be involved 

in the development of alcohol addiction (Chao and Nestler, 2004; Nestler, 2012). For 

instance, acute administration of many drugs of abuse including alcohol, induces 

transient expression of the fos family proteins (Chao and Nestler, 2004). The 

accumulation of delta-fosB has been reported in the nucleus accumbens (NAc) after 

chronic exposure of drugs of abuse including alcohol (Kelz and Nestler 2000). 

Additionally, regulation of CREB may further induce other changes that are responsible 
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for the development of addiction. The cellular pathways associated with CREB, 

including cAMP signalling pathway, and CREB target genes (NPY and brain-derived 

neurotrophic factor (BDNF)) can potentially influence down-stream gene expression 

level (reviewed by Moonat et al., 2010). The rate of RNA decay and of other molecules 

also affects the amount of mRNA molecules available for translation.   

Regulation of gene expression via epigenetic mechanisms such as acetylation and 

methylation of histone proteins and DNA methylation, as well as microRNA (miRNA) 

have been shown to be associated with alcoholism (Moonat et al., 2010; Spanagel, 

2009) and to be involved in the establishment of neuronal homeostasis during alcohol 

exposure (Moonat et al., 2010). Several studies have implicated a role for epigenetic 

mechanisms, especially during induction by chronic ethanol exposure and chromatin 

remodelling in the development of drug addiction (Renthal and Nestler, 2008). The role 

of epigenetic mechanisms in alcoholism is underlined by the study of the 

pharmacotherapeutic effect of histone deacetylases (HDAC) inhibitors, which has 

recently become an important area of research.   

 

1.2.  Experimental models in alcohol research 

Experimental models including primates, rodents, fruit flies or yeasts have been widely 

used by researchers to study alcoholism (Philips, 2002; Tabakoff and Hoffman, 2000).  

Due to the complexity of alcohol disorders, animal models have been used in an attempt 

to differentiate the physiological, biochemical, molecular or genetic mechanisms that 

are believed to be associated with human alcoholism (Tabakoff and Hoffman, 2000). 

Experimental models allow the researcher to focus on distinct components of the 

alcohol addiction process, ranging from simple, acute drug responses to complex 

behaviours such as drug seeking, self-administration and relapse (Kaun et al., 2012). 
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Experimental models enable the investigator to use methods unethical with humans and 

help simplify complex behaviours. In alcohol research, rodent model organisms, the 

zebrafish, Danio rerio, the nematode, Caenorhabditis elegans and the fruit fly, 

Drosophila melanogaster have been successfully employed (Table 1.1). 

 

Table 1.1. Searches on PubMed (http://www.ncbi.nlm.gov/pubmed) with the indicated search word 

restricted by publication dates 

Keyword search Number of publications 
1994 – 2003 2004 - 2015 

Alcohol addiction and rodent 1564 1846 
Alcohol addiction and primates 11 17 
Alcohol addiction and Danio rerio 3 28 
Alcohol addiction and Caenorhabditis elegans 0 23 
Alcohol addiction and Drosophila melanogaster 11 59 
 
 
1.2.1. Rodent models 

Rodent models such as mice and rats, have been used in the past years to study 

behaviour relevant to the pathology of alcoholism. Researchers are able to control the 

intake of alcohol and generate the adaptive changes in the brain associated with the 

development of tolerance and physical dependence on alcohol (Tabakoff and Hoffman, 

2000). Rodents have considerable genetic homology and share the same complex CNS 

organisation of other mammals (Bennett et al., 2006).  

Rodent models have been used to investigate the different aspects of alcoholism 

including, tolerance and withdrawal. Assays such as two-bottle choice model and 

conditioned place preference using rodents have provided valuable contributions to our 

understanding of the mechanisms underlying ethanol preference (Green and Grahame, 

2008). Pharmacological manipulations (Koob, 2004), selective breeding (Murphy et al., 

2002) and reverse genetic approaches (Crabbe et al., 2006) using rodents have made 

significant contributions to our understanding of the mechanisms underlying ethanol 

preference (Devineni and Heberlein, 2010).  
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Although, rodent models have provided vital insights into the mechanisms underlying 

ethanol related-behaviour, they are not the ideal model organisms for unbiased, forward 

genetic approaches to identify novel genes in ethanol preference due to the significant 

time and expense required for genetic screening (Devineni and Heberlein, 2010; Kaun 

et al., 2012).  

 

1.2.2. Danio rerio (Zebrafish) 

The small freshwater zebrafish has emerged as a powerful tool for uncovering neural 

mechanisms of numerous syndromes and disease because of the relative ease of using 

genetic and molecular tools in this species, coupled with highly neural architecture and 

the capacity for complex behaviour (Bailey et al., 2015b; Lovely et al., 2014). Zebrafish 

responses to alcohol may reveal evolutionarily conserved mechanisms common to 

vertebrates (Pan et al., 2011) and can be immersed into alcohol solutions and for 

prolonged periods of time if required (Gerlai et al., 2006), thus allowing precise and 

non-invasive drug delivery. Alcohol-induced behaviour during early development of 

zebrafish has been demonstrated (Lovely et al., 2014), including ethanol tolerance and 

withdrawal (Tran et al., 2015). In addition, they have been used to study the teratogenic 

effects of ethanol (Gerlai et al., 2006; Lovely and Eberhat, 2014) and have been 

proposed as a potential model for fetal alcohol syndrome (Gerlai et al., 2008). 

 

1.2.3. Caenorhabditis elegans (Nematode) 

C. elegans model provides a simple system for studying the genetic and molecular 

effects of ethanol intoxication. They have a short generation time and relatively simple 

nervous system (Bettinger et al., 2004). Ethanol intoxication in C.elegans occurs at 

doses that cause intoxication in other organisms (Davies et al., 2003). Genes that alter 
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ethanol-induced response in the worm also affects ethanol-induced response in rodents 

(Alaimo et al., 2012), thereby suggesting that there are conserved mechanisms for 

ethanol response between C.elegans and mammals (Raabe et al., 2014). For instance, 

the Clic 4 gene (a chloride intracellular channel that is involved in the activation of 

intracellular chloride channel), have been implicated in the behavioural responses to 

acute responses in C.elegans, Drosophila and mice (Bhandari et al., 2012). The slo-1 

gene (encoding the BK potassium channel) (Davies et al., 2003) and NPR-1 (a 

neuropeptide Y (NPY) receptor-like protein) (Davies et al., 2004) have also been 

reported in ethanol-induced responses in C.elegans. The BK potassium channel can be 

modulated by G proteins therefore a change in gene expression in G protein could have 

similar effect to the mutation in potassium channel.  

 

1.2.4. Drosophila melanogaster (Fruit fly) 

Drosophila melanogaster, also known as the fruit fly, has been intensely studied in 

biology and has provided crucial insight into cellular, molecular, developmental and 

disease processes that are conserved in mammals including humans (Devineni and 

Heberlein 2013; Guarnieri and Heberlein, 2003; Heberlein, 2000; Kaun et al., 2012). 

Drosophila has approximately the same number of gene families as those found in 

mammals (Nichols, 2006). Fruit flies are easy and inexpensive to maintain in the 

laboratory and have a generation time of approximately two weeks (Devineni and 

Heberlein, 2013; Guarnieri and Heberlein, 2003). Due to their small size, thousands of 

genotypes of flies can be maintained in a typical laboratory and they have a rapid life 

cycle, involving approximately 9 – 10 days at 25oC to develop from egg to mature 

adult. Also, due to their fertility, hundreds of flies can be obtained from a single female 

fly (Guarnieri and Heberlein, 2003; Kaun et al., 2012).  
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A major advantage of the Drosophila model is the simplicity and scale with which they 

can be genetically manipulated (Guarnieri and Heberlein, 2003; Heberlein, 2000). Fruit 

flies are generally found around ripe or fermenting plant material that contains up to 5% 

ethanol (Guarnieri and Heberlein, 2003; Rodan and Rothenfluh, 2010). The flies are 

capable of handling the toxic effects of ethanol and they use it as an energy source and 

as a substrate for lipid synthesis (Kaun et al., 2012).  

As in mammals, ethanol is oxidised to acetaldehyde in fruit flies by alcohol 

dehydrogenase (ADH). The ADH in Drosophila differs from the mammalian ADH, 

which is a short chain dehydrogenase and amino acid sequence (Hernandez-Tobias et 

al., 2011; Jornvall et al., 1981). The acetaldehyde is subsequently converted to acetate 

by mitochondrial aldehyde dehydrogenase (ALDH). Both ADH and ALDH functions 

are crucial to aid resistance to ethanol toxicity (Devineni and Heberlein, 2013). Acetate 

is converted to acetyl-CoA, which can enter the tricarboxylic cycle or be used as a 

precursor for the synthesis of saturated fatty acids (Guarnieri and Heberlein, 2003; Sha 

et al., 2014).  

Like in mammals, ADH oxidises over 90% ethanol in Drosophila and the microsomal 

and catalase pathways have also been implicated (Guarnieri and Heberlein, 2003). ADH 

is mostly found in the fat bodies and digestive tract of Drosophila larvae and adults 

(Geer et al., 1988). Experimenters have demonstrated a key role for ADH in ethanol 

metabolism in Drosophila. Adult Drosophila expressing short-chain ADH emerged 

shortly after ethanol became available in fermenting fruits (Hernandez-Tobias et al., 

2011), whereas in the Drosophila larvae ADH is up-regulated by the presence of 

ethanol in food (Mckechnie and Geer, 1984). Thus, Drosophila adult and larvae 

metabolise ethanol differently (Guarnieri and Heberlein, 2003). Additionally, wild-type 

Drosophila is significantly more resistant to the toxic effects of environmental ethanol 

compared to ADH-deficient strains (David et al., 1984). ADH also plays a key role in 
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Drosophila larvae by catalysing the conversion of ethanol-derived acetaldehyde to 

acetate (Geer et al., 1985).  

In previous years, ethanol sensitivity and tolerance have been studied in Drosophila 

using a variety of models/assays. Exposing flies to low concentrations of ethanol elicits 

locomotor activity in flies (Devineni and Heberlen, 2012, Wolf and Heberlein, 2003), 

whereas higher concentrations of ethanol lead to decreased activity similar to human 

intoxication, characterized by loss of postural control and eventually sedation (Corl et 

al., 2009; Devineni and Heberlein, 2012; Moore et al., 1998; Singh and Heberlein, 

2000).   

Loss of postural control in flies was first assayed using the inebriometer, a vertical 

column containing mesh baffles through which ethanol vapour is delivered (Berger et 

al., 2008; Moore et al., 1998). When exposed to ethanol vapour, flies lose postural 

control and gradually fall from one base to the next. Ethanol sensitivity can therefore be 

measured as the time required for the flies to reach the bottom of the column.  Another 

assay used to measure ethanol-induced loss of postural control (referred to as sedation) 

is using line-crossing/locomotion assay, in which one records the number and pattern of 

grid lines crossed by flies (Singh and Heberlein, 2000).  

Ethanol sensitivity has also been assayed by quantifying the behaviour of flies as they 

recover from intoxication to ethanol (Berger et al., 2004), or by using a loss-of- righting 

reflex (LORR), which involves counting the number of flies that fail to regain upright 

posture after being knocked over (Corl et al., 2009; Devineni et al., 2013; Rothenfluh et 

al., 2006) or by quantifying the time it took for half of the ethanol exposed flies to 

become sedated (Maples and Rothenfluh, 2011).  

Recently, more complex assays that are more closely related to mammalian behaviour 

have been developed. A self-administration assay quantifies ethanol preference in flies 
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and this preference exhibits several features similar to compulsive alcohol consumption 

in mammals (Devineni and Heberlein, 2009).  To measure whether intoxicating doses of 

ethanol are rewarding to flies, a conditioned ethanol preference assay was developed 

(Kaun et al., 2011, Shohat-Ophir et al., 2012).  

Repeated ethanol exposures in Drosophila have been reported to induce ethanol 

tolerance (Scholz et al., 2000). Indeed, a single ethanol exposure has the capacity to 

induce lower sensitivity to a subsequent ethanol exposure (Scholz et al., 2000).  Several 

investigators have developed different models to measure ethanol tolerance, which is 

defined as the acquired resistance to the effects of ethanol after prior ethanol exposure 

(Berger et al., 2004; Scholz et al., 2000). Two types of ethanol tolerance have been 

described in Drosophila, rapid and chronic tolerance. Rapid tolerance is caused by brief 

ethanol exposure whereas chronic tolerance is stimulated by prolonged ethanol 

exposure (approximately 24 h) that does not produce apparent intoxication (Berger et 

al., 2004). Another type of tolerance which has not yet been characterised in Drosophila 

due to its difficulty in distinguishing from naïve ethanol sensitivity using existing 

assays, is known as acute functional tolerance. Acute functional tolerance develops 

within a single intoxicating session (Berger et al., 2004, Devineni and Heberlein, 2013).  

Several studies have also demonstrated that upon exposure to ethanol, Drosophila 

displays a robust preference for ethanol-containing food with an increase in time and 

exhibit tolerance with repeated exposure to ethanol (Devineni and Heberlein, 2009; 

Devineni and Heberlein, 2010; Scholz et al., 2000).  

Measuring ethanol-induced behaviours in Drosophila can be used to understand many 

different features of the nature of ethanol. Thus, researchers have carried out genetic 

analyses to identify mutations that alter ethanol sensitivity and development of ethanol 

tolerance in Drosophila. Mutant strains, tipsy and barfly, obtained by treatment with the 
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mutagen ethyl methane sulphonate, showed reduced and increased sensitivity to ethanol 

compared to wild-type flies, respectively (Heberlein et al., 2004; Heberlein, 2000). 

Another mutant, cheapdate, generated by the use of P-element transposable element 

displayed increased sensitivity to ethanol-induced loss of postural control (Moore et al., 

1998). Further investigation demonstrated that cheapdate flies carry a mutation in a 

gene called amnesiac, which was described initially because of its role in olfactory 

learning and memory (Quinn et al., 1979). In addition to cheapdate mutant, other 

Drosophila mutants have been implicated in molecular and cellular processes that 

mediate ethanol-induced behaviour (Table 1.2).  

 

 

 

 

Table 1.2. Selected mutants invloved in ethanol-induced behaviour in Drosophila 

 

Mutants  Gene  Mechanism of action  Ethanol-related 
phenotype 

Reference 

cheapdate  amn cAMP pathway  Increased motor 
impairment  

Moore et al., 1998 

sca sca Notch signalling  Decreased 
conditioned 
preference  

Kaun et al., 2011; 
LaFerriere et al., 2008 

hangover  hang  Stress pathway  Decreased 
tolerance  

Scholz et al., 2005 

krasavietz kra Regulation of translation  Decreased ethanol 
sensitivity  

Berger et al., 2008;  
Devineni and Heberlein, 
2009 

slowpoke slo Calcium-activated 
potassium channel 
activity  

Decreased 
tolerance  

Cowmeadow et al., 2005;  
Cowmeadow et al., 2006 

happyhour hppy Inhibits EGFR pathway Decreased ethanol 
sedation  

Corl et al., 2009 

arouser  aru EGFR and PI3K/Akt 
pathways  

Increased 
sedation  

Eddison et al., 2011 

 DopR Dopamine signalling  Decreased 
hyperactivity  

Kong et al., 2010 
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 npf Neuropeptide F/Y 
(NPF/NPY) 

Decreased 
sedation  

Thiele et al., 1998; Wen et 
al., 2005 

 

This table includes the mutants and genes that have been functionally characterized as regulators of 
ethanol-induced behaviour. Not all Drosophila known mutants are listed but the representative gene for 
each signalling pathway or general mechanism are listed.  
 

 

1.3.  G proteins  

Heterotrimeric guanine nucleotide binding proteins (G proteins) act as intermediaries in 

the transmembrane signalling pathways that comprises of the G protein-coupled 

receptor (GPCR), G proteins and downstream effectors (Gilman, 1987; Milligan and 

Kostenis 2006). GPCRs represent the largest family of transmembrane receptors. They 

consist of a single subunit with seven transmembrane domains, an extracellular ligand 

binding site and intracellular G protein binding domain. GPCRs are found in many 

genomes including humans and they represent a major therapeutic target (Cook, 2010; 

Johnston and Siderovski, 2007). Binding to a GPCR by their endogenous ligands, 

facilitates the activation of heterotrimeric G protein (Wettschureck and Offermanns, 

2005) which in turn activate different effector molecules such as: ion channels, adenylyl 

cyclases and phospholipases and phosphodiesterases. Changes in the activity of these 

effector molecules eventually lead to changes in cellular functions ranging from short 

term effects like the control of secretion rates, muscle tone or metabolic processes to 

long term effects like regulation of growth and differentiation (Johnston and Siderovski, 

2007; Offermanns, 2003).  

 

1.3.1. G protein signalling  

Heterotrimeric G proteins comprise of an α   subunit   bound   to   a   β   and   γ   subunit  

(Offermanns, 2003). In the basal state, the guanosine diphosphate (GDP)-bound   α  



 
 

27 
 

subunit   is  associated  with   the  βγ  heterodimer  complex  (Elia  et al., 2005; Offermanns, 

2003). Activation of a GPCR by an agonist induces a conformational change within the 

receptor that is associated with the G protein, thereby resulting in the exchange of 

guanosine diphosphate (GDP) for guanosine triphosphate   (GTP)   on   the   Gα   subunit  

(Johnston and Siderovski, 2007; Offermanns, 2003; Siderovski and Willard, 2005). This 

leads   to   the   dissociation   of   the   Gα   subunit   from   the   βγ   heterodimer   complex   and  

subsequent modulation of the activity of downstream effectors (Figure 1.4).  

G protein signalling is terminated by the hydrolysis of GTP to GDP by the intrinsic 

GTPase activity of the α  subunit.  This  results  in  the  re-association of the GDP-bound  α-

subunit   and   the   βγ   complex,   and the re-association with resting state receptors 

(Wettschureck and Offermanns 2005; Offermanns, 2003). The GTPase activity of 

isolated G protein is much lower than those observed in physiological conditions. 

Several effector proteins interact with the GTP-bound   α-subunit and accelerate their 

GTPase activity, thereby contributing to the deactivation of G protein signalling. A 

family  of  proteins  called  ‘regulators  of  G  protein  signalling’  (RGS  proteins)  have  been  

identified,  which  enhances  the  GTPase  activity  of  Gα  subunits  (De Vries et al., 2000; 

Ross and Wilkie, 2000) (Figure 1.4).  
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Figure 1.4. Cycle of G protein activity 

Agonist (Ag) stimulation of GPCR promotes the release of GDP from the alpha subunit of the 

heterotrimeric G protein resulting in the formation of GTP-bound  Gα.  GTP-Gα  and  Gβγ  dissociate  and  

are able to modulate effector functions. The spontaneous hydrolysis of GTP to GDP can be accelerated by 

various effectors as well as by regulators of G protein signalling (RGS) proteins. GDP-bound Gα   then  

reassociates  with  Gβγ  (With permission from Wettschureck and Offermanns, 2005).  

 

1.3.2. G protein pharmacology  

In the  human  genome,  there  are  sixteen  α  -subunits divided into four families based on 

structural  and  functional  homology:  Gαs,  Gαi/o,  Gαq/11 and  Gα12/13 (Table 1.3). Although 

some   of   the   Gα   subunits   are   expressed ubiquitously, others are expressed in a wide 

variety of tissues and some display a very restricted pattern of expression (Offermanns, 

2003).  The  βγ  heterodimer  of  G  proteins   in   the  human  genome   is  made  up  of   five  β-
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subunits  and  twelve  γ-subunits (Table 1.3).  The  βγ  heterodimer  plays  an  essential  role  

in the regulation of various effector molecules such as the G protein regulated inwardly 

rectifying K+ channels (GIRK), particular isoforms of adenylyl cyclase and 

phospholipase C (Clapham and Neer, 1997).  

The activation of a GPCR, usually results in the activation of several signal transduction 

cascades  via  Gα  subunits  as  well  as   through   the   freed  βγ-complex (Wettschureck and 

Offermanns, 2005). The expression pattern of G proteins activated by a given GPCR 

determines the cellular and biological response. The activated receptors thereby lead to 

functionally similar or identical cellular effects usually activating the same G protein 

subtypes (Wettschureck and Offermanns, 2005). Most GPCRs are able to activate more 

than one G protein subtype, which leads to the activation of various signalling cascades 

(Raymond, 1995). Hence, changes in the basal state of G protein subtypes, could have 

an effect on intracellular signalling pathways by altering the G protein subunit 

associated with the GPCR and thus affecting the type of effector molecules activated 

during G protein release (Morris and Malbon, 1999).  

G protein subunits show a high degree of interaction specificity between themselves. 

(Raymond, 1995). Some G proteins are more promiscuous than others, which is 

especially  true  for  members  of  the  Gαq/11 subfamily (Kostenis et al., 2005; Mody et al., 

2000).  For   instance,  Gα14,  but  most  notably  Gα16 and   its  murine  orthologue  Gα15, can 

link a variety of Gq, Gi and Gs-coupled GPCRs to the phospholipase C (PLC) pathway 

(Kostenis, 2001; Offermanns and Simon, 1995).   

In the Drosophila genome, six genes have been described for α-subunits, including Gs, 

Gf, Go, Gq, Gi and concertina (cta) (Katanayeva et al., 2010) (Table 1.4). Each gene 

activates different transduction pathways depending on its particular effectors. The 

pathways for Gs, Gi/Go and Gq are all well-known and increases cAMP (Gs), decreases 
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in cAMP (Gi/Go) and the release of IP3 and diacylglycerol (Gq) (Boto et al., 2010) 

respectively. The signal transduction pathway for Gf (f is for fly) and concertina (cta) 

are not fully understood. The number of β and γ   subunits genes in the Drosophila 

genome is smaller compared with that of humans: only three Gβ genes Gβ5,  Gβ76C and 

Gβ13F (Dolph et al., 1994; Yarfitz et al., 1988) and two genes encode for the Gγ  

subunits, Gγ1 and Gγ30A (Ray and Ganguly, 1992; Schulz et al., 1999) (Table 1.4). 
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Table 1.3. Human G proteins                 

Name Subtypes  Expression  Effectors  Roles  

α-subunits 

Gαs  Gαs,  GαsXL and  Gαolf Ubiquitous, neuroendocrine and olfactory 
epithelium, brain respectively 

AC Gs and Golf are  the  two  main  members  of  the  Gαs  family.  Gs  
act on the signalling pathway through GPCR to elevate cAMP 
.  

Gαi/o  Gαi1,   Gαi2,   Gαi3,   Gαo, 
Gαz,  Gαgust,  Gαt-r,  Gαt-c 

Widely distributed, ubiquitous, widely, 
neuronal, platelets, taste cells, retinal rods and 
retinal cones respectively  

AC, PDE, GIRK They mediate GPCR dependent inhibition of AC. Most of the 
effects of Go activation   are   mediated   by   βγ-subunit. Go is 
associated with Ca2+ channels and GIRK.  

