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                                                  Abstract 

 

Multi drug resistance microorganisms are an increasing problem and more than 70% of 

clinically significant pathogens possesses resistance to currently existing antibiotics. 

Most antibiotics in clinical use were discovered by screening cultivable soil 

microorganisms and of these only 1% are cultivable using laboratory media and rest are 

uncultivable. Soil still offers a great potential for antibiotic discovery. In this study, iChip 

in situ environmental cultivation technology was used to cultivate previously uncultivated 

microorganisms and screened for antagonistic organisms. Soil samples were collected 

from various geographic locations in UK based on soil characteristics. Two to three 

samples were collected from each site and screened for antagonistic microorganisms 

using iChip-based technology along with soil supplemented nutrient agar which enabled 

the growth of previously uncultivated microorganisms. This study found an antagonistic 

microorganism and identified as Bacillus pumilus. Cell free supernatant of B. pumilus 

fermented broth showed 12 mm zone of inhibition against Staphylococcus aureus ATCC 

25922 and butanol extract and compound-3 showed 9 mm and 8 mm zone of inhibition 

respectively. Bacillus pumilus has been previously described to produce antibacterial and 

antifungal compounds. Mueller Hinton broth with addition of 5% glucose was used for  

B. pumilus fermentation to assess secondary metabolites. Fermented broth supernatant 

and extracts produced zone of inhibition (ZI) ranging from 8-12mm against S. aureus but 

could not determine minimum inhibitory concentration. Fermented broth was extracted 

sequentially with ethyl acetate, n-butanol and methanol. n-Butanol extract in thin layer 

chromatography showed three compounds, and of these only Compound 3 showed 

inhibitory effect on S. aureus. Nuclear magnetic resonance (both 1D and 2D) analysis 

revealed compound 3 as a mixture of possible 3 compounds or their fragments but could 

not identify these compounds. .However, compounds fragments had chemical structures 

containing peptide bonds and aliphatic chains which are also found in known peptide 

antibiotic, for example, vancomycin. Further studies are needed to fully characterise this 

compound-3.  
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Chapter 1: Introduction 

 

1.1 Pre-antibiotic  era and discovery of first natural antibiotic 

In the pre-antibiotic era, natural remedies such as herbs, honey, mouldy breads and animal 

faeces were used in different communities and countries (Gould, 2016). A study showed 

that a 1000 years old Anglo-Saxon remedy can kill Staphylococcus aureus biofilms in 

soft tissue infection in an in vitro model and can kill methicillin-resistant S. 

aureus (MRSA) in a mouse chronic wound model (Harrison et al., 2015). However, Paul 

Ehrlich who is regarded as the pioneer in antibiotic research showed scientific approach 

in screening antibiotics that led the development of Salvarsan, an arsenic based compound 

for the treatment of syphilis and trypanosomiasis (Aminov, 2010) in 1909 . Later a sulfa 

drug called prontosil (2) discovered by Gerhard Domagk (Gradmann, 2008) was a 

breakthrough to treat the infections until the availability of penicillin in early 1940s. The 

fortuitous  discovery of penicillin (3) in 1928 (Fleming, 1929) is regarded as a new era of 

modern antibiotics from microbes that formed the foundation of current antibiotic 

researches (Gould, 2016). 
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Figure 1.1: Structures of Salvarsan (1), prontosil (2) and penicillin (3) 

 

 

1.2 Antibiotics challenges and rise of multi-drug resistance (MDR) 

Soon after introduction of Penicillin 1941 and its wide uses, resistance to Penicillin had 

reported in Staphylococcus aureus in 1942 (Rammelkamp and Maxon, 1942) and now 

resistance to many other pathogens (Coates and Hu, 2007). Although antibiotic resistance 

is a current problem due to rise of multi drug resistance (MDR) and lack of discovery of 

new broad-spectrum antibiotics, but this phenomenon is an ancient by far several 

millenniums. Beringian permafrost sediments DNA from 30,000-year-old showed genes 

encoded resistance to beta-lactam, tetracycline and glycopeptide antibiotics in 
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metagenomic analyses. Study also confirmed VanA element of vancomycin resistance 

from this ancient DNA sample was similar to modern VanA variant by structure and 

functions (D’Costa et al., 2011). Multidrug resistance is a natural phenomenon and occurs 

when an organism is exposed to same antibiotic over and over or abuse or misuse of 

antibiotics. Microorganisms can produce various enzymes and become resistance to 

current antibiotics. Globally over 2 million people die each year due to bacterial infections 

(Bérdy, 2012). Approximately 25,000 patients die each year from MDR in the EU and 

about 1.5 billion Euro worth of  extra healthcare costs and productivity losses due to 

infections by MDR organisms in the EU. More than 70% of the clinically significant or 

pathogenic bacteria possesses resistance to currently existing antibiotics (Kitchel et al., 

2009). Methicillin resistance Staphylococcus aureus (MRSA), vancomycin resistance 

Enterococcus (VRE), Extended spectrum beta lactamase (ESBL) producing 

Enterobacteriaceae, Carbapenemase resistance Enterobacteriaceae (CRE),  Multidrug 

resistance Pseudomonas species are the key MDR mostly seen in the patients (van Duin 

and Paterson, 2016).  According to The UK Government-commissioned O’Neill report 

10 million people a year will die from MDR infections by 2050 if no urgent action is 

taken and recommended to boost the development of antibiotics (Antimicrobial resistance 

,2019) . Hence this study was undertaken in search of novel antibiotic.  

 

1.3 Approaches for antibiotic discovery 

Varied approaches have been used in the past 40 years to discover and develop antibiotics 

from various sources. Technological advancement over the last few decades helped our 

understanding of the microbial resistance mechanisms. However, developing new 

antibiotics remains as a big challenge although various approaches have taken in 

antibiotic discovery.   

