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ABSTRACT 
This paper has introduced an artificial intelligence (AI) integrated method for automating the 
assessment of seismic structural damage in reinforced concrete (RC) buildings, curtailing the need for 
conventional, time-intensive on-site visual inspections. A deep learning-based damage assessment 
model has been developed using pre-trained convolutional neural networks to identify damage-
indicators, such as cracks, spalling, and crushing from images, and subsequently to predict two crucial 
local element structural failure modes in low-to-medium rise RC framed buildings: shear and flexural 
failure. The incorporation of local element structural failure modes within this damage assessment 
model has been aligned with current damage assessment guidelines, facilitating a transition from simply 
assessing the level of structural damage to providing more actionable insights for structural integrity 
evaluations and retrofitting decisions. To develop a high-quality model and tackle key challenges in 
adopting AI in earthquake/structural engineering domain, particularly the scarcity and imbalance of 
image datasets, this paper has employed transfer learning, data augmentation, and synthetic data 
generation techniques. These techniques have significantly improved model performance and 
generalisability, ensuring robust and reliable predictions. The proposed model has achieved scores 
exceeding 0.90 (90%) for accuracy, precision, recall, and F1-score without overfitting, showcasing its 
reliability for real-world implementation. This research marks a significant step forward in AI-
integrated seismic structural damage assessment, providing a rapid, accurate, and scalable method to 
enhance structural integrity evaluations and urban resilience. 
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1  INTRODUCTION 
Seismic activities worldwide cause varying levels of damage to buildings, ranging from 
partial to complete collapses, resulting in loss of life and substantial economic consequences 
[1]. Therefore, rapidly and accurately assessing the damages in buildings after a seismic 
activity is important for ensuring the safety, functionality and longevity of the structures in 
seismic-prone regions [2]. These assessments are typically carried out by qualified engineers 
as per damage assessment guidelines and design codes, to enable accurate identification of 
structural damage levels [3]. Qualitative methods, such as visual inspections, field 
assessments, and image-based damage detection, remain the most common methods to assess 
damages in reinforced concrete (RC) buildings, which rely on identifying damage indicators, 
such as cracks, spalling, crushing, buckling of steel reinforcement and residual deformation 
[4]. These insights provide useful information on the building’s structural integrity, which 
forms the basis for targeted retrofit and repair strategies, reducing risks to occupants and 
buildings while expediting recovery from the disaster and helping communities return to 
normality [5]. However, these manual approaches rely on subjective interpretations that can 



result in errors or omissions, and the hazardous conditions encountered during on-site 
inspections further compromise the reliability of the assessment. This limitation highlights 
the urgent need for a rapid and accurate damage assessment methods, that can be executed 
remotely, particularly in disaster-prone regions with frequent seismic events and numerous 
substandard buildings. In response, artificial intelligence (AI) techniques, particularly deep 
learning (DL) techniques, offer promising potential to automate the qualitative seismic 
structural damage assessment process using image-based data. AI-driven approaches can not 
only address the inherent limitations of manual on-site inspections but also pave the way for 
more reliable and rapid damage assessments. Figure 1 shows schematics of two potential 
avenues for adopting AI in seismic structural damage assessments: an image-based, 
qualitative approach and a vibration-based, quantitative approach. This paper has focused on 
qualitative assessments using image-based data, as it remains the most prevalent and feasible 
practice in the field, as opposed to quantitative assessments using vibration-based data, which 
is costly in implementation in many disaster-prone economies [4]. 
 

 

Figure 1:  Seismic structural damage assessment approaches adopting AI 

Since the mid-2010s, advances in machine learning (ML) / deep learning (DL), computing 
power and data availability have rapidly expanded AI’s role in structural damage assessment 
[6]. DL, particularly multi-layer artificial neural network algorithms, now underpins 
sophisticated research on crack detection, damage classification and failure mode prediction 
[7]. Early image-based crack detection employed edge detection algorithms (e.g. Canny and 
Sobel), which later gave way to ML approaches such as support vector machines [8]. Taking 
advantage of convolutional neural networks (CNN), researchers achieved higher accuracy in 
identifying cracks, spalling and related damage [9]. Transfer learning (TL) techniques further 
refined CNN-based detection by leveraging pre-trained models to overcome limitations in 
datasets within structural/earthquake engineering domain [10]. However, relatively small 
size of datasets presents challenges for ML/DL-based classification, that the TL strategies 
(e.g. fine-tuning and feature extraction) help to address [11]. A very few studies 
demonstrated the efficacy of customised CNN-based models derived from pre-trained CNN 
models, achieving high accuracy in real-world testing scenarios [12]. Accurate labelling 



remains crucial, as mislabelled data can degrade model performance. Local element failure 
mode prediction identifies whether a structural component fails in shear, flexure or a 
combination of both. Deep neural network-based models have successfully predicted shear 
wall failure modes based on geometry, reinforcement and material properties [13].  
 