Gαq/11  Gαq,  Gα11,  Gα14,  Gα15/16 Ubiquitous, almost ubiquitous, kidney& lung, 
hematopoietic cells respectively  

PLC  β-isoforms Gαq  &  Gα11   are   involved in the coupling of receptors in a 
pertussis  toxin  insensitive  manner  to  PLC  β-isoforms.  

Gα12/13  Gα12,  Gα13 Both Ubiquitous  RhoGEF They are activated by receptor-coupling Gq/11.  

β-subunits 

β-subunits  Β,  β2,  β3,  β4,  β5 Widely& retinal rods, widely distributed, widely 
& retinal cones, widely and mainly brain 
respectively 

Isoforms of AC, 
PLC, GRK, 
receptor kinases, 
GIRK, PI-3-K 

The   Gβγ   subunits are involved in the activation of K+ 
channels in the heart and the inhibition of ca2+/calmodulin-
stimulated AC activity in the brain. They are also involved in 
the stimulation of PLC activity in the brain.  

γ-subunits  
 

γ-subunits Γ1,   γrod,   γ14,   γcone,   γ2,  
γ6,  γ3,  γ4,  γ5,  γ7,  γ8,  γ9,  
γ10,  γ11,  γ12,  γ13 

Mostly widely distributed, retinal rods and brain   

AC: adenylyl cyclase; GPCR: G protein-coupled receptor; PDE: phosphodiesterase; GIRK: G protein regulated inward rectifying potassium; PLC: phospholipase C; GRK: G protein 
regulated kinase; PI-3K: phosphatidylinositol-3-kinase; RhoGEF: Rho guanosine nucleotide exchange factor (Adapted from Wettschureck and Offermanns 2005; Offermanns, 2003)
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Table 1.4. Drosophila G proteins 

Name  Family Human 
orthology 

Roles 

α-subunits 
Gαs Gαs Gαs Plays a role in larval growth (Wolfgang et al., 

2001) 
Gαi Gαi/o Gαi Involved in the formation of blood-brain 

barrier (Schwabe et al., 2005) 
Gαo Gαi/o Gαo Involved in feeding behaviour (Fitch et al., 

1993) and learning and memory (Ferris et al., 
2006) 

Gαq Gαq/11 Gαq Plays a role in phototransduction (Scott et al., 
1995) and olfaction (Kalidas and Smith, 
2002) 

Gαf Gαf none The signal transduction pathway is unknown. 
Expressed in embryonic, larvae and early 
pupae stages of development (Quan et al., 
1993).  

concertina (cta) Gα12/13  Its signal transduction is not fully understood 
but plays a role in Drosophila gastrulation 
(Peter and Rogers, 2013).  

β-subunits 
Gβ5   Expressed in olfactory receptor organs (Boto 

et al., 2010) 
Gβ13F   Plays a role in the control of asymmetric cell 

divisions in the neuroblast and sensory organ 
lineages (Schaefer et al., 2001).  

Gβ76C   Expressed in the eye of Drosophila. Its 
localisation suggests a role in 
phototransduction (Dolph et al., 1994).  

γ-subunits 
Gγ1   Phototransduction (Schulz et al., 1999) 
Gγ30A   Phototransduction (Schulz et al., 1999) 
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1.3.3.  G proteins and ethanol-mediated behaviours  

Chronic administration of ethanol causes profound, long-lasting behavioural and 

biochemical changes, which are the basis for the phenomena of ethanol tolerance, 

dependence and abstinence syndrome after ethanol withdrawal (Moonat et al., 2010). 

These prolonged changes, which are induced by alterations in receptor-activated 

intracellular signalling cascades affecting the nucleus, results in changes in the 

expression levels of immediate early-genes, neurotransmitter transporter and 

heterotrimeric G protein-coupled receptors (GPCRs) (Harlan and Garcia, 1998; 

Kitanaka et al., 2008). Several studies have revealed that chronic administration of 

abused drugs such as ethanol can alter signalling pathways such as cAMP pathways 

(Nestler and Aghajanian, 1997).   

Studying the expression levels of G protein subunits can identify and unravel specific 

intracellular effectors associated with ethanol exposure. Previous investigators have 

implicated chronic ethanol administration to alter G protein subunits associated with the 

cAMP pathway. A reduction in the Gαs subunit (Mochly-Rosen et al., 1988) and/or 

increase in Gαi subunit (Charness et al., 1988) of the heterotrimer G proteins appear to 

account for heterologous desensitization of cAMP signalling caused by chronic ethanol 

exposure in neuroblastoma cells (Diamond and Gordon, 1997).  In another study, a 

reduction in the Gs subunit was also observed in erythrocyte membranes from alcoholics 

(Nakamura, 1994). Another study reported, no  change  was  detected  in  some  Gα  and  Gβ  

subunits  following  acute  treatment  to  ethanol  in  rat’s  cortical and cerebellar membranes 

using immunoblotting assay (Hatta et al., 1994; Wand et al., 1993). Other investigators 

reported   an   increase   in   the   protein   levels   of   one  Gαo isoform in rats cerebellum after 

chronically ingested ethanol (Guillen et al., 2003). Some of the variations within these 

studies, might be due to the regimes of ethanol administration and the type of assay 

utilised.  
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One of the molecular targets of ethanol is the G-protein-coupled inwardly rectifying 

potassium channel (GIRK), which is coupled to G protein subunits, Gi and Go. Chronic 

treatments of rats with ethanol showed decreased guanosine nucleotide binding protein, 

beta polypeptide (GNB1) gene in the hippocampus, so that chronic ethanol intake may 

reduce  the  availability  of  Gβγ  dimers,  resulting  in  reduced  GIRK  activation  (Saito  et al., 

2002).  

A wide array of studies have demonstrated that abused drugs such as opiates 

(Chetswang et al., 1999; Kaewsuk et al., 2001; Nalepa et al., 2007; Narita et al., 2001; 

Nestler et al., 1989; Zelek-Molik et al., 2012), cocaine (Carrasco et al., 2003; Perrine et 

al., 2005) and barbiturates (Kitanaka et al., 2008) can alter the level of G protein gene 

expression in rat brains. Though, there are only a few reported studies that investigate 

the effect of ethanol-induced behaviour on G protein subunits, none have employed 

adaptive changes to ethanol treatment. To  this  author’s  best  knowledge,  this  is  the  first  

report demonstrating G protein gene expression changes using real-time polymerase 

chain reaction.  

 

1.4.  Overall aim 

The overall aim of the work described in this thesis is to better understand if ethanol can 

cause changes in the level of G protein gene expression in Drosophila that correlate 

with ethanol-induced behavioural changes. The model, Drosophila was selected due to 

its simplicity and accessibility to genetic, molecular and behavioural analyses (Bainton 

et al., 2005).  
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1.4.1. Research rationale 

The justification of these investigations is given that G proteins can be promiscuous in 

their binding to receptors and given that different G proteins activate different effector 

molecules, a change in the relative complement of G proteins could result in different G 

proteins being associated with the neurotransmitter receptors. Thus a different response 

could occur following the same stimuli or absence of stimuli in an organism previously 

exposed to an addictive drug. Hence, it is important to establish whether the expression 

of specific G proteins is affected, how such changes occur and what the consequences 

are. 

 

1.4.2. Objectives 

x To develop a suitable model of ethanol-induced behaviour in which G protein 

gene expression changes can be measured.  

x To identify any G protein subtypes which might be up-regulated or down-

regulated following ethanol-induced behaviour. 

x To evaluate the significance of any identified changes in ethanol-induced G 

protein gene expression by utilizing Drosophila mutants. 

 

1.4.3. Research hypothesis  

Ethanol administration can alter G protein gene expression levels in the head of 

Drosophila and such changes can explain, at least partially, the development of alcohol 

addiction in flies and possibly also in humans.   
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1.4.4. Original contribution to knowledge  

To date, there has been no reported research on the effect of alcohol on G protein gene 

expression in Drosophila. The original contribution of this research to knowledge is the 

demonstration that in Drosophila alcohol induces changes in G protein mRNA level. 

These changes could affect the signal transduction pathways and contribute to the 

molecular mechanism underlying drug addiction. If these changes in gene expression 

are maintained, they could play a role in drug related conditions such as withdrawal and 

relapse.  
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Chapter 2: Materials and methods  
 

2.1.  Drosophila handling and strains 

2.1.1. Drosophila handling and husbandry 

Drosophila melanogaster, were maintained either at 25oC (their life cycle is 

approximately 9-10 days) during experiments or at 18oC (their life cycle is about 20 

days) for long-term storage of stocks according to previously established protocols 

(Dahmann, 2008). At both temperatures, the flies were kept in a 12h light/dark cycle 

incubator with 60% relative humidity. The flies were grown on a Ready-mix 

Drosophila dried food prepared with water in equal amounts and sprinkled with a small 

amount of dry yeast (Philip Harris Education, UK) in plastic fly vials measuring 25 x 

95mm optical density (OD) x height (H) (Dominique Dustcher, FR) or in bottles 

measuring 240 x 350mm diameter to expand population, stoppered with cotton-like 

plug or cotton wool.  

 

2.1.2. Drosophila Strains  

The strains of Drosophila used in this study include wild-type Canton-S, Drosophila 

mutants for G proteins and dopamine 1-like receptor type 2 (Table 2.1).  All fly strains 

were obtained from the Drosophila stock centre Bloomington (Bloomington, IN, US).  
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Table 2.1. The fly strains used in the study 

Fly line Bloomington 
stock number  

Notes 

Wild-type (Canton-S)  Wild-type strain of Drosophila, which has been 
maintained in the laboratory originally from Philip Harris 
Education UK. Used in most behavioural assays and as a 
control  

Gq protein  30736 Mutation of the G protein subunit, Gq on the 2nd 
chromosome (Kain et al., 2008) 

Gi protein  17672 Mutation of the G protein subunit, Gi on the 3rd 
chromosome (Bellen et al., 2004) 

Dopamine receptor  24743 Mutation of the dopamine 1-like receptor type 2 on the 
3rd chromosome (Metaxakis et al., 2005) 

 

2.1.3. Drosophila collection  

All flies used in experiments were collected at 25oC between 1-3 days old so as to 

reduce age-related behavioural effects. All assay-specific experiments started at the 

same time of the day (in the morning) to reduce errors due to variation in results that 

may be caused by circadian rhythms (Van der Linde and Lyons, 2011).  

The flies used in this study were females, (unless otherwise stated) this is taking into 

account the need to remove any effect due to possible sexual dimorphism and reduce 

size discrepancy between individual. Flies were sorted by gender under the microscope 

by anaesthetization with carbon dioxide (CO2) at least 24h prior to the start of the 

experiments to allow recovery. Males are generally smaller than females and have a 

rounder abdomen that is dark dorsally compared with the striped tip of the female 

abdomen (Dahmann, 2008).  

For all experimental crosses, it was important to use virgin females. This is because 

mated females store sperm in the ventral receptacle and spermatheca. This stored sperm 

enables female flies to lay up to 100 eggs per day in ideal conditions (Roberts, 1998). 
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Because male and female flies develop from the same vial or bottle, brother-sister 

mating can occur, thereby confusing the results of the crosses. Using virgin females 

therefore ensures crosses produce progeny at expected Mendelian ratios. Female flies 

will not mate within the first eight hours of eclosion at 25oC. The virgin females were 

collected when a vial or bottle of all adult flies was emptied in the morning and 

collected within eight hours and stored in a fresh vial. The virgin female flies can also 

be identified by the light colour of their cuticle and by a dark spot that can be easily 

seen through the white abdomen (Greenspan, 2004).  

 

2.2.  Behavioural assays 

In order to measure ethanol-induced behaviour in Drosophila, different behavioural 

assays were considered and tested. One was the ethanol preference assay that is used to 

measure ethanol self-administration in flies using the capillary feeder assay (CAFE) 

(Devineni and Heberlein, 2009), the other assay considered was the assay previously 

described by Maples and Rothenfluh, 2011, which measures ethanol sensitivity and 

tolerance. The disadvantage of using the preference assay is that it is dependent on a 

number of different variables such as length of pre-exposure, concentration of ethanol 

used in the pre-exposure and in the testing. The method described by Maples and 

Rothenfluh, 2011 was chosen because of its ability to measure ethanol sensitivity and 

tolerance in flies and also due to its simplicity and reproducibility.  

 
 
2.2.1.  Ethanol sensitivity assay  

The ethanol sensitivity assay previously described (Maples and Rothenfluh, 2011), was 

modified and used to test for ethanol sensitivity in Drosophila. For this assay, eight 

female flies were used for each group within an experiment. The flies were collected 
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under CO2 anaesthesia, stored in new food vials without yeast and allowed to recover 24 

h before testing, so as to avoid any effects of the CO2 on ethanol sedation. Exposures to 

ethanol were performed using empty plastic vials (25 x 95mm) that had cotton-like plug 

pushed to the bottom of the vial to make a smooth surface, so that the flies would not 

get stuck at the bottom of the vial. Flies were then exposed to 500µl of 100% ethanol 

placed on the bottom of a new cotton-like plug making sure the ethanol faces the bottom 

of the exposure chamber and not the wall of the vial (Figure 2.1). 

 

During exposure, the exposure chamber was tapped every minute to startle the flies and 

observed for 10s. The number of stationary flies was recorded for each minute. Flies 

were stationary if they were unable to turn over, remain in one position or rapidly 

vibrate their wings throughout the ten-second-observation period. Flies were not 

stationary if they could turn over or walk up and down the vial.  The time required for 

four of the eight ethanol-exposed flies to remain stationary is defined as the time to 50% 

sedation (ST50). For the gene expression studies, flies were exposed for a duration of 

30 min in order to avoid lethality that can occur with longer exposures of ethanol.  
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Figure 2.1. Image showing the apparatus used in behavioural assays 

Flies were placed in a plastic vial that had cotton-like plug pushed to the bottom to make a smooth 

surface.  Flies were then exposed to 500μl of 100% ethanol placed on the bottom of a cotton-like plug, 

making sure the ethanol faces the bottom of the plastic vial. The red line indicates the surface on which 

ethanol was added. The number of stationary flies was recorded every minute for 10s.  

 

 

2.2.2. Tolerance assay  

The tolerance assay was carried out as described in (Maples and Rothenfluh, 2011) with 

slight modifications. Age-matched female flies (1-3 days old) were pooled from the 

same culture. The flies were divided into four groups of eight flies each (one, two, three 

and four exposures) that were placed on one of four exposure chambers.  

In the four exposure-group, ethanol tolerance was determined in the ethanol sensitivity 

assay described in Section 2.2.1. Flies were exposed to ethanol and the time to 50% 

sedation was recorded. The flies were then allowed to recover 24h in food vials at 25oC, 

Cotton-like  plug  
with  ethanol 

Flies 
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subjected to a second and third exposure to ethanol, allowed 24h recovery between each 

exposures and then the fourth exposure in the ethanol sensitivity assay. This is repeated 

for the other groups of flies (three, two and one), allowing 24h recovery between each 

treatments. Ethanol tolerance was also determined in the four, three, two and one-

exposure groups as described above (Figure 2.2). The development of tolerance was 

measured as an increase in ST50 and reduced effect of ethanol after prior ethanol 

treatment as similarly reported (Awofala, 2011; Chan et al., 2014; Maples and 

Rothenfluh, 2011).  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 2.2. Schematic of the four ethanol exposed groups used to determine when flies acquire 
tolerance to the sedating effects of ethanol. 

Flies were exposed to 500µl of 100% ethanol one, two, three and four days, allowing 24h recovery 
period.  
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2.3.  Subpopulation of wild-type Drosophila (early and late responders to 

ethanol) 

2.3.1. Separation of early and late responders 

Twenty males and twenty virgin female flies (1-3 day old) were collected separately 

from the same culture of wild-type Drosophila. Using an exposure chamber (Figure 2.3) 

manufactured in the laboratory for the collection of flies, the flies were exposed 

separately to 500µl of 100% ethanol placed on a cotton wool attached to a container. 

The flies were collected into a hole created on a petri dish using a paint brush when 

observed for 10s every min to determine when they became stationary. The first 20% (4 

flies) of male and female flies that remained in one position or vibrate their wings were 

collected and identified as early responders to ethanol while the last 20% (4 flies) of 

male and female flies were collected and identified as late responders to alcohol (Figure 

2.4).  
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Figure 2.3. Image showing the apparatus used for the separation of early and late responders. 

Flies exposed in the chamber were recorded every minute for 10s and collected using a paint brush into 

the petri dish through the hole.   

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 2.4. Scheme showing how male and female flies were separated. 

Flies were separated using the exposure chamber in Figure 2.3 into EF: early female, LF: late female, 

EM: early male, LM: late male.  
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2.3.2. Experimental cross of early and late responders  

Following the segregation of early and late responders, the early male (EM) and early 

female (EF) flies were placed in a fresh bottle of Drosophila food and allowed to breed. 

The late male (LM) and late female (LF) flies were placed in another bottle of fresh 

Drosophila food and allowed to breed. This was identified as the parental generation of 

early and late responders (Figure 2.5).  

After breeding, the bottles were cleared so as to collect virgin female flies from the 

early responders (EM X EF) and late responders (LM X LF). The progeny (males and 

virgin females) of the parental generation of early responders (EM X EF) were collected 

and separated based on their response to ethanol as described above. The first 20% of 

male and female flies were bred in a fresh bottle of food (F1: EM X EF). The progeny 

(males and virgin females) of the parental generation of late responders (LM X LF) 

were collected and separated. The first 20% of male and female flies were bred in a 

fresh bottle of food (F1: LM X LF). This was identified as the first generation of 

offspring (F1 generation). This process was repeated to identify the second generation 

of offspring (F2 generation).  

Tolerance was measured in the parental generation of early and late responders to 

ethanol. Eight female early and late responders were collected the day before exposure 

and exposed to ethanol consecutively for three days as described in Section 2.2.2.   
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Figure 2.5. Experimental cross of early and late responders. 

The experimental cross between early (E) and late (L) male (M) and female (F) responders.  

  

 

2.4.  Enzyme assay - Alcohol dehydrogenase assay (ADH)  

2.4.1. Isolation of protein from fly 

Five whole early, late and wild-type female flies were collected separately in an 

Eppendorf tube and frozen in liquid nitrogen for 10min. Homogenates were prepared by 

manual grinding of the flies in sterilized tubes with plastic pestle. Homogenization was 

carried  out   in  50μl  of   ice-cold protein extraction (PE) buffer (0.1M phosphate buffer, 

pH 7.4, 0.5M EDTA). Homogenates were then centrifuged at 10,000g for 15min at 4oC. 

The supernatant was isolated and stored in -20oC until used.   
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2.4.2. ADH assay  

ADH activity was assayed as previously described (Pfeller et al., 2005) between the 

parental generation of early and late responders using wild-type flies as a control. 10µl 

of supernatant was added to 100µl of assay medium containing 0.052M Tris-HCl (pH 

8.0), 5.1mM NAD+ and 0.20M 2-propanol as substrate in a 96 well microtitre plate 

(Thermo Scientific, UK). The absorbance at λ=  340nm was measured every 10s for 5 

min using a Thermo Multiskan plate reader (Thermo, US).  Reactions were carried out 

in triplicate. A molar extinction coefficient for NADH of 6.220 mM-1 cm-1 was used to 

estimate NADH production. The protein content was determined by the Bradford assay 

(See Section 2.4.3.) 

ADH activity was calculated as follows:  

 

 

2.4.3. Protein assay (Bradford assay)  

Protein samples extracted from the flies (Section 2.4.1) were performed using the 

method based on Bradford (Bradford, 1976). Using bovine serum albumin (BSA) as a 

standard, 1mg/ml was prepared by diluting 5mg of BSA and 5ml of distilled water. The 

stock (1mg/ml) was used to make different concentrations of BSA standard (0.05mg/ml, 

0.1mg/ml, 0.2mg/ml, 0.3mg/ml, 0.4mg/ml, and 0.5mg/ml). BSA standards were 

quantified by mixing 10µl of standards with  200µl  of  Bradford’s  reagent  (1:5  dilution)  

(BioRad, Inc, US) in a 96 well microtitre plate (Thermo Scientific, UK) and incubating 

at room temperature for 5min and then measuring the absorbance at λ=  595nm using a 

Thermo Multiskan plate reader (Thermo, USA). Assays were performed in triplicate 
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and a standard curve was plotted. 10µl of protein samples were added to 200µl of 

diluted Bradford reagent. Absorbance at λ=  595nm was measured and the amount of 

total soluble protein determined from the standard curve.  

 

2.5.  Polymerase Chain Reaction (PCR)  

2.5.1. Total RNA preparation    

Five whole flies were placed in a 1.5ml Eppendorf tube and frozen in liquid nitrogen for 

10min. The fly heads were isolated by 10s vortex decapitation and selected under the 

microscope. The five pooled heads were then preserved in 10µl of RNA Later (Qiagen 

Inc., US) until used. RNA Later solution is used for immediate stabilization of the 

RNA. Homogenates were prepared by manual grinding of fly heads in a fresh sterilized 

1.5ml Eppendorf tubes with a plastic pestle. Total RNA was isolated from fly heads 

using an RNeasy Plus Micro Kit (Qiagen Inc., US)   according   to   the  manufacturer’s  

instructions. Briefly, total RNA was eluted in 14µl of RNase free water (Qiagen Inc., 

US). The quality and quantity of RNA were assessed by placing 1µl of RNA sample 

onto a Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, 

US). Samples with a λ=   260/280nm ratio between 1.8 and 2.1 were used for 

experiments. RNA was stored at -80oC until used.  

 

2.5.2. Sequence analysis and design of primers 

The DNA sequences for G protein genes in the Drosophila genome were obtained from 

FlyBase (www.flybase.org) and/or National Centre for Biotechnology Information 

Databases (NCBI). The six genes that encode for Gα subunits (Gi, Gq, Gf, Go, Gs and 

concertina (cta)) all had multiple transcript variants due to alternative splicing of mRNA 

except Gi and Gf genes. The three genes that encode for the Gβ subunits (Gβ13F, Gβ76C 
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and Gβ5), possess one transcript variant except Gβ13F which has 6 transcript variants. 

Both Gγ   genes, (Gγ30A and Gγ1) possess multiple transcript variants. The G protein 

genes with multiple transcript variants were first aligned in individual gene using a free 

online tool through the European Bioinformatics Institute (EBI) known as 

CLUSTALW2 (www.ebi.ac.uk/tools/ms/clustalW2). This alignment enables the 

identification of regions that are similar within the transcripts of each gene (See 

appendix 2.1).  