 

1.3.1 Genomics Approaches 

The whole genome sequence of Haemophilus influenzae in 1995 marked as genetic 

revolution and regarded as a potential new era for antibiotic discovery (Payne et al., 

2007). Since then, there had been significant development in molecular microbiology and 

whole genome sequencing of 1000s of pathogenic and non-pathogenic microorganisms 

were done to understand their characteristics and find suitable drug target(s) (Livermore, 

2011). On the other hand, metagenomic analysis of soil bacteria enabled to find secondary 



 

3 

 

metabolites producing biosynthetic gene clusters (BGCs), such as nonribosomal peptide 

synthetases (NRPSs) and polyketide synthases (PKSs) and these are the two largest 

classes of BGCs, encoded for most of the known antibiotics and antifungals metabolites 

(Sharrar et al., 2020). Whole genome sequences of Streptomyces coelicolor and 

Streptomyces avermitilis and their secondary metabolites analysis revealed more 

secondary metabolites initially scientists thought of (Bentley et al., 2002; Ikeda et al., 

2003). AntiSMASH-3.0 tool can detect 44 different classes of BGCs present in a microbe 

(Weber et al., 2015). Most of the known antibiotics came from 

cultivable Actinobacteria, Proteobacteria, and Firmicutes member of bacterial family 

and yet the diverse uncultivable soil microbial communities are wealthy potential sources 

for secondary metabolites (Sharrar et al., 2020). Genomics revolution contributed 

significantly in diagnosis rather the antibiotic development.   

 

1.3.2 Plant sources (phytochemical compounds) 

Plant based remedies (bark, roots, leaf) had been in use for centuries and herbal medicines 

are still important in many communities and counties (Gould, 2016; Khameneh et al., 

2019). Plant based compounds reported to be active against bacteria (Rahman et al., 

2008a, 2008b; Wan et al., 1998), fungi (Hufford et al., 1993; Rana et al., 1997) including 

MDR strains (Dwivedi et al., 2019; Mun et al., 2014) and Mycobacterium tuberculosis 

(Hochfellner et al., 2015) and sweet wormwood (Artemisia annua) derived drug, 

Artemisinins, is currently in use for the treatment of malaria, caused by parasites, 

Plasmodium species, including drug-resistant strains (Krishna et al., 2008). Hence it 

remains as potential resources for antimicrobial compounds.  

 

1.4 Main Source of Antibiotics 

Most of the antibiotics currently in clinical uses come from soil microorganisms; for 

example, Streptomycin from Streptomyces griseus, Cephalosporins from S. clavuligerus, 

Bacitracin from Bacillus licheniformis, Polymyxin from Bacillus polymyxa, 

Chloramphenicol from S. venezuelae, Tetracycline from S. aureofaciens, Erythromycin 

Saccharopolyspora erythraea, Gentamicin from Micromonospora purpurea, Mupirocin 

from Pseudomonas fluorescens and more (de Lima Procópio et al., 2012). However, last 

antibiotics class Carbapenem was discovered in 1976 and came in clinical use in 1985 
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(Hutchings et al., 2019). There is a huge gap in the new class of antibiotic discovery, and 

it is an urgent need to find the new class of antibiotic.  

 

Millions of microbial species exists in soil (Bollmann et al., 2007) but 1% can grow on 

laboratory media and rest are uncultivable (Ling et al., 2015). One-gram soil possibly can 

have millions of bacteria and fungi and a clear majority of these natural resources are not 

yet explored for their biodiversity and their bioactivity is not clearly known (Bérdy, 

2012). Soil still offers a great potential for antibiotic discovery. Organisms in soil could 

produces multiple secondary metabolites with possible various functions, for example, to 

suppress the growth of competitors or as a predator, or even as signalling molecules to 

interact with eukaryotic hosts and this phenomenon is backed by the evidence of evolution 

of Streptomyces species and other filamentous actinomycetes and the plant species 

colonised earth circa 440 million years ago simultaneously (Hutchings et al., 2019).   

 

1.4.1 Uncultivable Microorganisms 

Metagenomic analysis of soil samples revealed that only 1% can grow on laboratory 

media and rest are uncultivable (Bollmann et al., 2007; Sharrar et al., 2020). The term un-

cultivable microorganisms mean, organisms those cannot grow in standard laboratory-

based culture medium. Natural environments or simulated natural environments using a 

diffusion growth chamber can enable growth of some previously uncultivated 

microorganisms and this concept was proposed by Kaeberlein et al. in 2002 (Kaeberlein, 

2002). Since then, several other techniques such as soil substrate membrane system 

(Ferrari et al., 2008), Hallow fibre membrane chamber (Aoi et al., 2009), iChip (Nichols 

et al., 2010), I-tip (Jung et al., 2014) were developed and employed to cultivate 

uncultivated microorganisms.  

 

iChip is one of the simplest yet much efficient device that facilitate the growth of 

uncultivable environmental organisms in their natural habitats. The principle behind this 

approach is that the 100s of miniature diffusion chamber will take growth factors for the 

microbes from their natural environment and allow to grow in situ cultivation (Nichols et 

al., 2010). A novel broad spectrum antibiotic was discovered from previously 

uncultivated microorganism using iChip (Ling et al., 2015). For this study, concept of 
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iChip and environmental cultivation was used for screening antagonistic soil 

microorganisms along with soil supplemented nutrient agar (SSNA).  

 

1.5 Aim of the study 

Isolation of previously uncultivated soil microorganisms using iChip device and their 

potential as a source of novel antibiotic.  

 

1.6 Objective of the study 

1. Screening and isolation of new organism(s) with potential antimicrobial activities 

by using iChip device.  

2. Subculturing and identifying the organisms those grow on iChip and screen for 

their secondary metabolites. 

3. Testing for antimicrobial activities against common pathogenic Gram positive and 

Gram-negative organisms including their resistant strains. 

4. Fermentation, extraction and purification of active metabolites. 
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Chapter 2: Optimisation of sample collections, preparations, cultures 

 

2.1 Introduction 

A gram of soil sample contains billions of microbes (Sánchez-Marañón et al., 2017) with 

mass of fungal hyphae (Paul, 2007). Microbial diversity and numbers varies from soil to 

soil depending composition, natural environments, plant species and other atmospheric 

conditions (Martiny and Walters, 2018). Whatever the soil type is, we can grow only 1% 

of that microbial population (Delgado-Baquerizo et al., 2018). Microbial communities 

may be affected through use of fertilisers, pesticides, crop cycles, plant species, aeration, 

natural climate and seasons and soil types (Zhou et al., 2017). Soil sample of a grassland, 

park, home garden and forest have different microbial flora (Griffiths et al., 2011). 