Based on the review of literature above, the following key challenges faced by researchers 
who are using AI for seismic structural damage assessment using image-based data have 
been addressed in this paper: 

• The image-based datasets acquired in structural/earthquake engineering domains 
are smaller than datasets in other disciplines. This data scarcity poses a challenge 
for accurately training, testing and validating DL-based models as they rely on large 
number of data to ensure model doesn’t overfit and is able to generalise to new and 
unseen data 

• The lack of open access image-based datasets that depict local element failure 
modes of building structures, such as shear failure and flexural failure 

• The lack of comparative studies on the performance of the available pre-trained 
CNN models, together with TL techniques in seismic structural damage assessment 
using image-based data 

Therefore, this paper focusses on enhancing seismic structural damage assessment of low-
to-medium-rise RC framed buildings through a DL-based damage assessment model utilising 
image-based data. The proposed model automatically detects damage-indicative features, 
such as cracks, spalling, and crushing, to predict local failure modes in structural elements. 
To achieve this, a suitable pre-trained CNN has been selected by evaluating relevant pre-
trained CNN models, followed by hyperparameter tuning for optimal alignment with the 
target dataset of this research. The target dataset used for training and testing this model 
includes images of RC columns, RC beams, and masonry infill walls depicting shear and 
flexural failure modes. To enhance model performance and generalisability, transfer 
learning, data augmentation, and synthetic data generation have been employed. 

2  METHODOLOGY 

To develop a seismic structural damage assessment model that predicts local element failure 
modes of RC framed buildings utilising CNNs, this paper adopts a five-step methodology. 
The model’s classification criteria have been defined according to local element failure 
modes, for which a database of damage images has been developed. Data augmentation and 
synthetic data generation techniques have subsequently been employed to increase dataset 
size and achieve greater balance. Transfer learning and model regularisation techniques have 
then been incorporated, and finally, performance assessment criteria have been established 
to ensure comprehensive evaluation of the developed model. 

2.1  Model Classification Criteria 

The existing damage assessment guidelines generally assess the level of damages in 
structural elements [14]. This paper aims to develop a model that predicts the local element 
failure modes of low-to-medium rise RC framed buildings. The failure modes depicted in 
Figure 2 form the basis for the model’s classification criteria, although this study specifically 



focuses on shear and flexural failure modes in RC columns, RC beams, and masonry infill 
walls. 

Figure 2:  Structural elements and failure modes applicable to low-to-medium rise RC 
framed buildings 

2.2  Database Development 

In current damage assessment practices, structural element damage is primarily documented 
through photographs obtained during on-site or remote building inspections. These image 
collections capture crucial indicators of physical damage, such as crushed regions, distinct 
crack patterns and measurements of crack width and length, which enables precise 
characterisation of observed damage. The database has been developed by following a multi-
step process including web scraping, data segregation, data cleaning, quality checks, database 
structuring, versioning, and documentation. Each image is ultimately classified according to 
the type of RC structural element and the failure mode observed in the damaged component, 
constituting the training data for the damage assessment model. As illustrated in Figure 3, 
the dataset comprises of shear failure and flexural failure in RC columns, RC beams, and 
masonry infill walls, thereby establishing the model’s classification criteria. 
 

2.3  Data Augmentation and Synthetic Data Generation 

Table 1 presents an overview of the database developed for this study. Notably, the datasets 
for RC beams and masonry infill walls are comparatively smaller and exhibit imbalance 
relative to those for RC columns. Such imbalances, along with limited dataset sizes, can yield 
overfitted models that are unable to generalise on new and unseen data. To address these 
challenges and enhance variability of the dataset, data augmentation (Figure 4) and synthetic 
data generation (Figure 5) techniques have been employed to generate new images, thereby 
simulating a wider range of real-world conditions.  
 