Oligonucleotide primer pairs of all G protein subunits were designed using primer-

BLAST (NCBI). Primers were designed to span an exon-exon junction to avoid 

amplifying contaminating genomic DNA, with the exception of  Gβ5 whose gene lacks 

introns. Primer pairs were verified by a BLAST (Basic Local Alignment Search Tool) 

search to be specific to each G protein and a predicted amplicon size was obtained 

(Table 2.2). The sequence for primers for the housekeeping gene,  β- actin was selected 

from a previous study (Ponton et al., 2011). Primers were purchased from Eurofins 

Scientific (UK). Primers were re-suspended in RNase free water (Qiagen Inc., US) to a 

concentration of 100µM. The primers were diluted to a working concentration of 10µM 

and stored at -20oC until used. 
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Table 2.2. Primer sequence and product length for all G protein genes (Gα,  Gβ  and  Gγ) and house-
keeping genes (β-actin) 

G Proteins  Sequences  Amplicon 
length(bp) 

Annealing 
temperature (oC) 

Gα    genes    
Gi  (CG10060:  G  protein  αi  
subunit 65A) 

F: 
CGCGCAATGGGACGCCTG
AA  

106 55 

 R: 
GCAGCAGGATGCCCTCGT
CG 

  

    
Gq  (CG17759:  G  protein  α  
49B) 

F: 
CAGCAGCACGCGAAAGC
GTC 

114 65 

 R: 
GTCCCGGCGCAACTGCTT
CT 

  

    
Gf  (CG12232:  G  protein  α  
73B) 

F: 
CATGGGTGGTGGCGAACA
GCAG 

120 65 

 R: 
CTGCACGAGATCAGGAAC
AATACGG 

  

    
Go  (CG2204:  G  protein  oα  
47A) 

F: 
AACGCCTCTGGCAGGACG
CC 

115  

 R: 
TCCTTGGCGCCTAACCGA
TCCA 

 65 

    
Gs  (CG2835:  G  protein  sα  
60A) 

F: 
AGCAGGATATTCTTCGGT
GCCGT 

118 55 

 R: 
TTCCTACGCTCGTCCCGC
TG 

  

    
cta (CG17678: Concertina) F: 

TTCGTTGATGTTGGTGGA
CAGCG 

  

 R: 
TCCGCAAGAACTTGATCG
AACTCCG 

119 65 

    
Gβ    genes    
Gβ13F  (CG10545:  G  protein  
β-subunit 13F) 

F: 
CGTGGGTGATGACCTGTG
CGT 

120 59 

 R: 
CACGGGACACCCGGACGT
TG 

  

   55 
Gβ76C  (CG8770:  G  protein  
β-subunit 76C) 

F: 
ACCATCCCAGTGGCTTCG
GGT 

116  
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 R: 
GCCAGTGTTCTTCTGGGG
CGG 

  

    
Gβ5  (CG10763:  Gβ5) F: 

TCTGGGACATGCGCTCTG
GTCA 

117 59 

 R: 
TGCTGTCATCCGATCCAG
TGGC 

  

    
Gγ    genes    
Gγ30A  (CG3694:  G  protein  
γ30A) 

F: 
TCTGGTGCCGGTAGAGAT
GCAG 

120 65 

 R: 
TGAATGCTCCGCTTGCCC
CC 

  

    
Gγ1  (CG8261:  G  protein  γ1) F: 

CGTTGCCGAGGAGTCAGC
GA 

120 65 

 R: 
TCCAGGTGGCGTTGATAC
TGGT 

  

    
Housekeeping gene    
β  actin  (CG12051:  Actin42A) F: 

GCGTCGGTCAATTCAATC
TT 

138 55 

 R: 
AAGCTGCAACCTCTTCGT
CA 
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2.5.3. Reverse transcriptase polymerase chain reaction (RT-PCR) 

Reverse transcriptase polymerase chain reaction (RT-PCR) was performed to test for 

the presence of G protein mRNA in the head of flies. The primers used for amplifying 

the specific PCR products are listed in Table 2.2. Each RT-PCR reaction was carried 

out using SuperScript ® III One-Step RT-PCR system with Platinum® Taq DNA 

polymerase (Invitrogen, UK). In all cases, the amplification reaction was carried out in 

25µl total volume consisting of 1µg of RNA, 12.5µl of 2X reaction mix (a buffer 

containing 0.4mM of each dNTP, 3.2mM MgSO4), 200nM of forward primer and 

200nM of reverse primer, 1µl of SuperScript ® III RT/ Platinum® Taq Mix and 3.7µl of 

Nuclease free water (Qiagen Inc., US). PCR was carried out on a BioRad My Cycler, 

thermal   Cycler™   (BioRad,   Inc,   US)   as   follows: cDNA synthesis at 60oC for 30min, 

initial denaturation at 94oC for 2min and 40 cycles of denaturation temperature at 94oC 

for 15s, annealing temperature between 55oC and 67oC for 30s and extension 

temperature of 68oC for 1min with a final extension time of 5 min.  

 

2.5.4. Agarose gel electrophoresis of DNA 

After amplification, 10µl of each of the PCR products were mixed with 2µl of 6X 

loading dye (50% (v/v) glycerol, 0.1% (w/v) bromophenol blue, distilled water). 1.5% 

agarose gels were prepared in conical flasks with agarose (Sigma, US) in 1X 

Tris/borate/EDTA (TBE) buffer containing 0.089M Tris-base, 0.089M boric acid and 

0.002M EDTA with 15µl Safe view, Nucleic acid stain (NBS Biologicals Ltd, UK) and 

were placed horizontally in a SCIE-PLAS gel electrophoresis tank (BioRad, Inc, USA), 

containing enough TBE buffer to cover the gel. PCR products were loaded onto the gel. 

A   marker,   GeneRuler™   100bp   Plus   DNA   Ladder   ranging   from   100bp   to   3000bp  

(Fermentas, Thermo Scientific, UK) was also electrophoresed to estimate the band size 
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of samples. The agarose gel was visualized using GeneSnap from Syngene (Syngene, 

UK).  

2.5.5. Quantitative Real-time polymerase chain reaction (qRT-PCR) 

Quantitative Real-time PCR was carried out by analysis of each RNA sample in 

triplicate using EXPRESS one step SYBR GreenER kit (Invitrogen Corporation, US) on 

a Stratagene Mx3000pTM Real-Time PCR System (Stratagene, US) according to the 

manufacturer’s  instructions. The primers used for qRT-PCR are listed in Table 2.2. The 

housekeeping   gene   β-actin was used to allow relative quantification of RNA and 

normalisation of each gene. qRT-PCR efficiency was determined for each gene with the 

slope of a linear regression model (Pfaffl, 2001). Relative standard curves for the genes 

were generated with serial dilutions of RNA prepared from fly heads (i.e. 1:10, 1:100, 

1:1000, and 1:10000). The Corresponding qRT-PCR efficiencies (E) were calculated 

according to the equation: E = (10(-1/slope – 1) x 100 (Fraga et al., 2008).  

Each reaction mixture contained the following: 1µg of diluted RNA, 200nM of forward 

and   reverse   primer,   10µl   of   EXPRESS   SYBR   GreenER™   qPCR   Supermix   with  

premixed ROX, 0.5µl of EXPRESS Superscript mix, made up to 20µl with nuclease 

free water (Qiagen Inc, US) in a 96-well plate (Thermo Scientific, UK). qRT-PCR was 

performed under the following sequential conditions according   to   manufacturer’s  

protocol: cDNA synthesis at 50oC for 5min, initial denaturation at 95oC for 2min, 

followed by 40 cycles of denaturation at 95oC for 15s and annealing at their respective 

temperatures and extension at 60oC for 1min. In each experiment, a melting curve cycle 

was   performed   according   to   the   manufacturer’s   programme   to   check   the   melting  

temperature of the products produced to ensure the product was the size expected and 

not the result of primer-dimers (Appendix 2.2).  
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2.5.6. Nucleotide sequencing  

Nucleotide sequencing was used to confirm the validity of the primers of interest. For 

economic reasons, both in time and money, sequencing was carried out by Eurofins 

Scientific (UK). RT-PCR products were purified with a QIAquick PCR purification kit 

(Qiagen Inc, US). 2ng cDNA samples and primers at 10µM were sent to the company. 

The concentration was measured using a Nanodrop ND-1000 spectrophotometer 

(Nanodrop Technologies, Wilmington, US). 

 

2.6.  Western blot  

2.6.1. Buffers  

Tris-EDTA (TE) Buffer: 20mM Tris base, pH8, and 1mM ethylenediaminetetraacetic 

acid (EDTA).  

Running Buffer: 25mM Tris base and 250mM glycine at pH8.3 with 0.1% (w/v) 

sodium dodecyl sulfate (SDS) 

Transfer Buffer: 25mM Tris base and 192mM glycine at pH 8.3 with 20% (v/v) 

methanol 

Washing Buffer: 20mM Tris base and 500mM sodium chloride at pH7.5 with 0.1% 

Tween-20. Also known as Tris buffered saline-Tween (TBST) 

Blocking Buffer: 5% non-fat milk in TBST and 5% bovine serum albumin (BSA) in 

TBST  

All chemicals are from Sigma (US), unless indicated.  
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2.6.2. Antibodies  

Primary antibodies used were rabbit polyclonal anti-Gαq/11 at a dilution of 1:500; goat 

polyclonal anti-Gαi/o/t/z at a dilution of 1:500 (Santa Cruz Biotech. Inc. US) and anti-

actin loading control at dilution of 1:1000 (Abcam, UK). Secondary antibodies were 

horseradish peroxidase-conjugated goat anti-rabbit IgG (Cayman Chemical Company, 

UK) and peroxidase conjugated rabbit anti-goat IgG produced from mouse (Boster 

Biological Tech. Ltd, US). The secondary antibodies were used at 1:1000 and 1:5000 

dilutions respectively.  

 

2.6.3. Isolation of protein from fly heads  

Decapitation of fly heads was achieved by freezing 1.5ml Eppendorf tubes of whole 

flies in liquid nitrogen for 10min followed by 2min of vortexing and the heads were 

collected under the microscope. Homogenates were prepared by manual grinding of fly 

heads in sterilized 1.5ml Eppendorf tubes with a plastic pestle. Homogenates were 

prepared by processing 5 fly heads in 50µl of ice-cold TE buffer (20mM Tris-HCl, pH8, 

1mM EDTA) containing protease inhibitor (1mM Phenylmethylsulphonylfluoride 

(PMSF, Melford Ltd, UK)), followed by 2 min sonication in the Ultrasonic bath. The 

homogenate was then centrifuged at 10,000g for 10 min. The supernatant was isolated 

and protein concentrations were determined with Bradford assay (See Section 2.4.3). 

Assays were carried out in triplicate.  

 

2.6.4. Sodium Dodecyl Sulphate Polyacrylamide gel electrophoresis (SDS-PAGE) 

A 10% separating polyacrylamide gel, was prepared in a total volume of 10ml made up 

of 10µl of tetramethylethylenediamine (TEMED) and 100µl of 10% (w/v) ammonium 

persulphate (APS), added to a solution containing 30% (w/v) acrylamide, 10% (w/v) 
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SDS and 1.5M Tris (pH 8.8). A 5% stacking gel was also prepared in a total volume of 

5ml made up of 5µl of TEMED and 50µl of 10% (w/v) APS, added to a solution 

containing 30% (w/v) acrylamide, 10% (w/v) SDS and 0.5M Tris (pH 6.8). The SDS-

PAGE gel was then prepared in a Bio-Rad gel casting unit using 5ml of the 10% 

separating gel and 2ml of the 5% stacking gel. 5µg of protein extracts were diluted in a 

3:1 ratio with 4x Laemmli sample buffer (BioRad Inc, US) containing   10%   (v/v)   β-

mercaptoethanol (BME) placed in a 1.5ml Eppendorf tube and denatured by heating at 

99oC for 5 min. Denatured samples were loaded onto a 10% prepared SDS-PAGE gel 

with running buffer and run at 120V for 90 min in a Bio-Rad Mini Protean III gel 

system. 10µl of pre-stained molecular weight protein markers (BioRad Inc, US) were 

also loaded into a well as a guide to determine the molecular weight of the protein 

samples. Where indicated, gels were stained with InstantBlue® (Novexin Ltd, UK) for 

the detection of the protein bands.  

 

2.6.5. Western blot 

Once SDS-PAGE was completed, proteins were transferred onto a nitrocellulose 

membrane (GE Healthcare Ltd, UK) using the Trans-Blot®   Turbo™   transfer   system  

(BioRad, Inc, US) for 3min. Following transfer, Ponceau S solution (Sigma, US) was 

used to confirm effective transfer and protein loading. The membrane was then blocked 

with blocking buffer (5% non-fat milk for G proteins and 5% BSA for β-actin) for 

90min at room temperature and incubated with the polyclonal primary antibody 

overnight at 4oC at the following dilutions Gq and Gi, 1:500 and  β-actin, 1:1000 in their 

respective blocking buffers. The membranes were then washed three times with TBST 

over a period of 15min. Polyclonal secondary antibodies were applied to the membrane 

at a dilution of 1:1000 for Gq,1:5000 for  β-actin and Gi for 90min at room temperature. 

All antibodies were diluted in blocking buffer (5% non-fat milk or 5% BSA). The 
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membranes were then washed three times with TBST over a period of 15min. 

Chemiluminescent signals were developed using Pierce ECL western blotting substrate 

(Thermoscientific, UK) and   captured   by   the   ChemiDoc™   MP   system.   Image   was  

analysed  using  Image  Lab™  4.1  software.   

 

2.7.  Data analysis  

All data analysis was carried out using GraphPad Prism Software (version 4.0; 

GraphPad Software Inc., US). Statistical analyses were carried out using Student’s T-

test or Analysis of the Variance (ANOVA), followed by a suitable post-hoc test 

(Bonferroni post-test). For the gene expression studies, relative expression data were 

obtained using the comparative method (2-ΔΔCt) (Schmittgen and Livak, 2008). To 

calculate relative gene expression, the data was normalised to the housekeeping gene, β-

actin, 2-ΔCt = (Ct  β-actin – Ct G protein) for control and treated flies (Appendix 2.3). Ct 

is defined as the threshold cycle where fluorescent signal increases significantly. The 

numerical value of Ct is inversely related to the amount of amplicon in the reaction. 

Values of P<0.05 were considered to be significant.  

 

 

 

 

 

 

 



 
 

58 
 

Chapter 3: Behavioural Responses of Drosophila to Ethanol  
 

Summary 

This chapter describes experiments to characterise and quantify some of the behavioural 

responses of Drosophila to alcohol and it also quantifies the sedating effects of ethanol 

in flies. The approach taken is to use wild-type flies in a series of behavioural 

experiments to test ethanol sensitivity and ethanol tolerance induced by repeated 

exposure. Section 3.1. introduces the rationale for studying acute ethanol sensitivity, as 

well as tolerance. Section 3.2 describes the experimental assays used and provides the 

analysis of the results while Sections 3.3 and 3.4 are the discussion and conclusion 

related to this section of the study.   

 

3.1.  Introduction   

3.1.1. Drosophila melanogaster as a model for studying ethanol-induced behaviour 

Drosophila melanogaster encounter significant levels of ethanol in its natural 

environment (Kaun et al., 2012), being commonly found near rotting fruits and other 

plant materials that contain up to 5% ethanol, produced by fermentation of sugars by 

several yeasts (Guarnieri and Heberlein, 2003; Rodan and Rothenfluh, 2010). Female 

flies prefer to lay their eggs in food containing ethanol and flies can metabolise ethanol 

efficiently; they use it as an energy source and as a substrate for lipid biosynthesis 

(Devineni and Heberlein, 2013). As in mammals, the primary metabolising pathways in 

flies involve the conversion of ethanol to acetaldehyde by the enzymes alcohol 

dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH). The functions of 

both ADH and ALDH are crucial to promoting resistance to ethanol toxicity (Guarnieri 

and Heberlein, 2003).  
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Drosophila is a powerful genetic model to investigate the molecular mechanisms 

underlying ethanol-induced behaviours (Guarnieri and Heberlein, 2003). This is 

justified by the fact that flies exhibit several behaviours similar to acute intoxication 

(loss of postural control or sedation) in mammals when exposed to ethanol vapour.  The 

availability of powerful tools for genetic manipulation and the high degree of 

conservation at its genomic level make Drosophila a suitable model for ethanol-related 

behaviour studies (Heberlein, 2000).  

Ethanol- induced behaviours in Drosophila have been investigated using mutated genes 

suspected to be involved in the ethanol response (Berger et al., 2008; Moore et al., 

1998; Wen et al., 2005). For example, the rutabaga (rut) line displays altered ethanol 

sensitivity and carries a mutation in the gene encoding a calcium/calmodulin-dependent 

adenylyl cyclase (Moore et al., 1998); the mutant, happyhour (hppy) has reduced 

sensitivity to ethanol (Corl et al., 2009); while mutations in neuropeptide F (NPF, 

homologous to the mammalian neuropeptide Y) and its receptor NPFR-1 were shown to 

be involved in reduced ethanol sensitivity compared with wild-type flies (Wen et al., 

2005). The cheapdate line carries a mutation in amnesiac, which encodes a 

neuropeptide, which is thought to activate the cAMP-signalling pathway and has been 

implicated in increased ethanol sensitivity (Moore et al., 1998).  

 

3.1.2. Measuring ethanol induced behaviours 

Different methods have been developed in the past years to determine the effects of 

ethanol on Drosophila’s behaviour (Table 1.2). Such behaviours include ethanol 

sensitivity (Berger et al., 2008; Bhandari et al., 2009; Devineni et al., 2011; Dzitoyeva 

et al., 2003, Kong et al., 2010; Maples and Rothenfluh, 2011; Moore et al., 1998; 

Rothenfluh et al., 2006); ethanol tolerance following initial ethanol exposure (Berger et 
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al., 2004; Berger et al., 2008; Chan et al., 2014; Cowmeadow et al., 2006; Krishnan et 

al., 2012; Maples and Rothenfluh, 2011; Scholz et al., 2000); ethanol preference 

(Devineni and Heberlein, 2009) and conditioned preference (Kaun et al., 2011; Shohat-

Ophir et al., 2012) behaviours that model specific features of addiction. Studying such 

ethanol responses may provide an understanding into the mechanisms regulating more 

complex addiction-related behaviours.  

 

3.1.2.1.  Acute ethanol sensitivity 

Acute ethanol response refers to the initial response to the first exposure to ethanol 

Drosophila has experienced. During acute exposure to ethanol vapour, flies exhibit 

behaviours similar to those seen in rodents and humans; low doses of ethanol induces a 

state of increasing activity, whereas higher doses lead to decreased activity, eventual 

loss of postural control and then sedation (Moore et al., 1998; Singh and Heberlein, 

2000). Ethanol vapour has been used as an effective method to deliver a reproducible 

ethanol dose and to rapidly sedate flies (Cowmeadow et al., 2005; Maples and 

Rothenfluh, 2011; Moore et al., 1998; Wen et al., 2005). When flies are exposed to 

ethanol vapour, they first become hyperactive and display response behaviours such as 

walking fast and vibrating their wings. Different types of assays have been developed to 

measure ethanol sensitivity in flies.  

 

3.1.2.2. Ethanol Tolerance  

Alcoholics develop tolerance to the intoxicating effects of ethanol after initial 

consumption, which is usually associated with dependence and uncontrolled craving to 

continue drinking (Diamond and Gordon, 1997). Different types of ethanol tolerance 

have been characterized in Drosophila (Chapter 1). Two mechanisms of tolerance have 
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been reported in Drosophila: metabolic/pharmacokinetic tolerance, which involves 

changes in the disposition of ethanol (such as absorption, excretion or metabolism) 

leading to efficient removal of alcohol from the body and functional/pharmacodynamic 

tolerance, involving changes experienced at a cellular level and mediated by adaptations 

in neural function (reviewed in Atkinson, 2009).  

Previous studies have shown that Drosophila can acquire rapid tolerance once exposed 

to the sedating effects of ethanol (Scholz et al., 2000). Thus in flies, many genes have 

been implicated in ethanol tolerance. For instance, flies carrying the slowpoke gene , a 

Ca2+ activated K+ channel gene which is critical modulator of neuronal excitability, have 

been shown to be required for the acquisition of ethanol tolerance (Cowmeadow et al., 

2005; Cowmeadow et al., 2006). Flies that carry the hangover (hang) gene (a gene 

encoding a nucleic acid binding zinc finger protein) were implicated in reduced 

tolerance development in the same manner as flies lacking the neuromodulator, 

octopamine owing to a mutation in the gene encoding tyramine B hydroxylase (Scholz 

et al., 2000; Scholz, et al., 2005). The Drosophila homologue of the jwa gene (encoding 

a large Prenylated Rab Acceptor 1 (PRA1)) (Li et al., 2008) and the shibire gene 

(encoding for the Drosophila dynamin) (Krishnan et al., 2012), were also reported to be 

necessary for the development of ethanol tolerance. Finally, long term memory mutants 

including exba (elF-5C) (translational regulator), formin3 (invloved in actin assembly) 

and pumilio (translational regulator) have been implicated in reduced ethanol tolerance 

(Berger et al., 2008).  
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3.1.2.3.  Ethanol preference and conditioned preference  

Assays have been developed to measure ethanol self-administration in Drosophila using 

the capillary feeder assay (CAFE). This assay demonstrates that flies prefer to consume 

ethanol-containing food to regular food, indicating compulsive consumption of ethanol 

(Devineni and Heberlein, 2009; Shohat-Ophir et al., 2012).   To determine whether 

ethanol administration is rewarding to flies, a conditioned preference assay was 

developed by Kaun et al., (2011). In this assay, flies are exposed to two neutral odour 

cues at first, one of which is paired with a moderate exposure to ethanol vapour. Flies 

are later offered a choice between the two odours and preference for ethanol-associated 

odour is measured.  

 

3.1.3. Objective 

The aim of this chapter is to quantify selected ethanol-induced behavioural responses in 

age-matched (1 - 3 days old) Drosophila such as ethanol sensitivity and tolerance and 

also to identify subpopulations (early and late responders) of Drosophila, which were 

selected due to their responses to ethanol.  
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3.2.  Results 

3.2.1. Ethanol sensitivity assay  

Ethanol sensitivity was carried out based on previous work (Maples and Rothenfluh, 

2011). In the ethanol sensitivity assay, flies were placed in a 25 x 95mm food vial and 

trapped in the vial with a cotton-like plug (Figure 2.1). The ethanol solution (500µl) was 

added to the bottom of the plug (exposed side), with the ethanol facing into the vial. At 

one-minute intervals thereafter, flies were gently tapped to the bottom of the vial and 

then observed for 10s, for their ability to remain stationary in the continuous presence of 

ethanol vapour from the plug. Ethanol sensitivity was quantified as the time required for 

50% of exposed flies to sedate (ST50) (Maples and Rothenfluh, 2011). This is a metric 

routinely extracted from similar ethanol sedation time-course studies (Chan et al., 

2014). The number of flies that became stationary once exposed to ethanol vapour was 

recorded (see Section 2.2.1 for assay details). Note that lower and higher ST50s indicate 

increased and decreased ethanol sensitivity respectively (Chan et al., 2014).  