Surface, subsurface and deep soil have different microbial numbers and types (Paul, 

2007). Hence, selection of a soil sample is very important to screen for antagonistic 

microorganisms.   

Optimisation is an essential prerequisite prior to any research. Depending on the research 

and methodologies different optimisation criteria might apply. For the isolation of 

antagonistic soil microorganisms several key stages required optimisation such as 

isolation culture medium, temperature and atmospheric conditions. Culture medium alone 

can be the key factor for isolating antagonistic microorganisms. Various techniques and 

culture medium such as Tryptone Soy Agar (TSA), Casein-starch Thornton, M3 and 

Czapeck were tried for the maximum recovery of soil microbes (Acea and Carballas, 

1990; Buyer, 1995; Martin, 1950; Sørheim et al., 1989) and 21 different medium were 

proposed for Streptomycetes isolation alone (Küster and Williams, 1964). It was also 

important to optimise sample collection, transportation, and inoculation volume for the 

semi-confluent growth of organisms for subsequent analysis.  

Microorganisms require various atmospheric condition for their optimal growth along 

with appropriate nutrition. Some organisms are strict aerobic e.g. Pseudomonas 

aeruginosa whereas others are strict anaerobes e.g. Clostridium perfringens, some prefer 

microaerophilic condition e.g. Campylobacter species and some thrives in the presence 

of CO2 e.g. Haemophilus species. Microorganisms on the surface soils are mostly 

aerophilic and microaerophilic whereas subsurface samples are most likely an anaerobic 

organisms (Marteinsson et al., 2015). Hence, it is important to cultivate the samples in 

different atmospheric conditions to isolate possible antagonistic microorganisms.  
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2.2 Soil sample collection 

For this research, soil samples were collected from various geographic location in 

London, Hertfordshire and Southend, UK. Locations were chosen either based on the soil 

characteristics or natural environments. Permissions was requested in writing from 

national nature reserves sites such as Burnham Beech, Buckinghamshire, Aston Rowan, 

Oxfordshire, Ruislip Woods, Greater London and Epping forest, Essex to utilises their 

sites for this research project. Permission was granted from Ruislip Woods and Epping 

forest sites. Request letters were also sent to friends, family members and colleagues who 

lives various part of the UK and have different soil types for example soil from my 

supervisor’s garden was chalky and soil from my nephew’s garden in Southend on Sea 

was sandy. Soil samples collected for the initial optimisation were from Dagenham area 

of London from two residential back gardens. Samples were collected from the random 

places in the garden from the surface and sub-surface layers up to 20 centimetres depth 

from the surface. Soil samples were collected into sterile containers using a clean trowel 

and transported to the UEL laboratory within maximum of 2 hours. Written permission 

was obtained prior to collection of all test samples. 

 

2.3 Sample preparation 

Collected samples were brought to the laboratory for sorting, preparation, screening and 

optimisations of culture methods within 2 hours. Collected samples were placed onto a 

sterile tray for sorting. Leaves, tree roots, grasses, stones and other large debris were 

handpicked from the samples and removed. Samples were then placed onto a sterile 

stainless-steel mesh colander having a pore size 2 mm in diameter. With the help of a 

spatula soil, samples were passed through the colander to make fine and uniform soil 

samples and collected in a tray. It was then used for soil supplemented nutrient agar 

(SSNA) medium preparation and cultivation. Remaining samples were returned to their 

original containers labelling with the details of sample collection sites and dates. Samples 

were stored in the fridge at 4-7ºC for up to 7 days for further use such as microbial re-

culture, chemical profiling, making SSNA medium and so on. Some soil microorganisms 

might have been attached to tree and grass roots which can be lost through sample sorting 

and preparation processes. Sample stored for later use might compromise the diversity of 

the organisms for example anaerobic and other fastidious organisms might not survive up 

to seven days storing periods, so potential antagonistic organisms might get lost. So far 
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antibiotics have come from aerobic and facultative anaerobic organisms. However, 

genetic studies showed secondary metabolites potential from strict anaerobic organisms, 

for example, Clostridium species (Pahalagedara et al., 2020). Hence, results might vary 

depending on processing time and incubation conditions and might lost potential 

metabolites producing strict anaerobic organisms.  

 

2.4 Determination of dilution factors and inoculation volumes and culture medium 

It is important to do serial dilution of the sample to determine quantitative and qualitative 

measurement of the soil as well as to fulfil the crowded plate criteria to isolate 

antagonistic microorganisms i.e. to have around 300-400 cfu or slightly above in one 

standard agar plate (Sambamurthy and Kar, 2006). Crowded plate technique is a simple, 

yet the best screening technique employed for the isolation of antagonistic 

microorganisms. Antagonistic organisms will grow with a clear zone around them and 

suppress the growth of other organisms which will then be further evaluated against 

pathogenic microorganisms (Sambamurthy and Kar, 2006). 

One-gram soil was transferred onto a falcon tube containing 10 ml of sterile phosphate 

buffer saline (PBS) (1:10-1), vortexed over a period of 10 minutes with regular intervals 

to get a uniform mixture of the sample. It was then diluted further using serial dilutions 

methods in PBS to achieve 10-2, 10-3, 10-4, 10-5, 10-6, 10-7 dilutions. Fifty µl of sample 

from each dilution were inoculated onto nutrient agar plates in triplicate and spread the 

using L-shaped spreader (Fisher Scientific, UK). Plates were incubated aerobically at 

37ºC for 72 hours and checked for microbial growth at regular 24 hours intervals.  