 
 



 

Figure 3:  Sample images of shear failure and flexural failure of RC column, RC beam and 
masonry infill walls included in the database developed in this paper 

Table 1:  Overview of the database developed in this paper 

Element Type 
Local Element Failure Mode 

Total Shear Failure Flexural Failure 
RC Columns 1048 858 1906 
RC Beams 152 100 252 
Masonry Infill Walls 880 327 1207 

Figure 4:  Images generated using synthetic data generation techniques 



Figure 5:  Images generated using data augmentation techniques 

2.4  Model Development 

AI consists of computational techniques designed to simulate an array of cognitive functions 
representative of a human brain, such as reasoning, classification, appraisal, and 
determination of optimal courses of action. The AI technique employed in the damage 
assessment model developed in this paper is convolutional neural networks (CNN), which is 
a specialised DL model specifically designed to process structured data on a grid (e.g. images 
of damaged RC elements). CNNs are highly effective at recognising spatial hierarchies in 
data by using convolutional layers that apply filters to the input, detecting fundamental 
features, such as edges, colours and textures. These layers progressively combine these 
simpler features to identify more complex patterns, such as shapes or objects in the images. 
As illustrated in Figure 6, CNN typically consists of three key types of layers: convolutional 
layers, pooling layers, and fully connected layers. In convolutional layers, small filters move 
across the input data, creating feature maps that capture specific patterns in different regions. 
Pooling layers then reduce the dimensionality of these feature maps, improving the model's 
computational efficiency and helping to prevent overfitting. The fully connected layers 
integrate all the learned features to produce predictions or classifications [15]. In the context 
of this paper, the model input consists of images depicting damaged structural elements, 
while the output class indicates the corresponding local element failure mode: shear failure 
or flexural failure. Other failure modes can be incorporated in future research to further 
expand the scope of this damage assessment model. 

Figure 6:  Convolutional neural network (CNN) architecture 



Pre-trained CNN architectures have shown superior capabilities in image-based damage 
assessment tasks. The most suitable pre-trained CNN-based architecture for this research has 
been selected by evaluating the performance of pre-trained CNN architectures renowned for 
image-based prediction tasks, namely VGGNet (VGG16 and VGG19) [16], GoogleNet 
(Inception) [17], Xception [18], MobileNet [19], DenseNet (DenseNet121, DenseNet169, 
DenseNet201) [20], ResNet (ResNet50, ResNet101 and ResNet152) [21], EfficientNet-B0 
[22] and AlexNet [23], with the target dataset. Since these models have initially been trained 
on datasets from different domains, assessing their ability to extract meaningful features from 
the target datasets relevant to the domain of this paper is crucial, hence the need of the 
comparative experiment. Next, transfer learning techniques has been applied to the most 
applicable pre-trained CNN model in terms of performance to the target dataset. As 
illustrated in Figure 7, two types of transfer learning techniques have been adopted in this 
paper: feature extraction and fine tuning. In feature extraction, the pre-trained model’s layers 
remain unchanged, allowing it to automatically capture generalised patterns from the new 
dataset. On the other hand, fine-tuning modifies specific layers, usually the last ones, to 
optimise the model’s parameters for improved adaptation to the target dataset. 

Figure 7:  Transfer learning techniques employed in this paper 

2.5  Model Evaluation 

The performance of CNN-based models has been evaluated using a confusion matrix 
[24]. This matrix consists of four key elements: true positives (TP), true negatives (TN), false 
positives (FP) and false negatives (FN). Accuracy (eqn. (1)) is calculated as the percentage 
of correctly classified instances out of the total cases. Precision (eqn. (2)) represents the 
percentage of correctly predicted positive cases among all predicted positives. Recall (eqn. 
(3)) measures the percentage of actual positive cases correctly identified by the model. The 
F1 score (eqn. (4)) is the harmonic mean of precision and recall, expressed as a percentage, 
providing a balanced measure of performance [25].  
 