To determine whether flies were sensitive to the sedating effects of ethanol and the 

appropriate dose to use in the ethanol sensitivity assay, an ethanol dose-response test 

was performed using age-matched (1 – 3 days old) eight male and female wild-type 

flies. The flies were collected the day before testing in a plastic food vial containing 

fresh food without yeast (the yeast tends to inhibit the growth of unwanted fungi but can 

produce ethanol). Ethanol solutions of 10, 30, 50, 70% were prepared by mixing ethanol 

and water at a ratio (vol: vol) of 1:9, 3:7, 5:5 and 7:3 respectively and were used to 

measure the flies resistance to ethanol. When exposed to the different ethanol solutions, 

including 100% ethanol, flies became hyperactive, walking up and down the plastic 

vial, wings vibrating and gradually losing postural control. The ST50 is the time after 

the start of the experiment when four of the eight flies remain stationary. Both males 

and females became sedated in the presence of ethanol vapour (Figure 3.1). Female flies 
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exposed to 100% ethanol showed ST50 of 10.33±0.88min whereas it took longer with 

70% (16.33±0.67min), and 50% (20.33±0.56min) (Figure 3.1).  

The data for 10% and 30% ethanol were not included as it took > 1h for 10% ethanol 

and >31min for 30% ethanol to reach 50% sedation. As expected, sedation in the 

sensitivity assay was dose dependent (Chan et al., 2014), such that lower ethanol 

concentrations (50%) resulted in longer ST50. In order to choose a suitable exposure 

concentration, it was necessary to compare ST50s of all ethanol concentrations 

(excluding 10% and 30%) (Figure 3.1). 100% ethanol was chosen because it had the 

shortest ST50 with no recorded mortality.  

In order to determine which sex of flies to use in all experiments, the ST50s in males 

and females were taken into account. Although, the differences were not statistically 

significant, males sedated more slowly than females, showing higher ST50. This 

difference appeared even stronger at a lower concentration of 50% ethanol, at which 

males showed an ST50 of 23.33 ± 0.88min, whereas the ST50 of females was 20.33 ± 

0.56min (Figure 3.1). Males are generally more resistant to the sedating effects of 

ethanol than females (Devineni and Heberlein, 2012). Other investigators demonstrated 

that there was no significant difference between males and females (Maples and 

Rothenfluh, 2011). In all experiments, female flies were used to avoid sexual 

dimorphism, because female flies are larger in size compared to males.  
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Figure 3.1. Dose response sedation of wild-type flies exposed to increasing ethanol concentration 

Data are from male and female flies exposed to vapour from the indicated ethanol concentration (50, 70 

and 100%). ST50 Two-way Analysis of Variance (ANOVA) analysis revealed a significant decrease in 

ST50 with increasing ethanol concentration (***P<0.001; n = 8 females; n = 8 males). Males showed a 

higher ST50 compared to females. Error bars represent ± Standard Error of the Mean (SEM).  Data are 

representative of three independent experiments. 

 
 
3.2.2. Ethanol-induced tolerance in wild-type Drosophila 
 

Tolerance is defined as a reduction in ethanol sensitivity during a second exposure to 

ethanol following recovery from a prior exposure (Devineni et al., 2011; Scholz, 2009). 

To determine whether flies develop tolerance rapidly to the sedative effects of ethanol, 

female flies became sedated during the first, second exposure and third ethanol 

exposure separated by 24 h recovery in ethanol sensitivity assays described above using 

500µl of 100% ethanol (see section 2.2.2 for assay details). There was a significant 

increase in ST50 between the first exposure and the third exposure, thereby indicating 

the flies have become less sensitive to ethanol. The ST50 during the first exposure was 

11 ± 0.58min, whereas the ST50 of the third exposure was ST50 of 13.7 ± 0.88min 

(Figure 3.2A). The 24h recovery time point was used not only to ensure that flies had 

fully recovered from the sedating effects of ethanol but also to ensure they had 
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completely metabolised all the ethanol absorbed and had time to rehydrate and feed 

(Scholz et al., 2000).  

To determine the number of ethanol exposures that will be required in all experiments, 

the number of ethanol exposures was extended by another exposure in another set of 

female flies. After four consecutive ethanol exposures with 24h recovery period, a 

significant increase was observed in ST50 between the first and third and the first and 

fourth exposure, but in the fourth exposure ST50 was lower than in the third exposure 

(Figure 3.2B). Thus, flies become more sensitive to ethanol, as they are exposed more 

than three occasions. For this reason, exposing flies three times will be used throughout 

the thesis.  
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Figure 3.2. Ethanol tolerance in wild-type Drosophila in ethanol sensitivity assay 

(A) Time to 50% sedation (ST50) from flies exposed once to 100% ethanol for three consecutive days 

and allowed to recover for 24 h, revealed a significant increase in one and three exposures (One-Way 

Analysis of Variance (ANOVA); *P<0.05; n = 8 female flies; ns = not significant). (B) ST50 values for 

flies exposed to ethanol for four consecutive days spaced by 24 h recovery period, increased significantly 

between one and three exposures and one and four exposures (One-Way Analysis of Variance (ANOVA) 

Bonferroni posttest; *P<0.05; n = 8 female flies). Error bars represent ± Standard Error of the Mean 

(SEM).  Data are representative of three independent experiments.  
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3.2.3. Subpopulations of wild-type Drosophila (early and late responders)  

The intial experiments suggested that there were individual variations in ethanol 

susceptibility among flies. Given that the aim of this project was to detect changes in 

gene expression levels, isolating fly populations with homogenous behavioural 

characteristics was a requisite. The aim of this experiment is to select two different 

populations of flies, breed and observe their behaviour with respect to ethanol 

consumption. Flies were divided into two groups to identify subpopulations (early and 

late responders) which may be susceptible to alcohol and addiction and to select a more 

homogenous population of wild-type flies.  To   the  author’s  best  knowledge,   this   is   the  

first study demonstrating the generation of early and late responders to ethanol.  

Age-matched (1 -3 days old) twenty male and virgin female flies were collected days 

before ethanol exposure. Virgin female flies were collected within 8 h once the culture 

vials are cleared of all adult flies (Section 2.1.3). On the day of the experiment, male or 

female flies were separately exposed to 500µl of 100% ethanol in the assay described in 

Chapter 2, Section 2.3.1. The first 20% of flies to be sedated were identified as the early 

responders whilst the last 20% of flies were identified as the late responders (Figure 2.2 

of Chapter 2). The 20% cut-off point was used as an arbitary value to select flies 

displaying ethanol-induced characteristics. As expected, the early responders showed a 

lower sedation time compared with the late responders for both male and virgin female 

flies (Figure 3.3A & B). These sets of flies were identified as the parental generation. In 

order to explore the basis of different ethanol responses, a classical experimental cross 

approach was carried out. The parental generation of early male (EM) and early female 

(EF) responders and the parental generation of late male (LM) and late female (LF) 

responders were bred separately in a plastic food vial containing yeast (See section 2.3.2 

for assay details). 10 days later, the offsprings of the parental generation (known as the 
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F1 generation), males and virgin females were collected and the process is repeated as 

described above to create the F2 generation (offspring of the F1 generation).  

The sedation time values of both male and female flies were combined in the analysis of 

early and late responders. In the F1 generation (offspring of the parental generation), 

there was a significant difference observed between all early (F1-EM x EF) and late 

(F1-LM x LF) responders to ethanol. The ST50 of the F1 generation in the early 

responders were shorter than the late responders (Figure 3.4). Whereas, in the F2 

generation (offsprings of the F1 generation), a significant difference was also observed 

between all early (F2-EM x EF) and late responders (F2-LM x LF). The early 

responders also displayed a lower ST50 compared to the late responders (Figure 3.4).  
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Figure 3.3. Ethanol sedation time of male and virgin female flies exposed  to  500μl  of  100%  ethanol 

Values were derived in response to ethanol exposure in both males (A) and virgin females (B). The first 

20% (in red) were selected as the early responders. The last 20% of flies (in blue) were selected as the late 

responders. Data are representative of one experiment.  
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Figure 3.4. The F1 and F2 generation of early and late responders to ethanol 

Ethanol sedation time (ST50) of early and late responders (all male and female flies) for both the F1 and 

F2 generation. ST50 in early responders were shorter than late responders (n= 8 males, n= 8 females). 

Error bars represent ± SEM and asterisks denote statistical significance by Two-way ANOVA, 

Bonferroni posttest, ***P<0.001.  Data are representative of three independent experiments.  

 

 

3.2.4. Ethanol-induced tolerance in subpopulations of wild-type Drosophila (early 

and late responders) 

Ethanol tolerance was assessed in the parental generation of early and late responders to 

address the potential of genetically influenced flies on repeated ethanol exposures. Early 

and late responders (female flies) from the parental generation, collected the day before 

the   ethanol   exposures,   were   exposed   daily   to   500μl   of   100%   ethanol   for   three 

consecutive days in the ethanol sensitivity assay, spaced by 24h recovery period as 

described previously. During the first ethanol exposure, late responders sedated more 

slowly than early responders showing a higher ST50: 10.33 ± 0.88min, whereas early 

responders showed ST50 of 7.27 ± 0.37min (Figure 3.5). Thus as expected from Figure 

3.4, late responders are less sensitive to the sedative effects to ethanol than the early 

responders as they sedate more slowly and recover more quickly.  
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The difference between the early and late responders appeared be maintained 

throughout the three ethanol exposures. ST50 increased from one to three ethanol 

exposures, thereby indicating that both subpopulations of wild-type flies (early and late 

responders) developed resistance to the sedating effects of ethanol. For this reason, total 

alcohol dehydrogenase was next measured in early and late responders.  

 

 
Figure 3.5. Ethanol tolerance in subpopulations of wild Drosophila (early and late responders) 

Time to ST50 (min) of early and late responders during repeated ethanol exposures. The difference 

between early and late responders was maintained during the three exposures. There was a significant 

increase in ST50 in both groups of flies during the three days of exposure (P<0.05) (Two-way Analysis of 

Variance Bonferroni posttest; * P<0.05, **P<0.01, ***P<0.001; n = 8 female flies). Error bars represent 

± SEM.  Data are representative of three independent experiments.  
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mammals, the primary metabolising pathways in flies involves the conversion of 

ethanol to acetaldehyde by the enzyme alcohol dehydrogenase (ADH) and further 

conversion to acetate by the mitochondrial acetaldehyde dehydrogenase (ALDH) (Sha 

et al., 2014, Zakhari, 2006). ADH is of particular importance in Drosophila, because it 

feeds on fermenting plant material (Geer et al., 1989).   

Alcohol dehydrogenase activity was measured based on previous work (Pfeiler et al., 

2005). To test this, using wild-type flies as control, parental generation of naïve early 

and late responders (not exposed to ethanol) were collected the day before and assayed 

for ADH activity. There was no significant difference observed between early and late 

responders (Figure 3.6).   
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Figure 3.6. ADH activity in early and late responders 

ADH specific activity in female early and late responders. Late responders showed a higher alcohol 

dehydrogenase activity compared to control (wild-type) and early responders. This increase in ADH 

activity was not significant (Unpaired Student’s   T-test, P>0.05, n = 8 female flies each). Error bars 

represent ± Standard Error of the Mean (SEM).  Data are representative of three independent experiments.  
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3.3.  Discussion 

The fruit fly, Drosophila melanogaster has been used as a suitable model for studying 

acute and chronic responses to ethanol (Devineni et al., 2011). Flies show a complex 

and biphasic behavioural response upon exposure to ethanol vapour; an initial increase 

in locomotion, loss of postural control, and eventually sedation (Devineni and 

Heberlein, 2010). Previous studies have examined and characterised ethanol sensitivity, 

preference and tolerance using several assays. Drosophila has been shown to have 

preference for ethanol-containing over non-ethanol containing food and that this 

preference is known to increase with increasing ethanol concentrations (Devineni and 

Heberlein, 2009). Secondly, flies rapidly return to high levels of ethanol consumption 

after a period of imposed abstinence (Devineni and Heberlein, 2009). Thirdly, flies 

develop tolerance to the sedating effects of ethanol similar to those in mammals (Scholz 

et al., 2000).  

In   this   study,   ethanol   sensitivity   assay  measuring   the   fly’s   resistance   to   the   sedating  

effects of ethanol was employed (Maples and Rothenfluh, 2011). The assay involved 

the use of different methodologies in quantifying ethanol sensitivity, which included 

measuring the time it takes for half of exposed flies to become stationary. When 

exposed to the sedating effects of ethanol, flies displayed behaviour similar to that of 

mammals, including humans. As observed by Wolf and Heberlein (2003), flies 

absorbing ethanol vapour showed a brief increase in walking velocity; they lost their 

ability to stand or walk properly and eventually lost postural control. In summary, 

ethanol exposure causes clear and measurable effects on Drosophila locomotion and 

postural control. Additionally, the concentrations of ethanol that causes increased 

locomotion in Drosophila are very similar to that observed in mammals (Wolf and 

Heberlein, 2003).  
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Using the ethanol sensitivity assay, sex differences were measured in Drosophila. 

Although, not statistically significant, male flies were less sensitive to ethanol sedation 

than females. Women have been reported to be more sensitive than men to ethanol-

induced sedation and this difference is partly due to differences in blood alcohol content 

(Miller et al., 2009) or ethanol pharmacokinetics and partly to sex differences within the 

nervous system (Devineni and Heberlein, 2012). Furthermore, women are more 

susceptible to the negative physical consequences of heavy drinking such as organ 

damage and risk of death (Nolen-Hoeksema and Hilt, 2006). Previous studies did not 

observe sex differences in Drosophila ethanol sensitivity (Bhandari et al., 2009; Maples 

and Rothenfluh, 2011). This discrepancy may be as a result of the behavioural assay 

used, in the case of Bhandari et al., a negative geotaxis assay was used, which involves 

the loss of negative geotaxis that is not a direct correlation of ethanol sedation. Whereas 

in Maples and Rothenfluh, because of the modification of the exposure chamber, which 

does not have fly food before inserting the plug in the vial, differences were observed in 

results obtained.  

The individual differences in ethanol sensitivity in flies led to the investigation of how 

flies respond to ethanol exposure. Subpopulations (early and late responders) of wild-

type Drosophila were selected and separated based on their response to the sedating 

effects of ethanol. Early responders are more sensitive to ethanol exposure than late 

responders and this difference may be attributable to a difference in ethanol 

pharmacokinetics. A previous study has observed differences in alcohol response in rats 

(Bell et al., 2006), thereby associated with addiction.  

In addition to the isolation of early and late responders, the difference in ethanol 

response was investigated by carrying out genetic crosses between the F1 and F2 

generations. The F2 generation displayed similar behaviour to the F1 generation. 

However in both cases, the F1 generation were less sensitive than F2 generation as 
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observed by their loss of postural control and sedation. These findings suggest that there 

is a genetically based difference in alcohol sensitivity among wild-type flies and when 

isolated, the offspring from the population seem to maintain the same alcohol sensitivity 

as the parents.    

It is well known that Drosophila develop tolerance to the sedating effects of ethanol 

following a prior exposure. Previous studies have examined and characterised ethanol 

tolerance in Drosophila using various assays (Berger et al., 2004; Chan et al., 2014; 

Cowmeadow et al., 2005; Cowmeadow et al., 2006; Devineni et al., 2011; Dzitoyeva et 

al., 2003; Maples and Rothenfluh, 2011; Scholz et al., 2000). For instance, Scholz et al 

(2000) and Berger et al (2004) characterised rapid and chronic tolerance in the 

inebriometer and recovery assay. However, none of these studies have characterised 

tolerance for the assay used in this investigation. In this study and using the ethanol 

sensitivity assay, the quantitative aspects of ethanol tolerance in flies, such as the 

observed behaviour are similar to those previously described (Maples and Rothenfluh, 

2011). Taken together, these data reinforce that the sensitivity assay is a suitable model 

in which to measure ethanol tolerance in Drosophila.  

It is however, important to contrast the tolerance assay in this study with that of 

previous studies. The tolerance assay differs in that it measures chronic ethanol 

sensitivity in response to three/four consecutive treatments, allowing 24 h recovery 

period. The assay has been extended to measure the flies acquired resistance or 

tolerance to the effects of ethanol on loss of postural control and locomotion rather than 

sedation. It was also extended to measure the limit to which the flies can become 

tolerant rapidly to ethanol by measuring the acute response of these flies (one ethanol 

treatment) and chronic response (two and three ethanol treatments).  

Using the ethanol sensitivity assay, wild-type flies exposed to ethanol repeatedly for 

three consecutive days, displayed increased ethanol tolerance. This finding correlates 
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with flies exposed on four consecutive days, also displayed increased resistance to 

ethanol. Consumption of ethanol produces lasting physiological changes, including 

tolerance and in some individuals, addiction (Cowmeadow et al., 2005). Ethanol 

tolerance is defined as acquired resistance to the behavioural effects of ethanol due to 

repeated ethanol exposure (Devineni and Heberlein, 2013).  

Tolerance, induced by repeated ethanol exposure was also measured in early and late 

responders. The findings indicated that there was a difference between early and late 

responders during one and three ethanol treatments. The difference between both groups 

of flies was maintained throughout the ethanol exposures. These differences observed 

may also be due to epigenetics differences and studying these individual differences in 

humans for example, could help provide an understanding into individualised treatment 

of addiction (Baker et al., 2014). There was relatively little variation between repeated 

measures of ST50 but there are differences observed between the selected populations 

of flies (early and late responders). This highlights the advantage of ST50 that 

eliminates the outliers for a mixed population.    

Drosophila melanogaster have been shown to contain alcohol dehydrogenase (ADH) 

(Geer et al., 1988), an enzyme that metabolises ethanol. This study also showed that 

there was no significant difference in the level of ADH between early and late 

responders. This non-significant result suggests that the ADH may not be the only 

reason for this observation and that other factors may be associated such as aldehyde 

dehydrogenase (ALDH), which is involved in the metabolism of acetaldehyde to 

acetate. Previously, investigators have studied ADH activity in male and female flies 

and have reported decreased ADH activity in females compared to males (Pipkin and 

Hewitt, 1972, Geer et al., 1988) but not all studies (Barbancho et al., 1987) have 

observed this difference. In conclusion, the lack of significant differences in ADH 



 
 

79 
 

between early and late responders does not support the hypothesis that late responders 

could be metabolising ethanol faster than early responders.  

 

3.4.  Conclusion  

In this chapter, ethanol sensitivity and tolerance have been validated in Drosophila 

melanogaster as a relevant model for human ethanol studies. The findings here confirm 

previous reports that flies develop sensitivity to the sedating effects of ethanol (Corl et 

al., 2009; Devineni et al., 2011) and when exposed repetitively to ethanol, they develop 

ethanol tolerance (Chan et al., 2014; Cowmeadow et al., 2006; Scholz et al., 2000). 

Individual flies displayed variations in their sedation times and this may be due to their 

susceptibility to ethanol. This led to the isolation of subpopulations of Drosophila, early 

and late responders. This therefore suggests that among the wild-type population, there 

is a genetically based variation in the response to ethanol. The next chapter will 

demonstrate changes in G protein gene expression in wild-type Drosophila following 

repeated exposures to ethanol.  
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Chapter 4: G protein gene expression changes in wild-type 
Drosophila 
 
Summary  

This chapter describes experiments designed to characterize the effect of ethanol-

induced behaviour on G proteins. The approach taken is to use wild-type Drosophila as 

a model to investigate whether changes on G protein gene expression as measured using 

real-time polymerase chain reaction can be correlated to tolerance. Section 4.1. 

introduces the rationale for studying changes in gene expression and alcohol addiction. 

Section 4.2 describes the experimental assays used and provides the analysis of the 

results while section 4.3 and 4.4 is the discussion and conclusion of this part of the 

investigation.   

 

4.1.  Introduction  

Drosophila has been shown to develop sensitivity and tolerance to the sedating effects 

of ethanol (Chan et al., 2014, Devineni et al., 2011, Scholz et al., 2005) and was 

confirmed with the experiments described in Chapter 3. Ethanol produces both positive 

and negative effects in humans. Consuming and abusing ethanol have enormous health 

and socioeconomic impact on the world population (Spanagel, 2009). Ethanol affects a 

number of receptors such as NMDA and GABAA, and voltage dependent channels 

(reviewed by Erdozain and Callado, 2014). Acute use of ethanol has been reported to 

cause cellular changes in the brain lasting for hours whereas chronic use causes 

extensive neuroadaptive changes in the central nervous system that are long-term. This 

involves the remodelling of synapses that are dependent on changes in gene expression 

during chronic alcohol use (Most et al., 2014). The identification of these gene 
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expression changes are of critical importance for the understanding of addictive 

behaviour. 

Both short and long-term effects of ethanol can be associated with the modulation of the 

seven transmembrane G protein-coupled receptors (GPCR) (Most et al., 2014). G 

proteins play a crucial role in linking GPCR binding to changes in specific intracellular 

signalling pathways and in describing the specificity and temporal characteristics of a 

cellular response (Oldham and Hamm, 2008). G proteins are versatile signalling 

molecules.   They   consist   of   three   subunits:   α,   β   and   γ.   The   α   subunit   is   the   most  

important component for the activation of specific signalling cascades (Neer 1997). Due 

to the effect of ethanol on other neurotransmitter systems, the expression of G proteins 

may also be affected by the drug. The effect of chronic ethanol on the expression of G 

protein subunits has been studied at protein level (Chapter 1, Section 1.33).  Despite the 

fact that initiation of a signalling cascade seems to be of vital importance to the 

induction of long-term changes by abused drugs, the literature on the effects of chronic 

ethanol administration on G proteins is rather limited.  

It is therefore important to establish whether G protein mRNA expression levels are 

altered by ethanol administration because changes in G protein expression could affect 

cellular signalling pathways and thereby contribute to the molecular mechanisms 

underlying some of these adaptive responses to ethanol exposure. It is also important to 

measure G protein expression changes using western blot. How G proteins play a role in 

alcohol addiction via these pathways is yet to be understood. These findings will 

hopefully open new avenues for potential therapy of alcoholic neurological disorders 

and the identification of candidate genes that may be altered in genetic alcoholism.  
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4.1.1. Objective 

In previous studies, G protein gene expression changes have been shown using different 

drugs of abuse such as psychostimulants (amphetamines and cocaine), opiates 

(morphine) and barbiturates. Although, the effect of ethanol on the cAMP-PKA 

signalling pathway has been demonstrated, no studies have been carried out on ethanol-

induced changes on G protein gene expression. In Chapter 3, it was reported that wild-

type and subpopulations (early and late responders) Drosophila develop tolerance to the 

sedative effects of ethanol. This chapter will present data from experiments using wild-

type and subpopulation (early and late responders) Drosophila to investigate gene 

expression changes in Drosophila G   protein   subunits   (Gα,   Gβ   and   Gγ)   following 

repeated exposures to ethanol. The aim is to investigate whether ethanol-induced 

behaviour might alter G proteins expression.  