For the optimisation purposes, four different types of agar were used. Nutrient agar (NA) 

and Tryptone soya agar (TSA) (both from Oxoid, UK) and two variants of formulated 

medium, soil supplemented nutrient agar (SSNA) and filtrated soil supplemented nutrient 

agar (FSSNA). TSA is the most used nonselective agar for isolation of soil 

microbes(Vieira and Nahas, 2005); hence it’s used in this study to compare mainly with 

SSNA and FSSNA. Resulting colonies were compared with each other and counted 

colony forming unit (cfu) by Miles and Misra method (Miles et al., 1938).   

 

2.4.1 Preparation of Soil Supplemented Nutrient Agar (SSNA) 

To maximise the recovery of soil microorganisms, we hypothesised that addition of soil 

to nutrient agar might improve the isolation of soil microorganisms. It was believed that 
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supplementing with soil might provide yet undisclosed essential nutrients to promote 

microbial growth as a main nutritional source and would improve the isolation of 

microorganisms compared to other medium.  

 

Fifty-five grams of pre-prepared soil sample (see 2.3 above) were added to 550 ml of 

distilled water to make 10% w/v soil supplementation in 1 litre Duran bottle. Bottle was 

shaken vigorously to mix the soil sample with water and then placed onto a magnetic 

stirrer plate to stir and mix for 10 minutes. It was then filtered using cotton wool and a 

final volume of 500 ml was collected in a separate Duran bottle and 14 grams nutrient 

agar powder was added.  Agar was stirred and mixed and then autoclave at 121ºC for 15 

minutes. Once autoclaved, medium was left to cool down around 50ºC and poured into 

sterile petri dishes and stored at 4ºC for later use. One plate was incubated at 37ºC for up 

to 48 hours without inoculating to check batch sterility.  

 

2.4.2 Preparation of Filtrate Soil Supplemented Nutrient Agar (FSSNA) 

FSSNA was prepared in two stages, prefiltration and filtration stage and medium 

preparation stage. 

 

Soil samples were collected and prepared as described above (2.3). Sequential 

prefiltration was achieved with the samples being initially sieved using a clean kitchen 

strainer, then prefiltered using and cotton wool and thirdly by grade-1 filter paper with 

particle retention capacity >11µm under vacuum (Whatman, UK).  

 

Filtration were done in three steps with the help of peristaltic pump (Millipore, UK). 

Initially, it was filtered using coarse membrane filter 0.8 µm pore size and 47mm in 

diameter, followed by 0.45 µm pore and finally using 0.2 µm pore filter (Whatman, UK), 

which is regarded as sterile filtration and collect them in a sterile jar.  

In order to prepare 200 ml FSSNA, 5.6 gram of NA powder was dissolved into 100 ml of 

distilled water and autoclaved at 121ºC for 15 minutes. After autoclaving 100 ml of 

filtered soil supplement were added into medium and mixed them well by shaking the 

medium contents. Approximately 20 ml agar was poured onto per petri dish and allowed 

to solidify. Randomly selected one plate from the batch was incubated at 37º C for 48 

hours to check their sterility.  



 

10 

 

2.5 Cultivation of soil samples 

Soil samples were prepared in 1:10-2, 1:10-3, 1:10-4, 1:10-5, 1:10-6 dilutions and NA, TSA, 

SSNA and FSSNA plates were inoculated with 50 ul of sample from each dilution in 

triplicate. Plates were then spread using L-shaped spreader both clockwise and 

anticlockwise and incubated for 72 hours at 37º C. Plates were observed in 24 hours 

intervals and growth recorded at 72 hours and compared with other replicates. 

Additionally, parallel sets of plates were compared for growth following incubation under 

different atmospheric incubation conditions such as aerobic with and without CO2, 

microaerophilic and anaerobic. 

Three sets of plates were inoculated with different dilutions as per chapter 2.8 and 

incubated in aerobic condition at 37ºC without CO2 for up to 72 hours. Plates were 

observed at 24 hours interval and growth were recorded and plates were photographed. 

Like 2.10.2a, 3 sets of plates were prepared and incubated at 37ºC with CO2 for 72 hours. 

Microbial growths observed at regular interval of 24 hours, recorded and photographed 

for growth comparison and evidences. 

Three sets of plates were prepared and incubated for 3 days at 37ºC using a 3.5 litre jar 

containing a CampyGenTM sachet (Fisher Scientific, UK) that create microaerophilic 

condition within the jar. A control plate with Campylobacter jejuni ATCC 3291 was 

placed in the jar to confirm the microaerophilic condition. Plates were checked after 72 

hours incubations, growth recorded and photographed.  

 

2.6 Optimisation Results 

2.6.1 Comparison of Agar Medium 

Growth on different medium were compared based on their nutritional supplements, 

atmospheric conditions, morphologically different colony type (MDCT), colonies counts 

to select the suitable medium for this study. GraphPad prism 7 statistical software was 

used to determine the significance or p-value. MDCT were determined based on their 

appearances on the agar plates and not by Gram staining or biochemical reactions and it 

was possible as I have more than twelve years experiences as specialist biomedical 

scientist (microbiology) in national health service, UK. Besides, aim of this study is to 

find new antagonistic microorganism but not new microbes, hence full identification of 

microorganisms were not carried out.   
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 2.6.1a. SSNA versus NA 

Soil sample were prepared as per the protocol and 50 µl of sample from each dilution 

were inoculated onto SSNA and NA plates in triplicates and colonies and their diversities 

were observed and recorded (Table 2.1).   

 

Table 2.1: Comparison of triplicate tests of soil supplemented nutrient agar (SSNA) with nutrient 
agar (NA) (Oxoid). SSNA allowed significantly high number of Colony forming unit (cfu)/ml 
with p-value <0.0001 and significantly high number of MDCT with p-value 0.0139. 

Culture medium cfu/ml MDCT 

 

SSNA 

4.44 × 106 19 

4.2 × 106 18 

4.02 × 106
 14 

 

NA 

1.46 × 106 11 

1.36 × 106 9 

1.2 × 106 7 

 

 

Figure 2.1: SSNA (on left) and NA (on the right) showing growth of different 
microorganisms and their colonies’ morphologies. 
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2.6.1b. SSNA versus TSA 

Microbial growth on SSNA and TSA plates at 37ºC after 72 hours aerobic incubation 

colonies counts (cfu/ml) and morphological different colonies types were compared given 

below. 