                                                        𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹
                            (1)  



                                                        𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                          (2) 
 
                                                        𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
                            (3) 

 
                                                        𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
              (4) 

 
To check if the model overfits, the difference between the training accuracy (TRA) and 
validation accuracy (VLA) is checked as per eqn. (5) below: 
 
         𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 % = 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑉𝑉𝑉𝑉𝑉𝑉;      ≤ 5%;  𝑁𝑁𝑁𝑁 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂;  
                                                                              𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 5 − 10%;  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂        (5) 

                                                > 10%;  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂  
 
Similarly, the ability of the model to generalise to new and unseen data has been checked by 
comparing the gap between the validation accuracy (VLA) and testing accuracy (TSA) as 
per eqn. (6), and validation loss (VLL) and testing loss (TSL) as per eqn. (7).  
 
                     𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 3% 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺             (6) 
 
                     𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 0.1% 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺                                 (7) 
 

3  RESULTS 

3.1  Dataset 

Table 2 presents the final dataset (total of 6314 images), which has been enhanced using 
data augmentation and synthetic data generation techniques to ensure sufficient size and 
balance for effective model training, validation, and testing. This dataset was divided into 
training, validation, and testing sets using a 70:10:20 ratio.  

Table 2:  Overview of the dataset used for model training, validation and testing 

Element Type 
Local Element Failure Mode 

Total Shear Failure Flexural Failure 
RC Columns 1048 1058 2106 
RC Beams 1049 1059 2108 
Masonry Infill Walls 1063 1037 2100 

3.2  Model Performance 

A comparative experiment has been conducted to determine the most suitable pre-trained 
CNN model specifically for the target dataset of this paper by evaluating the performance of 
various pre-trained CNN models previously used within this research domain. MobileNet 
pre-trained CNN model that has demonstrated the best performance in this comparative 
experiment, with a uniform score of 0.88 (88%) for accuracy, precision, recall and F1 score, 



with the shortest run-time, completing the task in 43 minutes has been selected as the baseline 
model.  Feature extraction and fine-tuning transfer learning techniques have been applied to 
the baseline MobileNet model, and subsequently the model regularisation parameters of the 
model, such as loss function regularisation factor, dropout rate, and learning rate and number 
of epochs has been adjusted. The final model’s confusion matrix is presented in Figure 8. As 
indicated in Table 3, this model has achieved scores exceeding 0.90 (90%) for accuracy, 
precision, recall, and F1 score.  

Figure 8:  Confusion matrix of the damage assessment model developed in this paper 

Table 3:  Model performance results 

Criteria Matrix/Check Score Limit 

Performance 
Check 

Accuracy 0.9695 N/A 
Precision 0.9098 N/A 
Recall 0.9103 N/A 
F1 Score 0.9096 N/A 

Overfitting 
Check 

Training accuracy and validation accuracy 
difference % 0.81% <5% 

Generalisation 
Check 

Fine-tuning validation accuracy and 
overall model test accuracy gap 0.08% <3% 

Fine-tuning validation loss and overall 
model test loss gap 0.00% 0.01% 



Figure 9 illustrates the training/validation accuracy curve and loss curve of the model, where 
the details for overfitting and generalisability check has been extracted to Table 3. These 
results confirm that the model developed in this paper has been successful in predicting the 
failure modes RC columns, RC beams and masonry infill walls accurately, without 
overfitting, while ensuring superior generalisability to new and unseen data. 
 

Figure 9:  Training/validation accuracy and loss curves of the damage assessment model 
developed in this paper 

4  CONCLUSION 
This paper has made notable progress in adopting deep learning techniques to assess seismic 
structural damages in low-to-medium rise reinforced concrete framed buildings and 
subsequently predict the failure modes of reinforced concrete columns, beams and masonry 
infill walls. By utilising pre-trained convolutional neural networks, a deep learning technique 
along with transfer learning, data augmentation and synthetic data generation, this paper has 
produced a damage assessment model that can efficiently predict local element structural 
failure modes using image-based data. The model developed in this paper has achieved 
scores exceeding 0.90 (90%) for accuracy, precision, recall, and F1 score, the performance 
indicators computed using confusion matrix, the standard method to evaluate the 
performance of deep learning-based models. Further model performance checks conducted 
has ensured that the model doesn’t overfit and demonstrates superior generalisability to new 



and unseen data. This research development has contributed to a transferable body of 
knowledge that bridges cutting-edge AI techniques with conventional earthquake 
engineering, providing a scalable and practical approach to strengthening urban resilience 
and disaster preparedness worldwide. 
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