 

4.2.  Results 

4.2.1. G protein genes are expressed in the head of wild-type Drosophila 

In order to verify if G protein subunits are expressed in the head of Drosophila, it was 

necessary to design and validate the use of a set of primers for each of the known 

Drosophila genes  that  encode  for  G  protein  subunits,  Gα  (Gi, Gs, Go, Gq, Gf and  cta),  Gβ  

(Gβ13F,  Gβ76C and  Gβ5)  and  Gγ  (Gγ30A and  Gγ1). Each G protein subunit had more than 

one  transcript  except  the  Gβ5 subunit. To design primers, the transcripts for each gene 

were aligned first using a free online tool known as CLUSTALW2. Using primer-

BLAST on National Centre for Biotechnology Information (NCBI), the primer pairs 

were designed and selected to span an exon-exon junction to distinguish potential 

genomic DNA amplification (See Section 2.5.2 for details).  
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To investigate if each of the G protein genes were expressed in Drosophila’s   head,  

RNA was extracted from the head of naïve flies and was tested using the one-step 

reverse transcriptase polymerase chain reaction (RT-PCR). Negative controls were 

included in the assay to detect potential contamination [no template control (NTC) i.e. 

no RNA] and possible genomic DNA contamination [minus reverse transcriptase 

control (-RT)]. The results of the RT-PCR amplification for the six genes that encode 

for  the  Gα  subunits  (Gi, Gq, Gf, Go, Gs and cta), are shown in Figure 4.1A.  All  the  Gα  

subunits  were  expressed  in  the  fly’s  head  and  the  RT-PCR products were all found to be 

of the predicted molecular size. No bands were observed in both negative controls, 

thereby indicating the absence of genomic DNA contaminations, primer-dimer 

formation or other sample contaminations. 

In the Drosophila genome,  three  genes  encode  for  Gβ  subunits  (Gβ13F,  Gβ76C and  Gβ5), 

the results of the RT-PCR amplification are displayed in Figure 4.1B. Gβ13F and  Gβ76C 

were expressed in the head of Drosophila and no bands were observed in both negative 

controls. Due to the lack of introns in   the  Gβ5 gene, it was not possible to design a 

primer pair to span the exon-exon junction. However, given the lack of signal from 

potentially contaminating DNA in the amplification products of the other primer sets, 

the identified RT-PCR  products  for  Gβ5 can be considered an amplification of mRNA.  

Figure 4.1C shows the RT-PCR results  for  the  two  genes  that  encode  Gγ  genes,  Gγ30A 

and  Gγ1. These findings are consistent with previous study, which demonstrated that G 

protein subunits and their variants are expressed in Drosophila head and olfactory 

receptor organs (Boto et al., 2010).   

To fully confirm if the G protein subunits were free of possible genomic contamination, 

Figure 4.2 depicts a full agarose stained gel of one  Gα  subunits  (Gs). The image shows 

that the gel is free of DNA contamination and with an intron size of 1415bp between the 

exons of Gs gene  and  under   the  PCR  condition  used;;   there  wouldn’t   be   another  band  
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other than the gene of interest because the size of the intron is too large to be amplified. 

This is shown as an example and the same was true for all other amplification products 

(Appendix 4.1).  
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Figure 4.1. Expression analysis of G protein subunits in the head of adult Drosophila using reverse 
transcriptase chain reaction (RT-PCR) 

 
Target genes are denoted on the left of the figure and the amplification product size on the right, 

expressed in base pairs (bp). RNA was extracted from the head of the flies and this is identified at the top 

of each figure as follows: M: 100bp ladder; H: head; -RT (minus reverse transcriptase); NTC (No 

template   control).   (A)   Gα   expression   (B)   Expression   results   for   Gβ   subunits   (C)   Expression   of   Gγ  

subunits.  
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Figure 4.2. Agarose gel demonstrating that no other RT-PCR products were found except in the 
predicted molecular region 

M- 100bp ladder on the right, H – Head  
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4.2.2. Effect of ethanol on G protein gene expression  

Ethanol is a highly addictive psychomotor stimulant that elicits a state of enhanced 

arousal, reward and disinhibition (Nestler, 2004). One of the main objectives of this 

study is to identify changes in G protein expression that correlate with the observed 

ethanol-induced behavioural changes. In Chapter 3, it was confirmed that the flies 

respond to ethanol (sensitive to the effects of ethanol) and that on consecutive 

exposures, the time to 50% sedation increases (tolerance). Accordingly, G protein gene 

expression was measured at the following time points: i) in flies never exposed to 

ethanol (referred as: naïve flies), ii) after the first exposure to ethanol (referred as: acute 

response in naïve flies), iii) in flies exposed twice to ethanol where the last exposure 

was 24h prior to sacrifice (referred to as basal level in chronic flies), iv) after the third 

exposure (referred to as acute response in chronic flies). The flies were sacrificed 1h 

after the last ethanol exposure. This time point (1h after ethanol exposure) was chosen 

to measure the acute response of ethanol following tolerance and also to allow gene 

expression changes to occur. This protocol described in Table 4.1 was maintained for 

the whole study.  

G protein mRNA levels were measured in the pooled heads of wild-type flies treated in 

the time points as described above. mRNA levels were measured using quantitative 

real-time polymerase chain reaction (qRT-PCR) (Chapter 2 for details). Non-treated 

flies were used as a control for gene expression.  

An initial screen of all Gα  subunits was carried out and the two that showed the most 

consistent changes were the Gi and Gq subunits (Appendix 4.2) and were further 

investigated. Ethanol exposure induced reduced Gq mRNA expression in all ethanol 

exposure time points. A slight increase was observed in both the acute response in naïve 

and chronic flies and a decrease in the basal level in chronic flies in the mRNA 
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expression of Gi subunit. An increase in Gs mRNA expression was observed in all 

ethanol exposures (Figure 4.3).  

 

Table 4.1. Ethanol-induced treatment model 

Exposure group Day 1 Day 2 Day 3 

No ethanol (Naïve 

control flies) 

---- ---- ---- 

One (Acute response 

in naïve flies) 

---- ---- Ethanol and sacrificed 

1h later  

Two (Basal level in 

chronic flies) 

Ethanol  Ethanol  Sacrificed 

Three (Acute response 
in chronic flies) 

Ethanol  Ethanol  Ethanol and sacrificed 

1h later 

All flies were exposed for 30 min to rapidly induce tolerance allowing 24h recovery period and sacrificed 
on Day 3 1 h after the ethanol exposure.  
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Figure 4.3. Relative  Gα  genes,  Gi,  Gs  and  Gq  genes  in  the  head  of  wild-type flies 

Flies were exposed as follows: one (acute response in naïve flies), two (basal level in chronic flies) and 

three (acute response in chronic flies) and sacrificed 1 h after the last ethanol exposure except for flies 

exposed twice, which were killed 24 h after the last exposure. Relative mRNA expression (relative to 

naïve flies –control). Error bars represent ± Standard Error of the Mean (SEM) (Student’s  T-test, P<0.05; 

n=5 female flies).  Data are representative of two independent experiments. 
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4.2.3. Early and Late responders to ethanol showed G protein expression after 

repeated exposures to ethanol  

While the data shown in the previous section showed some trends, none of the observed 

changes were statistically significant. It was suspected that changes may be masked by 

differences in individual behaviour of flies. In the previous chapter, it was demonstrated 

that two subpopulations of flies with different response to ethanol were separated and 

referred to as early and late responders (Chapter 3, Figure 3.3).  

To investigate whether using early and late responders would produce different 

response in G protein gene expression, qRT-PCR was carried out as described in the 

previous section. Parental generation of early and late responders were subjected to the 

same ethanol treatment as described in Table 4.1. G protein mRNA expression was 

measured in all three Gα  genes  (Gi, Gs and Gq).  

In the early responders, ethanol exposure induced no change in the acute response in 

naïve flies (one exposure to ethanol)   for   all   three  Gα  genes   (Gi, Gs and Gq). Ethanol 

caused an apparent decrease in the basal level of chronically treated flies (two 

exposures) in the Gi and Gq gene but no change was observed in the Gs gene. There was 

an apparent increase in the Gi gene and an apparent decrease in the Gq gene in the acute 

response of chronic flies (three ethanol exposures) (Figure 4.4).  None of these changes 

observed were statistically significantly (Student’s   T-test, P>0.05) different from 

control naive flies (flies that have never been exposed to ethanol).  However, it should 

be noted that these results are similar to those observed in Figure 4.3 for unselected 

wild-type flies. Both Gi and Gq genes produced the same response in both wild-type and 

early responders except Gs gene showed less change in the early responders.  

With respect to the  Gβ  subunits  (Gβ5,  Gβ13F and  Gβ76C), ethanol administration to early 

responders caused an apparent increase  in  the  acute  response  in  naïve  flies  for  Gβ5, no 



 
 

91 
 

change   in  both  Gβ13F and  Gβ76C subunits.  No  change  was  observed   in  all  Gβ  subunits  

when assessed for the basal level in chronically treated flies. When early responders to 

ethanol were exposed three times, no change was observed in the acute response of 

chronic flies in the Gβ13F  subunit  but  a  decrease  was  observed   in   the  Gβ5 and  Gβ76C 

subunits (Figure 4.5A).  The  Gγ  genes  (Gγ1 and  Gγ30A) were only tested using the early 

flies. This is because they did not show apparent changes when using the wild-type 

flies. Ethanol administration did not induce any significant changes in any of these 

genes. The acute response in naïve flies indicated an apparent increase  in  both  Gγ  genes  

whilst the basal level response in chronic flies showed an apparent increase  in  the  Gγ1 

gene and no change in   Gγ30A gene. There was no change in the acute response in 

chronic flies  for  both  Gγ  genes  (Figure  4.5B).  

In   the   late   responders   to  ethanol,   the  Gα  genes   tested  (Gi, Gs and Gq), no change was 

observed in the acute response in naïve flies for all three Gα genes. In contrast to the 

early responders, no change was observed in the basal level of chronic flies in both the 

Gi and Gs gene but a slight increase in the Gq gene. The Gs gene also showed no change 

in the acute response in chronic flies compared to the Gi and Gq
 gene, which showed an 

apparent decrease relative to control (Figure 4.6).     In  the  Gβ  subunits  (Gβ5,  Gβ13F and 

Gβ76C), no change was observed in the acute response of naïve flies and the basal level 

in  chronic  flies  relative  to  control  in  the  Gβ5 and  Gβ13F genes  except  the  Gβ76C gene that 

showed an apparent increase in both responses. There was an apparent increase in the 

acute response in chronic flies for  all  Gβ  subunits  (Figure  4.7).  

In summary, while no statistically significant difference was obtained in any of the G 

protein genes for any of the treatments, the more interesting results appeared to be the 

changes in Gi and Gq in chronically treated flies. For these proteins, there were similar 

responses in the wild-type and the early responders but not in the late responders. As it 
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will be seen in the next chapter, the change in expression of Gi and Gq subunits could 

indeed be part of the mechanism of tolerance.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

93 
 

 
Figure 4.4. Relative  Gα  gene  expression  (Gi,  Gs,  Gq)  in  the  head  of  early  responders 

Gene   expression   of   Gα   subunits   (Gi, Gs and Gq) after flies developed tolerance to ethanol. Early 

responders were exposed to ethanol once (the acute response in naïve flies), twice (the basal level in 

chronic flies) and three times (the acute response in chronic flies) were killed 1 h after the last ethanol 

exposure except for flies exposed twice, which were killed 24 h after the last exposure. Relative 

expressions to naïve flies (flies  that  have  never  been  exposed  to  ethanol)  were  and  normalized  to  β-actin. 

Error bars represent ± Standard Error of the Mean (SEM) (Student’s  T-test, P<0.05; n = 5 female flies). 

Data are representative of three independent experiments. 
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Figure 4.5.  Relative  Gβγ  mRNA  expression  in  the  head  of  early  responders 

Flies exposed to ethanol once (the acute response in naïve flies), twice (the basal level in chronic flies) 

and three times (the acute response in chronic flies) were killed 1 h after the last ethanol exposure except 

flies exposed twice which was 24 h later and subjected to RT-PCR. A) Relative expression  of  Gβ  subunits  

after three consecutive ethanol exposures (B) demonstrates the gene expression  of  Gγ  subunits. Error bars 

represent ± SEM (Student’s   T-test P<0.05; n = 5 female flies).  Data are representative of three 

independent experiments. 
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Figure 4.6. Relative  Gα  gene  expression  (Gi,  Gs  and  Gq)  in  the  head  of  late  responders 

Late responders to ethanol were exposed to ethanol to ethanol once (known as the acute response in naïve 

flies), flies exposed to ethanol twice (the basal level in chronic flies) and flies exposed to ethanol three 

times (the acute response in chronic flies) were killed 1 h after the last ethanol exposure except for flies 

exposed twice, which were killed 24 h after the last exposure. Relative expressions to naïve control flies 

(flies   that   have   never   been   exposed   to   ethanol)   were   quantified   and   normalized   to   β-actin. Error bars 

represent   ±   SEM   (Student’s   T-test P<0.05; n = 8 female flies). Data are representative of three 

independent experiments. 
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Figure 4.7. Relative  Gβ genes expression in the head of late responders 

Relative gene  expression  of  Gβ  subunits   in the pooled head of late responders exposed to ethanol once 

(acute response in naïve flies), twice (basal level in chronic flies) and three times (acute response in 

chronic flies). Error bars represent   ±   SEM   (Student’s   T   test P<0.05, n = 5 female flies).  Data are 

representative of three independent experiments.  
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4.2.4. Western blot 

Ethanol-induced gene expression of some G protein genes suggest that specific G 

protein subunits may play a role in alcohol addiction processes, including tolerance. To 

characterise the expression of these subunits at the protein level, western experiments 

were carried out to determine the effect of alcohol on changes in G proteins level as 

described in Section 2.6.5. Optimisation experiments were carried out to determine the 

concentration of antibodies using a dot blot (Figure 4.8). This involved pipetting 2µl of 

different dilutions (1:50, 1:100, 1:200 and 1:500) of primary antibody (Gq antibody) 

onto a nitrocellulose paper. The membrane was then blocked and incubated with the 

appropriate secondary antibody. 1:500 dilution was chosen for Gq antibody due to its 

high signal.  

 

Figure 4.8. Dot blot of  Gq antibody 

Different concentration of Gq antibody (1:50, 1:100, 1:200 and 1:500) was placed onto a nitrocellulose 

paper, blocked and then incubated with secondary antibody.  

 

To optimise the assay, different volumes of protein samples (2µg, 5µg and 10µg) 

extracted from the head of wild-type flies and brain tissue of mice (used as a control) 

were loaded on a 10% prepared SDS-PAGE gel. Proteins were detected with anti Gq 

and   β-actin antibodies (Figure 4.9). Non-specific bands were observed using Gq 
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antibody in Figure 4.9B, this could be due to protein aggregation that is not resolved by 

boiling or the secondary antibody. Approximate weights are shown on the left. 

 

 

Figure 4.9. Western blots of mouse brain tissue and fly head. 

Different amounts of protein samples were loaded into each well for both mice (used as a control) and 

flies stained with (A) β-actin (1:1000 dilution) and (B) Gq (1:500 dilution). Numbers on the top of the blot 

are the amount of lysate loaded to each well. (n= 5 fly heads).  
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Protein samples were extracted from fly heads and mice brain and analysed by western 

blot. Initial experiments were promising for Gq but no signal was even detected with Gi 

antibody in the fly or mice sample (Figure 4.10D). Unfortunately, the Gq antibody 

proved to be unstable (Figure 4.10C). Despite purchasing new batches of antibodies, the 

problem was unsolved. Other investigators have discussed issues online regarding 

antibodies from the company (http://www.ihcworld.com/smf/index.php?topic=1986.0) 

and the company in question discontinued the product when contacted. The project 

could not be continued.  
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Figure 4.10. Western blot analysis of alcohol treated flies. 

Equal amounts of protein samples of ethanol exposed female flies and naïve flies. Equal amounts of 

sample (5µg) were used for western blot analysis of one ethanol exposure (n = 5), three ethanol exposures 

(n = 5) using 1: 500 dilution of Gq antibody  (A)  and  1:1000  dilution  of  β-actin antibody (B). 

Representative blots showing the lack of function using (C) Gq and  (D) Gi antibodies. 
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4.3. Discussion  

Previous work by other investigators has established Drosophila as a useful model for 

the identification of genes that respond to ethanol exposure (Moore et al., 1998, Kaun et 

al., 2012). Other studies have previously suggested the correlation of abused drugs and 

G protein subunits (reviewed by Kitanaka et al., 2008).  Nestler and colleagues reported 

some changes in G proteins subunits in specific brain regions of the rat locus coeruleus 

following chronic morphine administration that produces states of tolerance and 

dependence (Nestler et al., 1989).  

It was reported that expression levels of G protein subunits after chronic morphine 

administration caused an up-regulation of Gi subunit (Nestler et al., 1989). They 

hypothesized that increased expression of Gi subunits may reduce the possibility of 

association  between  Gβγ  dimers  and  Gs subunit, resulting in increased free Gs subunit, 

which can activate adenylyl cyclase (Nestler et al., 1989). Other studies have also 

reported that a single morphine injection  causes  an  increase  in  the  Gα  and  Gβ  subunits  

in rat pineal glands (Chetsawang et al., 1999); acute and chronic treatment induced gene 

expression changes in some G protein subunits (Go, Gi1, Gi2 and  Gβ1) (Kaewsuk et al., 

2001); mRNA levels of Gi/o and Gs were changed in rats after morphine-induced CPP 

(Zelek-Molik et al., 2012).  

There have been fewer studies in the literature on the effect of ethanol on G proteins 

(Chapter 1, Section 1.3.3). To   the  best  of   the  author’s  knowledge,   this   study provides 

the first demonstration of the measurement of G protein expression levels after ethanol 

tolerance in Drosophila, to show if there is a contribution to addictive processes.  

In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was used to 

measure the relative expression of G protein subunits in Drosophila’s head. This 

methodology is particularly suited for quantifying the expression of genes with 



 
 

102 
 

homologous sequences as it exploits the high sensitivity and specificity of real-time 

polymerase chain reaction (Schmittgen and Livak, 2008).   

The relative expression of G protein subunits was measured in the head of Drosophila 

following ethanol exposure as a method for studying gene expression. Measuring 

relative expression in mRNA levels is a convenient way to investigate whether 

molecular changes are occurring, but further studies are required to determine the 

mechanisms of the changes of mRNA levels and whether they result in changes of 

protein levels and changes in physiological function. Our data suggests that there are 

changes in the expression of G protein subunit levels after wild-type flies have been 

exposed to ethanol one, two and repeatedly for three days (shown in the previous 

chapter to induce behavioural tolerance).  

The initial screening of G protein gene expression changes with response to ethanol, 

was carried out on a wild-type population of Drosophila. While gene expression 

changes in the ethanol exposed flies were observed, the results were not easy to 

reproduce when multiple experiments were pooled and the results were non-statistically 

significant. This suggested that there were potential genetic variations within the wild-

type population and indeed, the behavioural experiments presented in Chapter 3 

indicated that some flies may respond early to ethanol while some may respond late to 

ethanol. In the subpopulations of Drosophila (early and late responders to ethanol) that 

were selected for high ethanol sensitivity, there was a non-statistically significant 

decrease in Gi and Gq genes. It was unfortunate that the changes in gene expression 

could not be confirmed at the protein level due to unsatisfactory performance of the 

available commercial antibodies.  

One reason for differences between the wild-type population and the subpopulation 

could be that the flies respond differently to the sedating effects of ethanol, which may 

lead to different results with respect to G protein gene expression. The most obvious 
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changes in G protein gene expression were observed in the early flies. Therefore, it 

could be that flies that have a more sensitive response to ethanol induce clearer changes 

in gene expression. This could be due to the fact that a threshold needs to be overcome 

for the effect to be triggered or that late responders flies have a compensating 

mechanism. An alternative explanation for the variability between results obtained, 

maybe a larger number of flies may have been required to obtain statistically significant 

changes or the number of experiments was too small.  

Observed changes in the expression of G proteins could have an important 

physiological role. The prefrontal cortex receives innervations from the ventral 

tegmental area, which is implicated in reward behaviour (Chao and Nestler, 2004). The 

decreased expression of Gi for example, induced here by ethanol exposure could lead to 

a decrease in the number of G-coupled receptors associated with this G protein subunit 

at resting state and a parallel increase of G protein coupled receptors associated to other 

G protein subunits (Kaewsuk et al., 2001).  Upon receptor stimulation, in flies treated 

with ethanol, a lower number of Gi subunit and a greater number of other subtypes of G 

protein subunits would be released and a different population of specific effectors would 

be activated. 
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4.4. Conclusion  

In this chapter, G protein gene expression changes were observed in the head of 

Drosophila following tolerance. The findings presented in this chapter, demonstrated 

some apparent changes in some G protein subunits after ethanol tolerance in both wild-

type and in a selected subpopulation of early and late responders to ethanol. Wild-type 

flies showed greater variations within the expression levels in mRNA levels compared 

to the subpopulation of selected flies, which showed less variations but a non-significant 

decrease in some genes. The next chapter will demonstrate statistically significant 

changes in the gene expression of selected G protein subunits in a more homogenous 

population of Drosophila mutants such as G protein mutants and dopamine 1-like 

receptor 2 mutants.  
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Chapter 5: G protein gene expression changes in Drosophila 
mutants  
 
 
Summary  

This chapter extends the work described in Chapter 4 by measuring the effect of alcohol 

on G protein expression in Drosophila lines that carry mutations in either a G protein 

gene or the dopamine D1-like receptor. The aim is to validate the observations 

described in Chapter 4 and to attempt to understand the behavioural significance and 

mechanism of action of the observed changes. Section 5.1 provides a brief introduction 

to the study and describes the need for these experiments. Section 5.2 provides an 

analysis of the results while 5.3 is the discussion and 5.4 the conclusion of this part of 

the investigation.    

 

5.1.  Introduction  

Ethanol administration affects signalling in the central nervous system and affects the 

modulation of gene expression in the brain. Alterations in neuronal structure, 

biochemistry and function have been considered the reason behind the initiation and 

maintenance of drug addiction and dependence (Miguel-Hidalgo, 2009). For example, 

neuroadaptive changes that occur in the mesocorticolimbic dopaminergic system, a 

reward centre of the brain are thought to underline the process of alcohol tolerance and 

dependence (Flatscher-Bader et al., 2006).  Indeed, changes in gene expression can 

indicate enduring adaptations in the brain, thereby leading to the unchangeable 

progression from controlled to compulsive ethanol use (Spanagel, 2009). This 

molecular approach has been very successful in providing very rich knowledge on the 

neuronal pathways and brain circuits that are altered in response to drugs and on how 

neuronal alterations modulate specific abnormal behaviours (Miguel-Hidalgo, 2009).   
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Several research groups have designed experiments to identify phenotypes that may be 

associated with alcohol addiction. The Drosophila model offers powerful genetic and 

molecular methodologies with which to dissect genes and to study complex trait 

disorders such as alcoholism and to examine the effects of ethanol (Awofala, 2011; 

Berger et al., 2008). Drosophila have well-understood genetics with publicly available 

collections of mutation at single loci (Bellen et al., 2004).  Drosophila mutants have 

been used to study susceptibility to the effects of ethanol by measuring the level of 

sensitivity and tolerance to the sedating effects of ethanol (Corl et al., 2009; 

Cowmeadow et al., 2006; Moore et al., 1998; Rothenfluh et al., 2006; Scholz et al., 

2000 ). Drosophila mutants have thus become a useful tool to understand the molecular 

processes involved in the manifestation of tolerance that could be shared with 

mammals.  