 

Table 2.2: Colonies counts and morphologically different colonies types in SSNA and 

TSA. SSNA had significantly high number of cfu/ml with p-value 0.0021 and 

significantly higher number of MDCT with p-value 0.0132 compare to TSA. 

 

Culture medium cfu/ml MDCT 

 

SSNA 

1.86 × 107 14 

1.72 × 107 11 

1.64 × 107 11 

 

TSA 

1.08 × 107 7 

9.6 × 106 7 

7.8 × 106 4 
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Figure 2.2: Growth of different microorganisms and their morphologies 
using SSNA (on left) and TSA (on the right) 

 

 

 

 

 

 

2.6.1c. SSNA versus FSSNA 

Microorganisms on SSNA and FSSNA plates showed following colonies counts and 

MDCT as shown in the table below.  

 

Table 2.3: Colonies counts and morphologically different colonies types in SSNA and FSSNA. 
SSNA had significantly high number of cfu/ml with p-value 0.0065 when compared with FSSNA 
and had double number of MDCT in SSNA than FSSNA. 

Culture medium Cfu/ml MDCT 

 

SSNA 

1.8 × 106 10 

1.72 × 106 10 

1.58 × 106 10 

 

FSSNA 

1.38 × 106 5 

1.32 × 106 5 

1.32 × 106 5 
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Figure 2.3: SSNA on left and FSSNA on the right showing growth of 
different microorganisms and their colony morphologies. 

 

 

2.6.2 Atmospheric Conditions 

The results of different atmospheric conditions for the growth and isolation of 

antagonistic microorganisms were studied. Plates were incubated in the aerobic incubator 

with 5% CO2 and without CO2 and in microaerophilic and anaerobic conditions. 

Triplicate plates were for all incubation conditions.  

 

Table 2.4: Colony counts and MDCT on aerobic and microaerophilic conditions are given below 
in the table. 

Culture medium cfu/ml MDCT 

Aerobic Microaerophilic Aerobic Microaerophilic 

 

SSNA 

4.44 × 106 8.4 × 104 19 4 

4.2 × 106 7.8 × 104 18 4 

4.02 × 106
 7.4 × 104 14 4 
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Table 2.5: Colony counts and MDCT on aerobic and anaerobic conditions are given below in the 
table. 

Culture medium cfu/ml MDCT 

Aerobic Anaerobic Aerobic Anaerobic 

 

SSNA 

4.44 × 106 4 × 104 19 1 

4.2 × 106 3.4 × 104 18 1 

4.02 × 106
 3.2 × 104 14 1 

 

 

 

 

 

Figure 2.4: Microbial growth on SSNA plate in 
microaerophilic condition.  
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Figure 2.5: SSNA plate showing the growth 
of microorganisms in anaerobic conditions.  

 

2.6.3 Combined results of all medium and culture conditions 

 

Microbial yields varied from soil to soil including their MDCT. Overall performance of 

the culture medium can be summarised in the graph below. 

 

 

Figure 2.6: Effect of culture medium in colony forming unit per millilitre. Mean 
of triplicate plate sets data with error bars. SSNA had more than double the cfu/ml. 
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Figure 2.7: MDTC in different agar medium. SSNA had more than double the 
number of MDCT compared to NA, TSA and FSSNA.  

 

 

 

Figure 2.8: Different culture condition had different microbial yields. Aerobic 
condition had significantly high colonies counts with two log difference compare to 
microaerophilic and anaerobic conditions.   
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Figure 2.9: MDCT in different culture condition. Aerobic culture had higher 
MDCT compare to microaerophilic and anaerobic condition.  

 

 

Table 2.6: Overview on effects of medium in cfu/ml and MDCT are given in the table below 
(means of triplicates). 

Culture medium Cfu/ml MDCT 

SSNA 36.93 × 105 19.33 

NA 16.66 × 105 7 

TSA 15.73 × 105 6.66 

FSSNA 17.13 × 105 7.33 
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2.7 Conclusion of the optimisation procedure 

All the medium were tested using soil samples from different sites and SSNA medium 

showed superiority in terms of cfu/ml and MDCT compared to NA, TSA and FSSNA in 

all cases. Agar medium were tested in pair and in combined with all medium. Data were 

analysed using GraphPad prism (version 7) statistical software. Study found that SSNA 

had significant high number of cfu/ml with p-value <0.0001 and significantly high 

number of MDCT with p-value 0.0139 compare to NA. When SSNA compared with 

TSA, high number of cfu/ml were seen with significant p-value 0.0021 and significantly 

higher number of MDCT with p-value 0.0132 were also seen in SSNA. SSNA had 

significantly high number of cfu/ml with p-value 0.0065 when compared with FSSNA 

and had double number of morphologically different colony type per plate in SSNA than 

FSSNA. Although cfu/ml were in same order that is no log difference, but p-value of 

cfu/ml were significant (<0.05) in SSNA compare to all medium. MDCT were not 

identified as individual species but categorised based on their colonial appearances on the 

agar medium. However, a Gram stain could have given basic microbial morphological 

identifications of those MDCT.   

SSNA also produced differential colonies and when subcultured those colonies onto NA, 

FSSNA and TSA, they were unable to grow but grew only on SSNA subculture (figure-

3.7). This means, SSNA supported growth of certain microorganisms which couldn’t 

supported by NA, TSA and FSSNA. Beside it, FSSNA might have failed to support the 

growth as filtration might have retained certain macromolecule present in the soil sample 

which were essential for the growth of those organisms which formed colonies on SSNA 

or soil itself might play key role supporting the growth of those organisms. FSSNA 

showed no advantage over NA and preparation of FSSNA was time consuming and 

costly. Hence FSSNA was not used for further studies. Other studies showed soil extracts 

enabled to isolate previously uncultivated microorganisms (Hamaki et al., 2005; Nguyen 

et al., 2018). So, SSNA was selected as the main culture medium for this study.  
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Chapter 3: iChip Optimisation, Materials and methods for iChip Device 

 

3.1: Introduction to iChip 

iChip (isolation chip) was described as a technical device for cultivating previously 

uncultivated microorganisms within its natural environment (Nichols et al., 2010). To 

overcome the limitations of laboratory cultivation, the iChip utilises a diffusion chamber 

enabling access of components from their natural environment and thus provide essential 

growth factors for the microbes growing on the iChip. iChip showed growth of novel 

microbial species and helped to find new antibiotic (Ling et al., 2015). 

Key advantages iChip are, a simple methodology to follow to build the device and their 

miniature chambers are designed to accommodate 1 cell per chamber to produce pure 

colony type and does not require sub-culturing for purity. 1 cell per well is determined by 

initial cells count and degree of dilution that gives 1 cell per 100 µl which is an 

approximate amount of agar for each well. Another advantage is using of 0.03µm 

membrane that prevent culture contamination from soil.   

Disadvantages of iChip devices are, materials used in this methodology are not readily 

available from commercial sources and iChip was designed and developed by research 

team for their sole uses and 0.03µm membrane is not a common membrane type available 

from scientific manufacturers.  

 

3.2 Concept of the Device 

iChip is consist of a central plastic plate with 100s of miniature diffusion chambers and 2 

metal plates to hold the central plate securely (Figure 3.1). Central plate is inoculated by 

dipping the plate into liquid agar medium and allowed to solidify. 0.03µm pore size 

membrane is then securely attached using glue on both top and bottom of iChip plate. 

Membrane inhibits microbial cell movement in or out of chambers but allowing only 

nutrients to pass though. The iChip is then left buried in the sampling site for 

microorganisms to grow on their own natural habitats for a prolonged period (Nichols et 

al., 2010).  
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Figure 3.1: Original iChip model for in situ microbial cultivation 
(Nichols et al., 2010). (A) prepared iChip by dipping into unsolidified 
agar containing sample of interest, (B) iChip after inoculation that 
showed average 1 cell per chamber and (C) shows how iChip was 
assembled.  

 

A protocol was published (Berdy et al., 2017) for alternative methods of constructing 

iChip devices and keeping original principle of in-situ cultivation. In this protocol, 

researchers used pipette tip rack for the construction of iChip devices. This variation 

provided the inspiration utilised during this current study. 

 

 

Figure 3.2: Example of pipette tip rack used 
to build iChip in the published protocol 
(Berdy et al., 2017). 

 

3.3 Determination of Inoculation Volume for iChip for This Study 

In original iChip method cell count was performed for every sample type to determine 

the inoculation volume. Unlike original study, to determine the inoculation volume for 

this study, every sample was cultured using a titration to determine the dilution factor 
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producing semiconfluent growth. This dilution was further diluted two-fold and 2 iChip 

devices were inoculated with 200 µl in each well.  

 

3.4 iChip Devices Optimisation (Using Tip Rack) 

Initial iChip devices were made according to the published protocol (Berdy et al., 2017). 

One pipette tip rack was taken and a polycarbonated membrane, pore size of 0.03 µm 

(Whatman, USA), was glued at the bottom of the pipette tip rack using silicon glue 

(Master Tradesman, USA) and allowed to dry for 30 minutes. Once polycarbonated 

membrane was dried and secure to tip rack, a 200 µl agar containing soil sample was 

added to all the wells in tip rack leaving the bordering wells empty which were inoculated 

with agar without soil sample as sterility control. Allowed the agar to solidify and second 

polycarbonated membrane was glued on the top of the tip rack. Three more iChip devices 

were made like wise. All four devices were then buried at the sample collection site 

around 15 to 20 cm below the surface. For this study optimisation purposes, two iChip 

devices were incubated for two weeks and other two devices for four weeks. Both 

microbial growth and devices stability were checked and recorded after appropriate 

incubation time.  

A second type of iChip devices were made using 3 tip racks. In this method, 1 piece of 

polycarbonate membrane was glued at the bottom of the rack along with another tip rack 

using silicon glue to secure and support the membrane from any damage from rocks and 

other debris inside the ground. After inoculating the iChip device, a second polycarbonate 

membrane is place on the top of the tip rack and glued along with another rack on the top 

to protect the membrane and thus three more devices were made. Like first type, two 

iChip devices were incubated for 2 weeks and other two devices for 4 weeks. After 

incubation periods, devices were retrieved, checked for their stability, microbial growth 

and recorded findings for optimisations 

  

3.5 Device Optimisation (Tip rack and 96 Well Plate) 

Third type of iChip devices were made using tip racks and standard flat bottom 96 wells 

plates (Thermo Fisher Scientific, UK). Ninety-six well plates were inoculated like first 

device type. When agar was solidified in the wells, it was the covered with polycarbonate 

membrane and glued together with another tip rack on the top. Four devices were prepared 

for the optimisation studies.  Two iChip devices were incubated for 2 weeks and other 
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two devices for 4 weeks. All the devices were buried at the sample collection site. Devices 

were retrieved after completing their incubation times.  

 

3.6 Retrieval and Cleaning of the iChip  

First sets of iChips (all three types) were retrieved after 2 weeks of incubation and brought 

back to UEL laboratory. iChips were placed in a clean tray inside the class-1 biological 

safety cabinet and mud and debris were removed carefully and cleaned using sterile 

distilled water. Tip racks were then removed slowly ensuring no damaged to the 

membrane. They were further washed with sterile water until all the mud was removed 

from iChips and membranes were then removed. Growth was checked in every well with 

naked eyes and using optical microscope with magnification of ×40. Any physical 

damage to the membranes or devices were visually checked and any contamination to the 

uninoculated agar wells were recorded (Figure 3.5).     