In the previous chapter, in the wild-type and subpopulations (early and late responders) 

of Drosophila,   gene   expression   of   the   Gα   subunits,   including   Gs, Gi, and Gq, were 

detected by quantitative real-time polymerase chain reaction (qRT-PCR) in the fly 

heads after recurrent exposures to ethanol. The subunits, Gs, Gi, and Gq, showed the 

most reproducible change as compared to other subunits such as Gs that remain 

predominately unchanged. This suggests that these subunits could be involved in the 

molecular pathways regulating the behavioural response  to  ethanol’s  effects  and  provide  

insights into the adaptive and pathological mechanisms within the nervous system 

(Chapter 4). To further explore the observed ethanol-induced changes in G protein gene 

expression, it was decided to exploit the availability of Drosophila mutants that can be 

obtained from Drosophila banks (e.g. flybase.org). The Drosophila lines that were 

selected carry mutations in two G proteins genes and in the Dopamine D2 receptor 

(Table 5.1). Their details are described below.  
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Table 5.1. Shows the list of mutants used. These Drosophila strains were selected and purchased 
from the Drosophila Stock Centre (Bloomington, IN, US). 

Bloomington 
Stock 

number   

Annotated 
symbol 

Affected 
gene 

Genotypes Notes 

30736 CG17759 Gq Gαq1370/CyO Reduced activity of Gq 

protein function by point 

mutation (Kain et al., 2008) 

17672 CG10060 Gi y[1] w[67c23]; 

P{w[+mC] 

y[+mDint2]=EPgy2}Gal

phai[EY10355] 

Disruption of Gi protein 

function by P-element 

insertion (Bellen et al., 

2004) 

24743 CG18741 Dopamine 1-

like receptor 

2 (Dop1R2) 

w1118; 

Mi{ET1}Dop1R2MB05

108 

Disruption of dopamine D2 

function by Minos insertion 

(Metaxakis et al., 2005) 

 

 

5.1.1. G protein subunit gene mutants 

The G proteins are a family of proteins that relay signals from G protein-coupled 

receptors  to  effector  molecules  and  are  composed  of  three  subunits,  α,  β,  and  γ  (Boto et 

al., 2010; Downes and Gautam, 1999).  Two  of   the  genes   in  Gα   subunits   (Gq and Gi) 

showed some changes in gene expression in the previous chapter and will be studied 

further in this chapter.  

The Gq gene  also  known  as  Gαq, is often expressed ubiquitously and its most common 

pathway in Drosophila, involves the activation of phospholipase C (PLC), which breaks 

down phosphatidylinositol 4, 5-biphosphate (PIP2) into inositol, 4, 5-triphosphate (IP3) 

and diacylglycerol (DAG). IP3 induces the release of calcium from the smooth 

endoplasmic reticulum, which work together with DAG to activate protein kinase C 

(PKC) (Wettschureck and Offermanns, 2005; Wirotanseng et al., 2013). The Gq 

signalling mechanism is essential in the nervous system, however, it has not previously 

been associated with the ethanol response in Drosophila. The mutation of this gene 
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located on 49B on chromosome 2 was introduced by a commonly used mutagen, ethyl 

methane sulfonate (EMS) which cause single base changes (point mutation), potentially 

leading to the reduction of the protein activity by causing missense or non-sense 

mutation (Kain et al., 2008).  The Gq mutants produce a transcript with a G to A 

mutation at base pair 1933. This would produce a change from arginine to lysine at 

residue 207 (R207K), which lies in the switch II helix regions that is highly conserved 

among  the  α subunits of all trimeric G proteins (Kain et al., 2008). The mutation in the 

Gq gene destabilizes the GTP-bound state of Gq and renders it ineffective in the 

activation of the downstream effector molecules (Kain et al., 2008). The full genotype 

of the Gq mutant (flybase  strain:  30736)  is  Gαq1370/CyO. CyO is a balancer that gives 

a curly winged phenotype to the flies which also aids in ensuring that the mutation is 

maintained in future generations. The genomic structure of the Gq allele is shown 

below.  

 

 

 

 

 

 
 
Figure 5.1. Genomic structure of Gq allele 

The intron-exon  structure  is  shown  with  the  point  mutation  of  Gαq1370 of transcripts G-A at the 5th exon.  

Exons are designated in rectangles with non-coding exons are in open white box. Nucleotide substitution: 

G1933A. Protein change   ‘Amino   acid   replacement:   R207K.   Diagram redrawn from flybase.com and 

National Centre for Biotechnology Information (NCBI).  

 

The Gi gene  also  known  as  Gαi is located on 65A on chromosome 3. It is expressed in 

several tissues and is known for its role in the inhibition of adenylyl cyclase and thus 

causes a decrease of cAMP concentration in the cell (Defer et al., 2000). The Gαi gene 

has been implicated in different types of signalling cascades such as the tyrosine-protein 

Gαq1370 
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kinase/mitogen-activated protein kinase and it is also known to inhibit calmodulin 

activity (Defer et al., 2000). It is also been reported to play a role in the activation of the 

phospholipase C (PLC) pathway (Mizuta et al., 2011). The mutation in the Gi gene, Gαi 

EY10355, in the Drosophila that was used in this study was engineered by a P-element 

insertion, which potentially disrupts the gene function (Bellen et al., 2004). The Gi gene 

has not been previously implicated in ethanol response in Drosophila.  

 

 
 
Figure 5.2. Genomic structure of Gi allele 

The intron-exon structure is shown with the P-element insertion on the 1st intron position, which spans ~ 

5044bp. Exons are designated in rectangles. Diagram redrawn from flybase.com and NCBI.  

 

 
5.1.2. Dopamine receptor mutant 
 

Ethanol exerts its effects through multiple neurotransmitter systems including 

dopamine, GABA and serotonin systems. Dopamine signalling is crucial for the actions 

of ethanol in Drosophila and it has been implicated in brain mechanisms of reward, 

reinforcement and addiction (Diamond and Gordon, 1997). Disruption or deletion of 

dopamine signalling in Drosophila results in decreased locomotor hyperactivity and 

prevents the stimulatory effects of most drugs of abuse including cocaine (Bainton et 

al., 2000; Li et al., 2000).  

The Drosophila dopamine 1-like D2 receptor (Dop1R2) belongs to the dopamine 

receptor family and has a high affinity for dopamine with amino acid sequences 

homologous to those of mammalian D1-like receptors. D1-like dopamine receptors bind 

to the stimulatory G protein (Gs), thus initiating the activation of adenylyl cyclase 

5’ 3’ 
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(Hearn et al., 2002; Vickrey and Venton, 2011). The mutation in the Dop1R2 is 

generated by Minos insertion, which led to the disruption of the Dop1R2 function and 

carries the balancer TM3 that carries  the  phenotype  ‘stubble’ (Metaxakis et al., 2005). 

Mutants of Dop1R2 have been found to be associated with the ethanol tolerance 

response (Kong et al., 2010).  

 

 

 
 
 
 
 
Figure 5.3. Genomic structure of Dop1R2 allele 

The intron-exon structure is shown with the Minos insertion in the 3rd intron, which spans ~ 1636bp. 

Mutants were produced from the transcripts C-A on the same region. Exons are designated in rectangles. 

Diagram re-drawn from flybase.com and NCBI.  

 

5.1.3. Characterisation of Drosophila mutants 

The mutant strains were obtained from the reputable Bloomington Drosophila Stock 

centre. Two of the lines (Gq and Dop1R2) carried balancer, which aids in ensuring that 

the mutations are maintained in the specific lines. To ensure the authenticity of the 

mutant strains, further tests could be carried. Point mutations can be verified by 

amplifying and sequencing the mutated genes, and the presence and location of 

transposon could be checked by amplifying the genomic sequence flanking the reporter 

insertion site. These latter tests were not carried out in this project. In retrospect, it 

would have been preferable to do so.  

5.1.4. Objective  

In the previous chapters, using the wild-type and subpopulations (early and late 

responders) of Drosophila, some G protein subunits whose expression was altered by 

ethanol administration were identified. Although the observed G protein changes did 

5’ 3’ 
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not reach a statistical significance, it was reasoned that this might be due to genetic 

variation within the wild-type population, which was confirmed by the more consistent 

results, obtained in the behaviourally selected early and late flies. Thus using a more 

homogenous population such as those selected for specific mutations, was expected to 

produce more reproducible results and would allow to explore the mechanisms induced 

by ethanol exposure.  

The specific objectives of this chapter were:  

x To measure the effect of mutations of Gq, Gi and Dop1R2 genes on ethanol-

induced behaviour.  

x To measure the effect these mutations will have on ethanol induced G protein 

gene expression.  
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5.2.   Results 

5.2.1. Ethanol-induced behaviour and gene expression in Gq mutants 

5.2.1.1.  Effect of ethanol on the behaviour of Gq mutants  

In order to investigate what effect mutations in the Gq gene have on ethanol-induced 

behaviour, female Gq mutants and wild-type flies (used as control) were exposed to 

ethanol repeatedly for three days allowing 24h recovery period to test if they can 

acquire tolerance to the sedating effects of ethanol (Protocol shown in Figure 5.4A). 

During the first few minutes of ethanol exposure, the mutant flies entered a 

hyperactivity state, in which they walked more, vibrated their wings and climbed the 

walls of the vial at greater speed (Maples and Rothenfluh, 2011). In all cases, the time 

to 50% sedation (ST50) of the first, second and third exposure was determined (Maples 

and Rothenfluh, 2011). Ethanol tolerance was quantified as an increase in ST50 caused 

by prior ethanol exposure.  

The Gq mutants showed a significantly higher ST50 in all ethanol treatments compared 

with the wild-type flies (Figure 5.4B). A significant increase was only observed 

between the first and third exposures but not between the second and third exposures. 

This finding suggests that Gq mutants are less sensitive to the sedating effects of ethanol 

compared to the wild-type  population.  To  the  author’s  knowledge,  this  is  the  first  report  

demonstrating ethanol-induced behaviour in Gq mutants.  

 

5.2.2.  The effect of ethanol on G protein gene expression in Gq mutants  

To examine whether mutation in the Gq gene will have an effect on ethanol-induced 

expression, selected G protein subunits (Gi, Gs and Gq) were tested. As described in the 

previous chapter (Chapter 4, Table 4.1), acute response in naïve flies (one ethanol 

treatment), basal level in chronic flies (two ethanol treatments) and acute response in 
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chronic flies (three ethanol treatments) was quantified and analysed using quantitative 

real-time polymerase chain reaction (qRT-PCR) in Gq mutants compared with naïve 

flies (untreated flies).  

The relative G protein expression in the head of Gq mutants indicates that consecutive 

ethanol treatments did not induce significant changes in both the Gi and Gs subunit 

compared with naïve flies (Figure 5.5). In contrast, ethanol treatments induced 

significant changes in the relative expression in the Gq subunit. A slight increase was 

observed in the acute response in naïve flies, a significant decrease (P<0.05) in the basal 

level in chronic flies and a further significant decrease (P<0.01) in acute response in 

chronic flies. Ethanol-induced treatment did not cause any significant change in the Gs 

subunit (Figure 5.5).  
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Figure 5.4. Tolerance  induction  in  Gαq mutants 

 (A) Ethanol treatment regime used to induce and measure ethanol sensitivity and tolerance. Eight female 

flies were initially exposed to 500µl of 100% ethanol to measure the sensitivity of flies to the sedating 

effects of ethanol. The time to 50% sedation (ST50) – the time it takes for half of the ethanol exposed 

flies to become stationary – was used as a measurement of sensitivity to ethanol. To measure tolerance, 

flies were exposed to the same dose of ethanol 24h later for 2 consecutive days.  (B) Gq mutants have a 

point mutation that results in an inactive Gq protein. Gq mutant flies are less sensitive to the sedating 

effects of ethanol compared to the wild-type control in the sensitivity assay. The Gq mutants displayed a 

significant increase in ST50 in all treatments compared to wild-type flies (n= 8 female flies in each 

group). Error bars represent the standard error of the mean (SEM) and asterisk denotes statistical 

significance by Two-way analysis of variance (ANOVA). *P<0.05, **P<0.01, ***P<0.001 (n=3 

independent experiments).  
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Figure 5.5.  Relative  Gα  genes  expression  in  the  head  of  Gq mutants 

Gα   genes expression in the head of Gq mutants were measured after different ethanol treatments. Gq 

mutants were exposed once, twice or three times to 500µl of 100% ethanol. The flies were killed 1h after 

the first (acute response in naïve flies), last (acute response in chronic flies) and 24h after the second 

exposure (basal level in chronic flies) and compared to naïve flies (never exposed to ethanol). Relative 

expressions were quantified using 2ΔΔCt method and normalized to the housekeeping gene, β-actin relative 

to untreated control. Error bars represent ± SEM.  Asterisk denotes statistical significance by Student’s  T-

test **P<0.01 (n = 5 female flies). Data are representative of three independent experiments.    

     

 
 
 
 
 
 
 
 
 
 
 
 
 

Gi Gs Gq
0.0

0.5

1.0

1.5

2.0

***

Naive flies 
Acute response in naive flies
Basal level in chronic flies
Acute response in chronic flies

R
el

at
iv

e 
ex

pr
es

si
on

 



 
 

116 
 

5.2.3. Ethanol-induced behaviour and gene expression in Gi mutants  

5.2.3.1.  Effect of ethanol on the behaviour of Gi mutants  

To assess the effect mutation of the Gi protein has on ethanol-induced behaviour, female 

Gi mutants were analysed and compared with wild-type flies to test if they acquire 

tolerance to ethanol. Gi mutants displayed significantly higher ST50 compared with 

wild-type flies in all ethanol treatments (one, two or three) (Figure 5.6). This result 

reveals that Gi mutants  can  develop  tolerance  but  are  less  sensitive  to  ethanol’s  effects  

than wild-type flies. To the author’s  knowledge,  this  is  the  first  report  of  a  difference  in  

ethanol-induced behaviour in these Gi mutants.  

5.2.3.2.  The effect of ethanol on G protein gene expression in flies mutated 

in Gi gene 

To investigate whether mutations in the Gi  gene will alter ethanol-induced G-protein 

gene expression, flies sacrificed one hour after one ethanol exposure (acute response in 

naïve flies), 24h after two ethanol exposure (basal level in chronic flies) and 1h after 

three ethanol exposures (acute response in chronic flies) were quantified and analysed 

compared with naïve flies (untreated).  

Expression of Gs, Gq and Gi was detected in the flies. Detecting any Gi expression of 

these mutants was not expected and is discussed below. Ethanol treatment induced 

significant changes in both the Gi and Gq subunits. In the Gi subunit, there was a 

significant increase (P<0.05) observed in the acute response in naïve flies but a 

significant decrease (P<0.01) in the basal level and acute response in chronic flies 

(P<0.05) compared with naive flies.  In the Gq subunit, an apparent decrease (P>0.05) 

was observed in the basal level in chronic flies but significant decrease (P<0.05) was 

observed in the acute response in chronic flies. Ethanol treatment induced an apparent 
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increase in the acute response in naïve flies for the Gs subunit and no change in both the 

basal level and acute response of chronically treated flies (Figure 5.7).  
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Figure 5.6. Tolerance induction in Gi mutants 

Gi mutants have disruption of the Gi protein.  Gαi mutant flies are less sensitive to the sedating effects of 

ethanol compared to the wild-type control in the sensitivity assay. The Gi mutants displayed a 

significantly higher ST50 in all exposures compared to wild-type flies (n = 8 female flies in each group). 

Error bars represent the standard error of the mean (SEM) and asterisk denotes statistical significance by 

Two-way ANOVA. *P<0.05, **P<0.01, ***P<0.001 (n=3 independent experiments).  
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Figure 5.7. Relative Gα genes expression in the head of Gi mutants 

Gα   genes   are   expressed   in   the   head   of   Gi mutants after different ethanol treatments. Gi mutants were 

exposed one, two and three times to ethanol. The flies were killed 1h after the last ethanol exposure 

except for flies exposed twice, which were killed 24h after the last exposure. Relative expressions to 

naïve flies were quantified normalized to the housekeeping gene,  β-actin relative to naïve control flies. 

Error bars represent ± SEM.  Asterisk denotes statistical significance by Student’s  T-test, **P<0.01 (n = 5 

female flies in each group). Data are representative of three independent experiments.    
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5.2.4. Ethanol-induced behaviour and gene expression in Dopamine 1-like 

receptor 2 (Dop1R2) mutants   

5.2.5.  Ethanol-induced behaviour in the Dop1R2 mutants 

Dop1R2 mutants displayed lower ST50 in all ethanol treatments compared with wild-

type Drosophila (Figure 5.8).  Between each treatment, Dop1R2 showed significant 

increase in ST50. This implies that the Dop1R2 mutant have higher sensitivity to the 

sedating effects of ethanol and have the ability to develop tolerance following repeated 

ethanol exposures.  

5.2.6.  The effect of ethanol on G protein gene expression in Dop1R2 mutants 

To investigate whether mutations in the Dop1R2 have an effect on ethanol-induced G 

protein gene expression in Gi, Gs and Gq subunits, mutated flies were subjected to the 

same ethanol treatment and sacrificed as explained previously.  

Ethanol treatments caused significant changes in some of the subunits. One ethanol 

treatment (acute response in naïve flies) caused an apparent decrease in all three 

subunits. The two-ethanol treatments (basal level in chronic flies) induced an apparent 

decrease (P>0.05) in the Gi subunit and a significant decrease (P<0.05) in the Gq 

subunit. Significant decrease (P<0.001) after three ethanol treatments (acute response in 

chronic flies) was observed in both Gi and Gq subunits. No significant change was 

observed in the Gs gene for all ethanol treatments (Figure 5.9).  

 

 

 

 



 
 

121 
 

 
Figure 5.8. Tolerance induction in Dop1R2 mutants 

Dop1R2 mutants do not express functional dopamine 1-like receptor 2. The time to 50% sedation (ST50) 

– the time it takes for half of the ethanol exposed flies to become stationary – was used as a measurement 

of sensitivity to ethanol. Dop1R2 flies are more sensitive to the sedating effects of ethanol compared to 

the wild-type control in the sensitivity assay, which is displayed as a reduced response in ST50 (n = 8 

female flies in each group). Error bars represent the SEM and asterisk denotes statistical significance by 

Two-way ANOVA. *P<0.05, **P<0.001.  (n=3 independent experiments).  
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Figure 5.9.  Relative  Gα  expression  in  the  head of Dop1R2 mutants 

Gα  genes expression in the head of Dop1R2 mutants after different ethanol treatments. Dop1R2 mutants 

were exposed to ethanol one (acute response in naïve flies), two (basal level in chronic flies) and three 

(acute response in chronic flies) times and killed 1 h after last exposure except for the two times exposure 

which was 24 h. Relative mRNA expression to naïve flies were quantified for Gi, Gs and Gq. Error bars 

represent ± SEM.  Asterisk denotes statistical significance by Student’s  T-test, **P<0.01 (n = 5 female 

flies). Data are representative of three independent experiments.    
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5.3. Discussion  

In the previous chapter (Chapter 4), it was demonstrated that Gq subunit showed a 

decrease in gene expression in the basal level of chronically treated flies and acute 

response of chronic flies when studied in the wild-type and subpopulation of 

Drosophila. To understand further the significance of the observed ethanol-induced 

changes in G proteins, Drosophila strains carrying mutation in either the G protein gene 

or in the addiction associated D1-like receptors, were selected and exposed to the same 

ethanol treatment used for the wild-type populations described in Chapter 4. In the 

analysis of the data, it is worth nothing that the mutation of Gq gene is a point mutation 

that affects protein functionality, while the Gi  gene and D1-like receptor are disrupted 

by a large insertion (Table 5.1). Although changes in mRNA gene expression do not 

necessarily mirror the changes in protein levels, they are widely regarded as indices of 

alterations of physiological function (Kaewsuk et al., 2001; Zelek-Molik et al., 2012). 

Here, the effect of ethanol treatments on G protein subunits (Gi, Gs and Gq) expression 

in mutant Drosophila will be discussed. 

 

5.3.1. Behavioural Differences among mutants  

To identify behavioural differences among Drosophila mutants compared with wild-

type flies, the onset of tolerance was studied in the different strains. The findings 

(Figures 5.4 & 5.6) indicated that following repeated ethanol treatment, Gq and Gi 

mutants developed tolerance to the sedating effects of ethanol despite the fact they may 

not express functional Gq and Gi subunits respectively. The data also showed that both 

strains had lower sensitivity to alcohol both before and after onset of tolerance (higher 

ST50). This decrease in ethanol sensitivity in both mutants may allow them to consume 

more ethanol compared with the wild-type flies.   
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The Dop1R2 mutants showed a different effect following repeated ethanol treatment. 

The finding indicated that they had higher ethanol sensitivity both before and after the 

onset of tolerance (Figure 5.8). The increase in sensitivity in Dop1R2 mutants may 

allow them consume less ethanol compared to the wild-type Drosophila.   

 

5.3.2. Gene expression differences among Drosophila mutants  

To understand if G protein subunits played a role in the ethanol-induced expression, the 

expression of Gq, Gi and Gs subunit in Drosophila mutants before and after the 

acquisition of tolerance was studied.  The experiments were aimed at finding out how 

the rewarding properties of ethanol influence its direct effect on G proteins expression.  

These experiments have shown that chronic ethanol exposure significantly affected both 

the basal level and the acute response level of G protein mRNA but these changes were 

subunit specific and with potentially important difference between the strains. Gq 

subunit in the Gq mutants reduced significantly in the basal level and acute response in 

chronic flies (Figure 5.5). The expression of Gi and Gq subunits in the Gi mutants were 

significantly reduced in the acute response in chronic flies (Figure 5.7). Gi subunit in 

naïve flies increased significantly and both the basal level and acute response in chronic 

flies reduced significantly. The significance of the change in Gq and Gi expression will 

be discussed in later sections.  

Using flies lacking the Dop1R2 to measure the expression of Gi, Gq and Gs before and 

after tolerance, also showed a significant reduction in the acute response in chronic flies 

for both Gi and Gq subunits. Significant results were also observed by the Gq subunit in 

the basal level of chronically treated flies (Figure 5.9). The finding that the same type of 

changes were observed in both the wild-type and Dop1R2 suggests that the observed 
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alcohol induced changes in G protein are not dependent on the D1-like dependent 

mechanism that have been associated with addiction (Le Foll et al., 2009).  