 

3.7.1 Sub-Culturing iChip Growth in SSNA and NA 

Agar from the wells were removed using sterile cocktail sticks and transferred into small 

bijou containing 3ml sterile phosphate buffer saline (PBS) and labelled with 

corresponding well number (A1, A2). Colonies from the agar were released into the PBS 

with cocktail sticks and by vortex. These suspensions were inoculated using sterile 1 µl 

plastic loop onto SSNA and NA plates labelled with corresponding well numbers. Plates 

were then incubated aerobically for 72 hours and checked them in every 24 hours interval. 

 

3.7.2 Crowded plate technique 

Crowded plate technique remains as a primary tool to screen soil microorganisms for their 

ability to produce antibiotic (Bavishi et al., 2017). This technique is both simple provides 

a rapid approach where organisms are allowed to grow confluently or semi-confluently 

on agar plates and organisms that produce inhibitory zones of inhibition around, termed 

as antagonistic microorganisms (Sambamurthy and Kar, 2006), are used for further 

analysis. Subcultures growth from the agar plugs removed from iChips were emulsified 

in PBS and cultured onto SSNA plated using crowded plate method to detect antagonistic 

microorganisms. Any organism that showed a clear round zone around it was sub-

cultured again to make a pure culture of that specific organism for further antimicrobial 

testing. 
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3.8 Results 

3.8.1 iChip using tip racks 

iChip devices prepared using single pipette tip rack as per published protocol (Berdy et 

al., 2017), were all found to be damaged upon retrieval and were contaminated with mud 

and other debris (Figure 3.4).  

 

 

Figure 3.3: Single tip rack iChip. Damaged membrane and 
contaminated wells were seen in single tip rack iChip devices. 

 

iChips having a support from top and the bottom using similar tip racks (triple) had no 

damage to the membranes or evidence of environmental contamination. 

 

 

Figure 3.4: iChip with tip rack support. Undamaged 
membranes were seen in ichip devices using both triple 
racks and 96 well plate with tip rack support. 
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3.8.2 iChip using 96 well plate 

Similarly, iChips using 96 well plates membranes were found firmly attached to the plate 

and had no contamination to the wells (Figures 3.4 and 3.4).  

 

3.8.3 iChip sterility 

Growth on the bordering wells of the 96 well plates checked both in naked eye and using 

optical microscopy with magnification ×40 which were loaded with agar and left 

uninoculated to check the iChip sterility.  iChips made using 96 well plates and triple 

racks were found sterile in uninoculated wells and membranes were undamaged (Figure 

3.5). Column C on Figure 3.6 illustrates the control column with no microbial growth and 

T columns were the test wells where there was microbial growth.  

 

 

Figure 3.5: iChip sterility. Figure shows no growth on C (control) 
column and growth on T (test) column. Wells in the column C were 
inoculated with agar without sample. 

 

3.8.4a Growth from iChip on Subcultured Medium 

Growth from iChips were subculture onto NA and SSNA to compare their suitability as 

subculture medium. Certain organisms on NA suppressed the growth of other organisms 

and grew beyond their inoculation mark (Figure-3.6, A&B). On the other hand, certain 

organisms did not grow on their corresponding wells (marked as NG) on NA. Subculture 

on SSNA plates showed uniform growth and more consistent growth from the wells 

(Figure-3.6, C&D). Study believes that those organisms were unable to grow due to lack 

of essential nutrient on the NA medium which were present in SSNA from the soil source.  
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Figure 3.6: iChip subcultures growths comparison on NA (AB) and SSNA (CD). No growth 
(NG) and overgrowth (OG) (as marked in AB) of certain microorganisms were seen in NA. 
SSNA showed growth from all the wells.  

 

3.8.4b Differential growth on the medium 

When growth from the iChips wells were subcultured onto SSNA and NA medium, 90% 

on SSNA and 50-60% on NA formed colonies from iChips subcultures. In some cases, 

organism showed differential growth on SSNA and they were unable to on a medium 

without soil supplement. Organisms those grew only on SSNA were again subcultured 

onto SSNA and NA plates to recheck their growth and similar growth was seen (figure-

3.7). This study believes that soil enriches the medium for certain organisms. 

 

 

Figure 3.7: Differential growth. Organism showed 
differential growth, grew on SSNA (A) but not on NA (B). 
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3.8.4c Crowd plate for microbial antagonism 

Microbial growth from subcultures were emulsified into bijou a containing 3 ml PBS and 

50 µl PBS was inoculated and spread for crowd plate methods and incubated for 48 hours. 

Antagonistic microorganisms were seen growing with a small zone around them (circled 

in red, figure 3.8). Antagonistic microorganisms were then subcultured to get a pure 

culture for further investigations.  

 

 

Figure 3.8: Microbial antagonisms. Microorganisms (circled red) 
showing small zone due to their antagonistic behaviour. 

 

3.9 Summery of iChip Optimisation 

During optimisation, iChip construction, subculturing and screening for antagonistic 

microorganisms were evaluated. Initial iChip construction suffered through issues of 

membrane integrity and contamination. Subsequently, iChip devices using triple racks 

and 96 well plate covered with rack, overcame these design difficulties.  However, iChip 

devices using 96 well plates were easier to handle and economic. One membrane was 

needed to cover the top of the 96 well whereas 2 membranes were needed to cover on 

both top and the bottom in triple racks iChip devices.  

“Domestication” of iChip growth was crucial for further investigation. Term 

domestication means any growth previously uncultivated requires maintaining for their 

cultures for further analysis. SSNA plates were used for subculturing the microorganisms 

for domestication purposes as SSNA supported growth from 90% wells (Figure 3.6). 

From this optimisation study it was concluded to use iChip devices constructed using 96 

well plates and SSNA medium for subsequent investigations. 
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Chapter 4: Screening for Antagonistic Microorganisms 

 

4.1 Introduction to the screening for antagonistic microorganisms 

Most of the antibiotics currently in clinical uses come from soil microorganisms; for 

example, Streptomycin from Streptomyces griseus, Cephalosporins from S. clavuligerus, 

Bacitracin from Bacillus licheniformis, Polymyxin from Bacillus polymyxa, 

Chloramphenicol from S. venezuelae, Tetracycline from S. aureofaciens, Erythromycin 

Saccharopolyspora erythraea, Gentamicin from Micromonospora purpurea, Mupirocin 

from Pseudomonas fluorescens and more (de Lima Procópio et al., 2012). 