 

5.3.3. Evaluation of the type of mutation with respect to the observed effect  

The mutation in the Gq gene is a point mutation, which leads to reduced activity of Gq 

protein function (Kain et al., 2008). The fact that the mRNA for Gq gene was detected 

by qRT-PCR is not surprising because the mutation itself would not affect it’s 

expression and translation to protein. This may lead to the possibility of the protein 

forming  a  complex  with  βγ  subunits  without  being  functional.   

The strain 17672 was developed by inserting a P-element in the Gi gene (Bellen et al., 

2004). It is thus rather surprising that in the strain 17672, mRNA could be detected at 

all. In fact, analysis of the location of the insertion indicates that the P element was 

inserted in the large intron 1 (Figure 5.2). It would thus seem that the insertion does not 

affect  the  splicing  mechanism  and  that  a  ‘normal’  Gi mRNA is produced as the primers 

used in qRT-PCR spanned exons 1 and 2.  In addition, it would have been useful to 

carry out experiments such as PCR with primers spanning all the exons of the Gi gene.   

To ensure that the product of the qRT-PCR was indeed the expected sequence, the PCR 

product for Gi amplification was sequenced and confirmed to be as expected (Appendix 

5.1).  Expression of this mutated gene has not been reported elsewhere. In retrospect, 

this indicates that this was not a good choice of mutants for the intended analysis of a 

strain lacking Gi gene. However, as it will be discussed later it fortuitously acts as a very 

useful control for this study.  

The Dop1R2 mutation has been produced via insertion of the Minos element and it has 

been reported to cause a small (15%) but significant reduction of mRNA expression 

(Liu et al., 2012). In the study of Liu et al (2012), this mutant has been used to 
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demonstrate that this mutation does not affect specific sleep behaviour, however, the 

fact that sufficient protein expression may still present in the mutant should be 

considered but it has not been addressed in the literature or in this study.  

The most important finding in the present study is the demonstration that there was a 

reproducible reduction in the acute effect in chronic flies. Ethanol administration could 

be causing a rapid degradation of Drosophila mRNA considering the period of 

treatment is small (30 min of exposure ethanol). The lower level of G protein subunit 

such as Gq in Drosophila could be due to a high rate of turnover of the Gq pre mRNA in 

the nucleus. For example, RNA tends to fold into molecules with varying secondary and 

tertiary structures that can influence the accessibility of translation initiation codon to 

the ribosome.  

In addition, the observed reduction may be as a result of alterations in microRNA 

(miRNA) levels. MicroRNAs are small noncoding RNA molecules that regulate mRNA 

and protein expression and are known to play significant roles in the actions of ethanol 

(Miranda et al., 2010). It was recently discovered that a miRNA-based mechanism 

could contribute to the development of molecular tolerance to ethanol (Pietrzykowski 

and Treistman, 2008; Miranda et al., 2010).  

 

5.3.4. Ethanol-induced behaviour and gene expression differences among 

Drosophila mutants  

Ethanol-induced behaviour demonstrated that flies acquire tolerance when exposed 

repeatedly to ethanol. In the mutant, Gq and strain 17672, they had lower ethanol 

sensitivity compared to Dop1R2 mutants after tolerance. This clearly suggests that at 

least for Gq, the functional protein is not essential for the development of tolerance or 

that other genes can substitute them in the process.  It should be noted that the observed 



 
 

127 
 

changes in ethanol sensitivity in the mutant strains, may not be due to the mutation itself 

but simply because in the selection process of isolating the mutants with different 

sensitivity to alcohol were selected. Indeed, the experiments described in chapter 3 

demonstrate that the subpopulations of Drosophila (early and late responders) can be 

isolated based on their response to ethanol.   

It should be noted that there was no correlation between the behaviour of the fly strains 

and their gene expression as strain 17672 and Dop1R2 mutant displayed lower and 

higher sensitivity to alcohol respectively, but had the same changes in gene expression. 

In summary, in all three Drosophila strains (Gq, Gi and Dop1R2), the Gq subunit is 

significantly reduced in all the mutant populations following chronic treatment with 

ethanol while Gi subunit is reduced significantly in strain 17672 and Dop1R2 mutant 

but not in the Gq mutants (Figure 5.10) suggesting that the inactivation of Gq prevents 

the reduction of Gi. This would indicate a potential sequential response in terms of G 

protein gene expression where the reduction of Gq leads to a reduction of Gi.  
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Figure 5.10. Summary of results obtained from ethanol-induced gene expression in Drosophila 
mutants as compared to naive flies 

 (One treatment: acute response, two treatments: basal expression in chronic flies, three treatments: acute 

expression in chronic flies). (*P<0.05, **P<0.01, ***P<0.001, nc: no change).  Red arrow indicates  

decrease while blue arrow indicates increase.  

 
 

5.3.5. How these changes might affect the signalling pathways  

The effect of ethanol-induced gene expression on Gq and Gi subunits could suggest a 

possible role in their respective signalling pathways. The observed significant decrease 

in Gq expression (acute response in chronic flies) in all mutant strains may lead to the 

possibility of ethanol exposure causing a down regulation of the phospholipase C (PLC) 

/ protein kinase C (PKC) dependent pathway. Reduced activity of PLC may predict 

decreased   levels   of   free   Gα   subtypes   coupled   to   PLC.   The   role   of   the   PLC/   PKC  

dependent pathway has been less investigated with regards to the potential involvement 
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in   ethanol   administration.   Although,   the   Gα   (q/11)-dependent PKC activity has been 

proposed to be involved in the development of sensitization with regard to abused drugs 

such as cocaine (Carrasco et al., 2003) and morphine (Narita et al., 2001).  

The inhibitory G protein (Gi) is known to inhibit the cAMP/PKA dependent pathway 

(Neer, 1997). The significant decrease observed in Gi expression (acute response in 

chronic flies) in both Gi and Dop1R2 mutants, may suggest that seeking ethanol reward 

is accompanied by or occurs as a result of reduction of the cAMP pathway in various 

brain regions. Although, Gi subunit signal acts through a different pathway compared to 

Gq subunit, these two pathways may cooperate and in some situations, their interaction 

may be necessary for the induction of cellular plasticity (Kurose, 2003). The role of 

such an interaction in the central nervous system is not yet clear; nevertheless it might 

be important for neuronal plasticity.  

Another possible model to describe how ethanol affects G protein expression could be 

due alterations in the expression of immediate early genes such as cyclic-AMP response 

binding protein (CREB) or fos protein (Kitanaka et al., 2008). CREB and fos protein 

have been implicated as underlying some of the long-lasting changes in neural gene 

expression following ethanol exposure (Nestler, 2000). Previous studies have 

demonstrated that ethanol treatments can induce changes in the levels of phosphorylated 

CREB in several brain regions (Li et al., 2003, Misra and Pandey, 2003, Yang et al., 

2003).  

The observed changes in G protein gene expression could have significant physiological 

functions. The prefrontal cortex has been demonstrated to be affected by changes in G 

protein gene expression (Kaewsuk et al., 2001, Zelek-Molik et al., 2012). Taking the 

mechanism of G protein into consideration, a reduction in one type of G protein subtype 

could lead to a switch of the normal association of the subtype of G protein associated 

with   a   particular   receptor.   If   that’s   the   case,   a   different   response   to   ethanol   will   be  
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observed. In order to understand the significance of how ethanol administration alters G 

protein gene expression, it will be necessary to determine whether sustained changes 

could play a role in other drug-related behaviour such as withdrawal and relapse into 

drug use.  

 

5.4. Conclusion 

The main conclusions are:  

x The different inbred lines of flies showed some significant changes in G protein 

expression, thereby confirming the trend observed in wild-type flies. The fact that the 

mutant strains are showing statistically significant changes in G protein gene expression 

is probably not due to the mutations themselves but rather to the fact that the mutant 

strains are more genetically homogenous than the wild-type population.  

x The effect of the insertion-mutation needs to be treated with caution due to low 

effect on the mRNA expression. Even though the changes observed are statistically 

significant, they are small changes and may not have physiological relevance.  

x An interesting result is the lack of change of Gi subunit in Gq mutants, as this 

could indicate a possible crosstalk between different signaling pathways, as discussed in 

Chapter 6.  

Information on G protein gene expression could account for numerous drug-induced 

behaviours and could also be of importance in understanding human psychiatric 

disorders which share a substantial with addiction (Hudson et al., 1993; Lee et al., 

2004).  
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Chapter 6: Discussion and future directions  
 
 
6.1. Major findings  

Alcohol addiction is a complex disease with important psychological and social causes 

and consequences, which occurs as a response to multiple administration of alcohol. 

Most changes in the brain associated with alcohol addiction happen gradually over time 

in response to chronic alcohol use. These gradually developing changes can persist for a 

long time after cessation of chronic alcohol exposure (Most et al., 2014). The adaptive 

changes that characterize an addictive state include tolerance, sensitization, dependence 

and withdrawal. The molecular changes that elicit these behavioural changes are 

thought to occur predominantly in the mesocorticolimbic dopaminergic system 

(comprising of the ventral tegmental area and nucleus accumbens), a reward centre of 

the brain (Chao and Nestler, 2004; Flatscher-Bader et al., 2006).  

A wide array of studies has suggested that ethanol does not interact with a specific 

receptor, rather it alters the activities of several membrane receptors (NMDA and 

GABAA), signalling elements and transcription factors. In addition, ethanol affects most 

other neurochemical and endocrine systems (Diamond and Gordon, 1997). 

Dopaminergeric and opioid systems are also affected by alcohol, mainly in regard to the 

brain reward system. Furthermore, neuronal second messenger pathways have been 

affected by alcohol. Regulation of gene expression of these second messengers provides 

an important platform for the understanding of ethanol administration. The literature on 

the effects of ethanol administration on G proteins is rather limited and pertains mostly 

to western blot analysis of Gs, Gi, Go and  Gβ  proteins  (Guillen  et al., 2003; Hatta et al., 

1994; Saito et al., 2002; Wenrich et al., 1998).  Studies examining the mRNA 

expression of genes encoding G proteins are particularly scarce. With this gap in the 

literature in mind, this investigation has focused on the acute and chronic effects of 
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ethanol administration on mRNA expression of the  Gα  subunits  within  a  model  where  

Drosophila develops behavioural tolerance to ethanol.  

Firstly, sensitivity and tolerance to the sedating effects of ethanol were studied in wild-

type Drosophila (Chapter 3). Drosophila has been classed as a powerful model for 

studying the genes underlying acute ethanol responses (Devineni and Heberlein, 2010). 

As outlined in Chapter 3, a wide array of assays has been used in recent years to 

measure the effects of ethanol on Drosophila’s   behaviour (Bainton et al., 2000; 

Bhandari et al., 2009; Devineni and Heberlein, 2009; Maples and Rothenfluh, 2011; 

Rothenfluh et al., 2006; Singh and Heberlein, 2000). Wild-type Drosophila exposed to 

ethanol over a period of three days, allowing 24h recovery period between each 

exposure, had higher ST50 (time to 50% sedation) than flies exposed once, thus 

demonstrating a manifestation of ethanol tolerance (Chapter 3, Figure 3.2). Due to the 

variations observed between individual flies, subpopulations (early and late responders) 

of wild-type Drosophila were generated based on how early or late they respond to 

ethanol (Chapter 3, Figure 3.3). These sets of flies (early and late responders), 

developed ethanol tolerance during recurrent ethanol exposure, indicating that they 

differed in terms of their intrinsic sensitivity to the effect of ethanol rather than in the 

tolerance response. First and second generations of the early and late responders 

maintained these behavioural characteristics demonstrating the role of genetic 

components in their behaviour.   

The validation of ethanol tolerance demonstrated by both wild-type and subpopulations 

of Drosophila led to the investigation of G protein gene expression changes. mRNA 

was extracted from the head of female Drosophila (wild-type and subpopulations) that 

had been exposed to ethanol vapours either zero, one or three times for 30min to 

determine any changes in the acute response to ethanol. Quantitative real-time 

polymerase chain reaction (qRT-PCR) was used to measure G protein mRNA 
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expression following chronic ethanol administration (Chapter 4) at three points namely: 

1h after one treatment of ethanol (acute response in naïve flies), 24h after two 

treatments of ethanol (basal level in chronic flies), 1h after three treatments to ethanol 

(acute response in chronic flies). The changes of G proteins are expressed in comparison 

to  the  level  of  β-actin mRNA (Section 2.7 and Appendix 2.3), which does not appear to 

be affected by the ethanol treatment, as it does not show changes compared to other 

housekeeping proteins (Ponton et al.,  2011).  All  Gα  subunits  namely  Gi, Go, Gf, Gq, Gs 

and cta proteins were initially measured in wild-type Drosophila. The initial findings 

confirmed  that  mRNA  encoding  all  Gα  subunits,  were  expressed  in  fly  head  and some 

ethanol-induced changes were observed but none reached a significance level 

predominantly due to variation in the response observed. However, measurements of Gi, 

Gq and Gs mRNA expression in subpopulations (early and late responders), showed less 

variable responses both in the basal levels and acute responses. In the early 

subpopulation, a trend (not statistically significant) in the reduction of Gi and Gq but not 

Gs was observed (Chapter 4, Figure 4.6).  

In order to overcome some of the issues of variability among the wild-type population 

and subpopulations, and in order to try to begin to elucidate the mechanisms that may 

be responsible for the observed changes in G protein expression, specific G protein (Gi 

and Gq) and dopamine 1-like receptor 2 (Dop1R2) Drosophila strains were studied 

(Chapter 5). Initially, the ethanol-induced tolerance response of these strains was 

evaluated and some behavioural differences were observed but as discussed later, these 

may not necessarily be related to the mutation carried by the flies. Measurements of 

mRNA for Gi, Gq and Gs in these mutants at the above-described points of ethanol 

treatment (naïve-basal, acute, chronic-basal, chronic-acute) resulted in statistically 

significant changes, which are summarized in Figure 5.10 (Chapter 5).  
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One of the key outcomes of these studies is that, they demonstrate that indeed gene 

expression of some G proteins is affected by alcohol intake. Additionally, these studies 

suggest that the ethanol-induced changes in Gi expression may be dependent on the 

expression of Gq. If confirmed, this would expand our understanding of ethanol-induced 

molecular and behavioural changes.  

In this final chapter, the validity and significance of the findings of ethanol-induced 

behaviours and gene expression will be analysed. This will be followed by a discussion 

on the strategies needed to further validate the results by methods such as western blots. 

To elucidate potential mechanisms for the observed changes, computational prediction 

of microRNA (miRNA) targets of the expressed G protein subunits will be presented. 

Finally, further possible directions for future work are considered. 

 

6.2. Critical evaluation of findings   

6.2.1. Ethanol-induced tolerance 

In mammals, including humans, chronic alcohol use leads to the development of 

tolerance, simply defined as the acquired resistance to the sedating effects of ethanol 

(Wolf and Heberlein, 2003). Tolerance is one of the DSM-V criteria for alcohol related 

disorder (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-

V) in 2013) and has been correlated with heavy drinking and alcohol abuse (Schuckit et 

al., 2009). Tolerance can be attained either by more efficient removal of alcohol from 

the body (metabolic or pharmacokinetic tolerance) or by adaptations in neural function 

(functional or pharmacodynamics tolerance) and reflect changes in neurophysiology 

(Berger et al., 2004; Wolf and Heberlein, 2003).  
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Drosophila have been previously described as an established model for rapid tolerance, 

a type of tolerance induced by a single intoxicating dose of ethanol and measured as a 

reduction in sensitivity observed upon administration of a second dose of ethanol 

delivered at a time when the initial exposure is completely metabolized (Berger et al., 

2004). Two previous studies have examined rapid tolerance in Drosophila. One study 

found that flies that were exposed twice sequentially to ethanol vapour, displayed an 

increase in mean elution time (a measure of alcohol sensitivity) between the first and 

second exposure (Scholz et al., 2000). The other study, measured rapid tolerance after 

repeated ethanol injections in flies and obtained findings similar to those described by 

Scholz et al. (Dzitoyeva et al., 2003). This study has confirmed that in wild-type 

Drosophila and selected subpopulations (early and late responders) and mutant lines, 

tolerance can be induced by multiple exposures and can be measured in terms of ST50.  

It is important to compare the approach used in measuring tolerance with previous 

studies in Drosophila. Most studies examining the effects of multiple ethanol exposures 

have focused on the sedative effects of ethanol. However, flies that had previously been 

exposed to ethanol showed an earlier onset and overall increase in ethanol hyperactivity 

(Kong et al., 2010). Ethanol tolerance appears to be robust to variations in the tolerance 

protocol, as different studies (Berger et al., 2004, Cowmeadow et al., 2005, Dzitoyeva 

et al., 2003, Scholz et al., 2000) vary significantly in the timing and concentration of 

ethanol exposure.  

The main finding is that tolerance was observed in all Drosophila population studied in 

this thesis: wild-type, early responders and the three different mutants. Thus tolerance is 

an intrinsic response in Drosophila and is not dependent on alcohol sensitivity, 

signalling pathways initiated by Gq or by small reduction of Dop1R2 expression.  
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6.2.2. Variation in sensitivity to ethanol  

Using the ethanol sensitivity assay, variations were observed within the population of 

wild-type Drosophila, which led to the isolation of early and late responders to ethanol. 

To   the   author’s   knowledge,   this   is   the   first   study   describing   the   selection of 

subpopulations of Drosophila with different responses to ethanol within the wild-type 

population as opposed to the isolation of behavioural variants induced by either 

chemical modification of DNA (Kain et al., 2008) or transposon mutagenesis (Bellen et 

al., 2004; Metaxakis et al., 2005). This finding correlates well with the evidence of 

differences in the response to alcohol and risk of addiction in humans.   

These differences in susceptibility to alcohol have been linked to genetic variation 

(polymorphisms) in rodents (Crabbe, 2014). The hypothesis that genetic factors play a 

role in alcohol dependence have been further supported by a variety of observations; 

first, the risk of developing alcohol dependence is higher in relatives of alcoholics; 

second, among the offspring of alcohol-dependent subjects, identical twins have a 

higher correlation of alcoholism than fraternal twins or full siblings and thirdly, the 

adopted children of alcoholics have the same increased risk for alcoholism as offspring 

raised by their alcohol dependent parents (Cotton, 1979; Goodwin et al., 1974; Prescott 

and Kandler, 1999). In addition, a small number of genes known as endophenotypes 

(intermediate phenotypes that influence susceptibility to alcohol dependence) might 

directly influence alcohol dependence (Hines et al., 2005, Mayfield et al., 2008). Also, 

variations in receptor genes such as GABAA and cholinergic receptors, carries an 

associated predisposition towards alcohol dependence in relation to alcohol-induced 

behaviour (Mayfield et al., 2008).  

Significant variation in the degree of behavioural response to ethanol has also been 

observed in rats and humans and does not reflect differences in ethanol metabolism 

(Begleiter and Porjesz, 1977). Studies have reported that alcohol-preferring rats are 



 
 

137 
 

innately less sensitive to the effects of alcohol compared to non-alcohol preferring rats 

(Bell et al., 2006). This also correlates with the observation described in this thesis, that 

late responders are less sensitive to ethanol. Individuals with a lower level of response 

to ethanol have a greater likelihood of becoming alcoholics (Rodriguez et al., 1993; 

Schuckit and Smith, 1996), probably because they can consume more alcohol.  

 

6.2.3. Variation in ethanol-induced G protein mRNA expression 

The observed behavioural variation within the wild-type Drosophila population, 

complicated the measurements of ethanol-induced G protein mRNA expression and 

probably was a major cause for variations in the data obtained from G protein 

expression using qRT-PCR. The impact that this variation in the sensitivity to ethanol 

had on this project can be summarized as follows:  

1) The variation in the level of mRNA expression in replicate samples with the 

same treatment has been an ongoing problem of this project.  

2) In order to minimize variation, it was necessary to optimize the technique in 

terms of carefully rearing the flies (amount of food, incubator temperature (25oC), 

incubator light cycle, age of the flies, and length of CO2 exposure).  

3) This variation has been reduced by selecting subpopulations of flies (early and 

late responders).  

4)  This variation has been further reduced by using mutant flies which are 

genetically more homogenous. Although, using mutant flies provided more 

homogenous results, it may skew the results because of the mutation. However, in this 

study, different unrelated mutants used showed similar ethanol-induced behaviour and 

mRNA response.  
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6.2.4.  Behavioural differences in mutants  

The mutant population of Drosophila exhibited increased (Dop1R2) and decreased (Gi 

and Gq) sensitivity to ethanol. They also displayed the ability to develop tolerance to the 

sedating effects of ethanol, thereby confirming that mutations or insertions in specific G 

proteins or Dop1R2 genes did not block the induction and maintenance of tolerance. 

During the course of this study, it was identified that the Gi mutants (which carry a P-

element insertion in the first intron of the Gi gene) probably produces a normal 

transcript after splicing. Additionally, the Dop1R2 mutants have a relatively small 

reduction of mRNA expression (Liu et al., 2012). Therefore, it is not possible to 

conclude whether the mutations/insertions can be linked to the observed behavioural 

changes (differences in sensitivity to ethanol) nor conclude that because the genes are 

putatively mutated, they are not involved in tolerance, which was maintained. It is also 

possible that the effect on these genes is compensated by genes producing similar 

proteins.  

The behavioural differences (in terms of sensitivity to ethanol) may in fact be related to 

factors other than the specific mutation. The study of early and late responders indicated 

that there are genetic background differences within the Drosophila population and the 

different mutants could have different genetic background as well.  

 

6.2.5. Gene expression in Drosophila mutants 

The experiments in this thesis were aimed at finding out whether the rewarding 

properties of ethanol affect G protein gene expression in Drosophila. Changes of some 

G protein subunits were indeed observed in a number of different ethanol treatments 

and population of flies. This discussion will start from analysing the results that were 

statistically significant and then compare them to experiments where similar trends were 
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observed. The development of ethanol-induced tolerance was associated with a 

significant decrease in the levels of Gi and Gq mRNAs in the head of strain 17672 and 

Dop1R2 mutant after chronic ethanol treatment. The Gq mutants also showed ethanol-

induced decrease in Gq but not in Gi expression (Table 6.1).   

It is important to note that the observed changes in gene expression were specific to Gi 

and Gq and other subunits such as Gs did not change. Also, it is interesting to note that 

for both Gi and Gq, a decrease in the expression of both the basal level of chronic flies 

and further decrease in the acute response in chronically treated flies were observed. As 

discussed later, in order to explain a decrease in the acute response, one would have to 

hypothesize either the interruption of replenishment of a rapidly turning-over pool of 

mRNA and/or active mRNA degradation by processes such as microRNAs (miRNAs).  

Furthermore, the fact that the non-statistically significant changes observed in the early 

responders follow the same trend than the statistically significant changes observed in 

the mutant flies, suggest that the observation in the wild-type flies and early responders 

actually reflect a biological phenomenon. It would be useful to develop a mutant that 

behaves more like the late responders, which do not show these mRNA changes.   

 

6.2.6. Gene expression differences in Drosophila strains  

In Chapter 4, wild-type and subpopulations of Drosophila (early and late responders to 

ethanol) were used to test ethanol-induced gene expression. While in Chapter 5, G 

protein changes were measured in three fly strains.  

Similar effects (but not at a statistically significant level) were observed in both subunits 

between the wild-type, early responders and Gq mutant and strain 17672 (Table 6.1).  It 

can be hypothesized that one of the reasons that changes were observed at a significant 

level in the mutants and at lower significance in the wild-type is because the mutant 
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strains are more genetically homogenous than the wild-type population and thus there is 

less behavioural and gene expression variation within the population.  

This findings suggests that within a more homogenous population of Drosophila, 

ethanol induced G protein gene expression changes can be detected but the persistence 

of this effect in flies with a reduced D1-like expression suggests that the changes in 

expression of Gq and Gi are not dependent on full level of expression the D1 receptor 

mechanisms associated with addictive drugs.   

 

Table 6.1. Summary of results of the changes in the G protein subunits in all used Drosophila 
strains 

 

(One treatment: acute response, two treatments: basal expression in chronic flies, three treatments: acute 

expression in chronic flies). (*P<0.05, **P<0.01, ***P<0.001, nc: no change).   
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6.2.7. Implications of findings on G protein activation  

Many cellular signalling transduction pathways are associated with the stimulation of 

GPCR and subsequent activation of heterotrimeric G proteins (Oldham and Hamm, 

2008; Wettschureck and Offermanns 2000). Activation of GPCR catalyses the exchange 

of guanosine triphosphate (GTP) for guanosine diphosphate  (GDP)  on  the  G  protein  α  

subunit  (Gα)  leading  to  the  trimeric  complex  dissociating  and  to  the  release  of  free  Gα-

GTP  and  Gβγ  subunits,  each  of  which  may  then  interact  with  effector  molecules  (Boto  

et al., 2010). The Gi-GTP negatively affects adenylyl cyclase (AC) and Gq stimulates 

phospholipase C (PLC) isoforms (Clapham and Neer, 1993; Offermanns, 2003).  

AC goes on to generate cyclic cAMP, which is required to activate cAMP-dependent 

protein kinase A (PKA) (Newton and Messing, 2006).  In contrast, Gq activates beta-

isoforms of phospholipase C (PLC), thereby leading to the production of inositol 

triphosphate 3 (IP3) and diacyglycerol (DAG). IP3 then releases intracellular calcium 

stores to increase intracellular calcium levels, while DAG activates protein kinase C 

(PKC). The changes observed in both G proteins mRNA expression in this thesis may 

be secondary effects downstream of ethanol-induced alterations of other receptors such 

as dopamine or acetylcholine receptors.  

The specific activation of Gi and Gq signal transduction pathways by repeated ethanol 

treatment raises the question if the G protein subunits (Gi and Gq) work in conjunction 

in downstream pathways. Previous studies have shown that ethanol alters several 

cellular functions through modifications in G protein associated signalling. For instance, 

it was reported that pharmacological ethanol concentrations (10 – 100mM) affected Gq-

mediated signalling pathway, causing changes in its downstream effector, PKC activity 

(Gonzales et al., 1986; Hoffman and Tabakoff, 1990).  
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The effect of ethanol on Gi-mediated signalling pathway has been less reported. For 

instance, addition of Gi to reconstituted systems has produced little or no inhibition of 

AC and in pertussis-toxin-treated  membranes,  the  addition  of  βγ  subunits  of  G  proteins  

produced more inhibition than the Gi subunit (Smigel et al., 1984). These data 

supported the hypothesis that inhibition of AC occurs because activation and 

dissociation of Gi results  in  the  release  of  βγ  subunits  that  can  interact  with  Gs (Hoffman 

and Tabakoff, 1990). This leads to changes in protein kinase A (PKA) activities. These 

findings are relevant because G proteins control diverse functions, including cell 

division, differentiation and in the case of the central nervous system (CNS), 

excitability regulation, synaptic transmission and disease (Wettschureck and 

Offermanns, 2005; Yevenes et al., 2011). Thus, it seems possible that ethanol might 

affect a number of cellular functions by altering G proteins. 

 

6.2.8. Implications of findings on the signalling pathways  

Ethanol has been reported to affect the activities of some signalling pathways, including 

cAMP-PKA dependent pathway (Wand et al., 2001; McBride et al., 2014) and PLC-

PKC dependent pathway (Coe et al., 1996). In addition, extracellular signal-regulated 

kinases (ERK) have been reported to stimulate MAPK (mitogen-activated protein 

kinase) activation, including both receptors that couple to Gq and to Gi (Hawes et al., 

1995, Lee and Messing, 2008, Newton and Messing, 2006). Although, Gi signals 

through a different intracellular pathway (PKA) than Gq (PKC), these two pathways 

may cooperate, and in some situations their interaction is necessary for the induction of 

cellular plasticity. The role of such interaction in the CNS is not yet clear, nevertheless 

it might be important for neuronal plasticity.  
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Several studies have implicated PKA in the intoxicating effects of ethanol (reviewed in 

Ron and Messing, 2013). Inhibition of PKA activity has shown decreased sensitivity to 

the hypnotic effects of ethanol (Thiele et al., 2000). In addition, PKA signalling has 

been  reported  to  also  regulate  ethanol  consumption.  Mice  deficient  in  RIIβ  (gene  of  the  

PKA regulatory subunit), show reduced cAMP-stimulated PKA activity and increased 

ethanol intake (Thiele et al., 2000). However, other investigators have revealed that 

inhibition of PKA activity signalling increases acute effects of ethanol and decreases 

ethanol intake (Thorsell et al., 2007, Wand et al., 2001).  

On the other hand, ethanol has been reported to activate, inhibit or have no effect on 

PKC signalling activity in vitro, depending on the experimental conditions (reviewed in 

Stubbs and Slater, 1999). One study suggests that ethanol was found to bind PKC 

isoforms and inhibit its activity when assayed in vitro (Das et al., 2009), while another 

study suggests that ethanol exposure activated PKC isoforms in intact cell systems 

(Jiang and Ye, 2003, Qi et al., 2007). Ethanol regulation of PKC isoforms is most likely 

to be indirect, due to modulation of upstream signalling pathways that generate DAG or 

that lead to phosphorylation of sites necessary for full kinase activity, such as the C-

terminal hydrophobic motifs of PKC (Newton and Messing, 2006). In addition, ethanol 

has been reported to cause translocation of PKC from the Golgi to the perinucleus and 

PKC from the perinucleus to the cytoplasm (Gordon et al., 1997). Acute ethanol 

administration alters the distribution, whereas chronic administration increases the 

abundance and translocation of PKC in neural cells lines (Gordon et al., 1997).  

Several lines of evidence have reported possible crosstalk between PKA and PKC 

cascades in cellular systems. Crosstalk between PKA and PKC signalling pathways play 

an important role in the activation of intracellular and intranuclear signal transduction 

cascades (Yao et al., 2008) and is necessary to regulate gene expression (Sengupta et 

al., 2007). Such crosstalk is important in the ventral tegmental area (VTA), where drugs 
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of abuse increase extracellular levels of dopamine and thereby activate dopamine 2 

autoreceptors on dopaminergic neurons (Ron and Messing, 2013). This event leads to 

the activation of PKC and PKA, which phosphorylate and up regulate tyrosine 

hydroxylase (TH) and increase the production of dopamine (Yao et al., 2010). However, 

the molecular events underlying PKA/PKC crosstalk are not fully understood. Previous 

evidence has implicated PKC in the activation of AC and increasing the level of cAMP 

in intact cells and cell-free systems (Cooper et al., 1995). PKC have also been reported 

that PKA plays a role in the activation and translocation of PKC from the golgi to the 

perinucleus (Yao et al., 2008). 

In this study, it was demonstrated that repeated ethanol administration reduces the 

mRNA expression of Gi subunit (associated with PKA) and Gq subunit (associated with 

PKC) in two fly strains that were tested except for the Gq mutants which suggest that 

indeed there could be cross-talk between PKC and PKA in the response to ethanol. It 

should be stressed that according to the literature while there may be doubts about the 

functional implications of the insertions in the Gi and Dop1R2 genes, there is clear 

evidence that the point mutation in the Gq mutant does produce a non-functional 

protein. Therefore it is possible to propose that the lack of changes in Gi expression in 

the Gq mutants is due to lack of a functional Gq. This would suggest that under normal 

circumstances in flies chronically treated with ethanol, Gq expression is reduced (Figure 

6.1) which presumably leads to a reduction of PKC activity which could in turn reduce 

expression of Gi.   

Figure 6.1 (A, B & C) presents a potential model of the general mechanisms affected by 

ethanol in both Gi and Gq. The studies here presented demonstrated a change in Gi and 

Gq, which would potentially affect PKA and PKC pathways respectively. The model 

suggests that the Gq/PKC pathways would influence the Gi/PKA pathway through 

changes of Gq expression. It would be interesting to try to demonstrate such a 



 
 

145 
 

mechanism by directly inhibiting PKC or artificially activating PKC in the Gq mutants. 

The reinforcing effect of the two major pathways inhibiting each other could be an 

important mechanism of addiction.   

 

 

Figure 6.1. Presents potential models of the general mechanism affected by ethanol starting from its 
effect on receptors (R) leading to changes in gene expression. 

(A) The model suggests that ethanol causes a change in Gi subunit expression, which could affect which 

G protein subtype is associated with GPCR. A reduction in Gi which normally inhibits Adenylyl Cyclase 

(AC) would result in an increase in AC activity and thus and increase in protein kinase A (PKA) activity 

and the phosphorylation of transcription factors such as cAMP-responsive binding protein (CREB) which 

would lead to further changes in gene expression.  
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Figure 6.1(B) The model suggests that ethanol causes a change in Gq subunit expression, which could 

potentially affect which G protein subunit is associated with the G-protein coupled receptors (GPCR). 

Inhibition of Gq would decrease the activity of Phospholipase C (PLC) and consequently a reduction in 

Protein Kinase C (PKC) pathway and the phosphorylation of transcription factors such as nuclear factor 

of activated T-cells  (NFAT) through Ca2+, which would lead to changes in gene expression.  
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Figure 6.1(C) This model is based on the observation that in the fly strain 17672, where Gq in non- 

functional, the Gi decreases does no take place leading to the speculation that the Gi decrease in 

expression is dependent on Gq decrease. 

 

6.2.9. Validation of G protein gene expression changes using western blot 

In this study, western blot analysis of G proteins (Gi and Gq) in fly brain samples was 

attempted to confirm the observed mRNA gene expression of Gi and Gq (Section 4.2.4). 

Changes in mRNA levels often correlate with changes in protein level but there are also 

cases where this correlation does not hold and it is thus preferable to demonstrate 

directly changes in protein level (Schwanhausser et al., 2011).  

There are no commercial antibodies proven to recognise Drosophila G proteins. 

Antibodies were selected on the basis of similarity of the antigenic peptides used for 

raising the antibodies and Drosophila protein sequence. Substantial efforts were carried 
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out to measure the protein level of G protein subunits, as this would further validate the 

significance of the changes in mRNA expression observed. Unfortunately, the only 

antibodies that showed some initial positive results (Chapter 4, Section 4.2.4) proved to 

be unstable and are no longer available.  

The lack of functionality of the G protein antibodies have also been reported by other 

investigators (http://www.ihcworld.com/smf/index.php?topic=1986.0). It was thus not 

possible to continue this line of work.  

 

6.3. Future directions   

This thesis provides new evidence regarding ethanol-induced gene expression in 

Drosophila, however details of the mechanism of changes still need to be elucidated 

and as suggested, and the role of signalling pathways needs further explorations. It will 

also be interesting to identify whether changes in ethanol-induced gene expression of G 

proteins are associated with other addiction related behaviours such as withdrawal and 

relapse.  

Investigation will also be needed to characterize the expression of these G protein 

subunits at a cellular level using immunocytochemistry. This could lead to the 

localization of the specific neurons in which the observed changes of G protein gene 

expression occur.   

Additionally, it will also be interesting to investigate the potential role of the identified 

miRNA in the regulation of G protein expression using Drosophila Schneider 2 (S2) 

cell line (which are derived from Drosophila embryos) as described in Appendix 6.1. If 

a positive result is obtained for the miRNAs, it would be of interest to develop a mutant 

fly with inducible expression of a specific miRNA in the neurons identified in the 

immunocytochemistry study. In such mutants it may be possible to induce effect similar 
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to those induced by alcohol, which will open the possibility of using miRNA to 

intervene in addictive behaviour. 

 

6.4. Significance of the findings and relevance to alcoholism   

The results described in this study provide new insight into some of the cellular and 

molecular events mediated by ethanol. This study also provides a model for the 

investigation of the neuroadaptive processes that occur in response to acute and chronic 

ethanol exposure in Drosophila melanogaster.    Ethanol’s  effects  on  the  central  nervous  

system are diverse and include changes in localization of the nucleus and post-

translational modifications, gene expression and neuronal excitability (Most et al., 

2014; Ron and Messing, 2013). It was shown here that repeated ethanol administration 

leads to reduction of mRNA expression of Gi and Gq subunit in an apparently 

interdependent manner, thereby potentially affecting PKA and PKC signalling pathways 

respectively via a possible crosstalk between these two signalling cascades. Moreover, 

ethanol activated PKA and PKC seems to play a role in drinking behaviours; mice 

lacking PKC show reduced operant ethanol self-administration (Olive et al., 2000) and 

inhibition of the cAMP/PKA signalling pathway generally increases sensitivity to 

ethanol sedation and reduces ethanol preference and consumption (Moore et al., 1998; 

Wand et al., 2001). Taken together with the results in this study, it is possible that 

drugs, which interfere with PKA and PKC crosstalk, might be potential therapeutics for 

alcoholism.  
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Appendix  
 
Appendix 2.1 
 
The G protein variants for each gene are listed in the table below.  

G protein subunits Transcripts 

Gi 1 

Gq 7 

Go 10 

Gs 5 

Gf 1 

cta 2 

Gβ76C 1 

Gβ13F 6 

Gβ5 1 

Gγ1 3 

Gγ30A 8 
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Alignment of G protein transcript variants using cta gene as an example. The Figure 

below shows the forward primer (shown in green) and reverse primer (shown in red) of 

cta template.  

 

 

 

 

 

 

 

 

 

 

Figure  1.  Alignment  of  Gα  gene,  cta  transcript variants.   

Cta have two transcript variants. The DNA sequences for both variants were obtained from NCBI and 

aligned using CLUSTALW2. A represents variant A, while B represents variant B.  
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Appendix 2.2 

A melting curve analysis was carried out to ensure the product of primers were the 

expected size and not the result of primer dimers. The image below shows an example 

of a melting curve.  

 

 

Figure 1. Image of a melting curve.  

Change in fluorescence (y axis) with increasing temperature (x axis) is measured. As the temperature 

increases, the two strands of the amplicon separates to form single stranded DNA, causing the fluorescent 

intercalating dye to dissociate from the DNA and stop fluorescing.  
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Appendix 2.3 

The table below shows a worked example of the calculation of relative expression using 

the comparative method (2-ΔΔCt).  

2-ΔΔCt method 
Sample  Gq average Ct Actin average Ct 
Control  28.23 26.67 
One exposure  28.44 26.96 
Before three exposures 28.24 26.08 
Three exposures 25.77 25.95 
      
Control: 2^( actin - Gq) 0.34   
One exposure: 2^( actin - Gq) 0.36   
Before three exposures: 2^( actin - Gq) 0.22   
Three exposures: 2^( actin - Gq) 1.13   
      
Ratio of expression - control 1   
Ratio of expression - One exposure 1.06   
Ratio of expression - Before three exposure 0.66   
Ratio of expression - Three exposure 3.34   
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Appendix 4.1 

Full agarose gel images of G protein subunits below.  

A) Expression of Gα genes (Gi, Gs, Go, Gq, Gf and cta) 
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Figure 1. Expression analysis of Gα   genes   (Gi, Gs, Go, Gq, Gf and cta) in the head of adult 
Drosophila using reverse transcriptase chain reaction (RT-PCR) 

Target genes are denoted on the left of the figure and the amplification product size on the right, 

expressed in base pairs (bp). RNA was extracted from the head of the flies and this is identified at the top 

of each figure as follows: M: 100bp ladder; H: head; -RT (minus reverse transcriptase); NTC (No 

template control).  
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B)  Expression  of  Gβ  genes  (Gβ5,  Gβ13F and  Gβ76C) 
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Figure 2. Expression analysis of Gβ  genes  (Gβ5,  Gβ13F and  Gβ76C) in the head of adult Drosophila 
using reverse transcriptase chain reaction (RT-PCR) 

Target genes are denoted on the left of the figure and the amplification product size on the right, 

expressed in base pairs (bp). RNA was extracted from the head of the flies and this is identified at the top 

of each figure as follows: M: 100bp ladder; H: head; -RT (minus reverse transcriptase); NTC (No 

template control).  
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C) Expression of Gγ genes (Gγ1 and Gγ30A) 

 

 

 

Figure  3.  Expression  analysis   of  Gγ  genes   (Gγ1 and  Gγ30A) in the head of adult Drosophila using 
reverse transcriptase chain reaction (RT-PCR) 

Target genes are denoted on the left of the figure and the amplification product size on the right, 

expressed in base pairs (bp). RNA was extracted from the head of the flies and this is identified at the top 

of each figure as follows: M: 100bp ladder; H: head; -RT (minus reverse transcriptase); NTC (No 

template control).  
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Appendix 4.2 

Wild-type flies were exposed to ethanol either once (acute response in naïve flies) or 

three times (acute response in chronic flies). mRNA measurement for G proteins were 

carried out 1 h after the last exposure. Ethanol treatment did not induce significant 

changes  in  any  of  the  Gα  subunits  (Gs, Go, Gf and cta) compared to control (naïve flies) 

(Figure 1). Variations were observed within the population of wild-type flies and each 

independent experiment. 

 

 

 

Figure 1.  Effect  of  ethanol  treatment  on  Gα  genes  in  Drosophila’s  head   

(A) Ethanol exposure protocol which induces rapid tolerance to alcohol. Flies were exposed three times to 

500µl of 100% ethanol for 30 min each. A 24 h recovery period was allowed between each ethanol 

treatment.  (B) Effect of ethanol administration on G protein subunit mRNA expression in Drosophila’s 

head. Total RNA was extracted from the head of control (flies that have never been exposed), one 

exposure (acute response in naïve flies) and three exposures (acute response in chronic flies). Relative 

expression in mRNA were quantified relative to control (naïve flies) and normalized to an internal 

control,  β-actin. Error bars represent ± Standard Error of the Mean (SEM) (n= 4 independent experiments, 

n=5 female flies, Student’s  T-test, P>0.05).  

 

 

 



 
 

190 
 

Appendix 5.1 

Sequencing of RT-PCR product of Gi subunit (Below) was carried out to validate the 

observed results obtained from real-time polymerase chain reaction. The sequences 

were verified by a BLAST search, which matched 100% of the deposited Gi.  

Sequences:  

 

GiF_premix -- 20.88 of sequence 

AGATCGCATGATTGAGTCCCTGAAGCTGTTCGATTCCATCTGCAACTCCAAG

TGGTTTGTGGACCTCAA 

 

 

GiR_premix -- 27.85 of sequence 

ATCATGCGATTCATCTCTTCGTCCTCGGCCAAAACTAGATCGTAACCTGATA

GCGCGAC 
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Appendix 6.1 

The mechanism by which ethanol-induced treatment results in G protein gene 

expression changes remains unknown. microRNAs (miRNAs) are thought to play a 

significant roles in mediating the effects of ethanol (Miranda et al., 2010). They are 

highly abundant in the brain and are known to be involved in many biological 

processes, including brain development (Cheng et al., 2009). Changes in miRNAs have 

been implicated in the development of ethanol-induced tolerance, a crucial component 

of alcohol addiction (Miranda et al., 2010, Pietrzykowski and Treistman, 2008). Altered 

expression of some miRNAs could be due to ethanol altering the activities of various 

signal transduction pathways, including tyrosine and MAP kinases or due to epigenetic 

changes (Miranda et al., 2010). Given that miRNAs potentially suppress the expression 

of their target genes, ethanol can cause simultaneous up regulation of some miRNAs 

while down regulating others.  

MicroRNAs are small non-coding RNAs (~23nt) that are thought to act as 

posttranscriptional   modulators   of   gene   expression,   by   binding   to   the   3’-untranslated 

regions (UTRs) of their target genes resulting in either the suppression of translation or 

degradation of mRNA transcripts or both (Fillipowicz et al., 2008, Lewohl et al., 2011). 

Recently, it has been reported that miR382 expression is affected by ethanol exposure. 

It is linked with ΔfosB, which is a nuclear factor associated with the response of 

addictive drugs (Li et al., 2013).  

In Drosophila, TargetScanFly (Ruby et al., 2007) searches for both conserved and non-

conserved sites through seed sequence complementarity between the miRNA and 

3’UTR  (Lucas  and  Raikhel,  2013) was carried out. Using the TargetScan to analyse the 

mRNA sequences of the G proteins, which have been observed to be reduced during 

repeated ethanol treatment, Gi was identified to contain the binding consensus sequence 

of the known miRNA miR-8, whereas Gq contains the known miRNA miR-315 (See 
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below). In future, the predicted miRNA targets could be used to study the mechanism of 

the changes in gene expression observed using qRT-PCR. This could be achieved by 

transfecting the Drosophila S2 cell line with the synthetic miR-8 or miR-315 and the 

expression of each Gi or Gq would be determined using qRT-PCR respectively. 
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An image of the predicted miRNA target for Gi (G-ialpha65A) subunit using 

TargetScan is shown below. miR-8 was predicted for Gi gene (denoted by the red 

circle).  

 

 

 

 

 

 

 

 

 

 

 

 

 

An image of the predicted miRNA target for Gq subunit using TargetScan is shown 

below.  

 

Figure 1. Output of miRNA search on TargetScan (http://www.targetscan.org/fly_12/) using G-
ialpha65A as a target gene. The identified miRNA is circled in red. 

The predicted miRNA target was obtained by enterning the Flybase symbol (CG10060) in  the search 

box. The identified miRNA (dme-miR-8) is circled in red.  
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An image of the predicted miRNA target for Gq (Galpha49B) subunit using TargetScan 

is shown below. miR-315 was predicted for Gq gene (denoted by the red circle).  

 

 

Figure 2. Output of miRNA search on TargetScan (http://www.targetscan.org/fly_12/) using 
Galpha45B as a target gene. The identified miRNA is circled in red. 

The predicted miRNA target was obtained by enterning the Flybase symbol (CG17759) in  the search 

box. The identified miRNA (dme-miR-315) is circled in red.  

 

 