 

4.2. Screening for antagonistic microorganisms 

For this research, soil samples were collected from various geographic location in 

London, Hertfordshire and Southend, UK. Locations were chosen either based on the soil 

characteristics or natural environments. Permissions was requested in writing from 

national nature reserves sites such as Burnham Beech, Buckinghamshire, Aston Rowan, 

Oxfordshire, Ruislip Woods, Greater London and Epping forest, Essex to utilises their 

sites for this research project. Permission was granted from Ruislip Woods and Epping 

forest sites. Request letters were also sent to friends, family members and colleagues who 

lives various part of the UK and have different soil types for example soil from my 

supervisor’s garden was chalky and soil from my nephew’s garden in Southend on Sea 

was sandy.  Two or more samples were collected from the random places within the 

permitted sites from the surface and sub-surface layers up to 20 cm depth from the surface 

for the screening of antagonistic microorganisms. Using a clean trowel approximately 

two to three hundred grams soil samples were collected in sterile containers to transport 

the samples to the laboratory. 

 

4.2.1 Soil sample pH determination and cultivation 

All the soil samples collected were checked for their pH level using a pH meter (HI 2210 

pH meter, Hanna instruments, UK). Soil data for this study, especially, soil types and 

plant species around the soil were collected from published sites on UK soil types (“BBC 

- Gardening - How to be a gardener - Know your plot - Soil types,” 2014; “Soilscapes 

soil types viewer - National Soil Resources Institute. Cranfield University,” 2019). All 
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the samples were cultivated on both SSNA and iChip (Chapter 2; section 2.6 and Chapter 

3; section 3.4). 

 

4.2.2 Cultivation on Soil Supplemented Nutrient Agar (SSNA) 

All samples were initially cultivated onto SSNA plate and incubated for 24 hours to 

determine dilution factor semi-confluent growth. Different soil types had a different 

colony forming units (cfu) per ml, hence it was important to determine dilution factor 

before inoculating onto iChip as iChip had higher cfu counts per ml compared to SSNA 

(Chapter 3; section 3.3). 

 

4.2.3 Cultivation on iChip 

Initially all soil samples were cultivated onto SSNA plates and incubated for 24 hours to 

determine semi-confluent growth for each soil samples types and their corresponding 

dilution factors for semi-confluent growth. Once dilution factor of a sample for semi 

confluent growth were determined, samples were then further diluted to next two-fold 

and inoculated the iChips. Thus 4 iChips per samples were made and 2 iChips were 

incubated for 2 weeks and other 2 iChips for 4 weeks. iChips were retrieved after 

completing their incubation periods and growths from iChips were assessed as described 

in section 3.7.1 and screened for antagonistic microorganisms as of section 3.7.2.  

 

4.3 Isolation of antagonistic microorganism 

Isolation of antagonistic microorganisms were achieved by crowded plate techniques 

(chapter-3.7.2). Any organism that showed any zone of inhibition was subcultured onto 

SSNA and incubated for 24 hours. Antagonistic microorganism was then tested against 

Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922 for zones of 

inhibition. Two Mueller Hinton agar (MHA) plates were seeded with S. aureus ATCC 

25923 or E. coli ATCC 25922 and test organism was applied by making a cross on the 

plates. Plates were incubated for 24 hours. One such organism was isolated using this 

method (figure 4.1). 
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Figure 4.1: Test organism was seen producing clear 
zone along its growth on S. aureus plate. 

 

4.4 Identification of the antagonistic organism 

Once organism was found antagonistic, it was identified by morphology, cultural 

characteristics, biochemical reactions and MALDI ToF (Bruker Daltonic, Germany).  

 

4.4.1 Identification based on morphology and cultural characteristics 

Initial Gram stain was performed to identify the morphology of the organism and revealed 

Gram positive bacilli. To determine the cultural characteristics of the organism, it was 

sub-cultured onto nutrient agar (NA) and blood agar (BA) (Oxoid, UK) incubated 

aerobically and anaerobically for 24hours and colonies only formed in aerobic condition. 

   Morphology on NA (grey) and BA (off-white β-haemolytic) showed 2mm opaque 

round colonies that were dry looking having a rough margin. Catalase test on the colonies 

using H2O2 (3% H2O2, Sigma-Aldrich, UK) showed catalase positive reaction, oxidase 

test and DNase tests (Oxoid, UK) were negative. Spore staining showed endospores of 

Bacillus species in both Malachite green and Methylene blue spores staining (PHE, 2018).  
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Figure 4.2: Gram stain showed short Gram-positive bacilli. 

 

Analytical profile index (API) 20E (Biomerieux) was used to generate biochemical and 

sugar utilisation profile as describe in literature (Logan and Berkeley, 1984; Logan and 

Vos, 2015; O’Donnell et al., 1980). In API 20E organism had positive reactions on citrate, 

Voges-Proskauer, gelatine, glucose, mannitol, sucrose and arabinose and very weak 

positive reactions on ONPG (ortho-Nitrophenyl-ß-galactoside) and arginine which were 

considered as equivocal reactions and rest of them were negative and these biochemical 

results suggest the identity of Bacillus species.  

 

4.4.2 Identification by Matrix Assisted Laser Desorption Ionisation Time of Flight, 

Mass Spectrometry (MALDI-TOF, MS)  

MALDI-TOF MS is a very reliable and cost effective way to identify microorganism 

(Singhal et al., 2015). For this study, MALDI-TOF MS (BRUKER) was used as the main 

tool to identify the antagonistic microorganism. Two smears of thin film of freshly grown 

(24 hours) organism were made onto the MALDI target plate and allowed to dry. It was 

then covered with one µl HCCA (α-Cyano-4-hydroxycinnamic acid, Sigma-Aldrich) 

matrix solution within 1 hour and air dried. Two separate smears were done for 

Escherichia coli ATCC 25922 as a control as per standard protocol of MALDI quality 

control. Using Compass software data were input, and target plate was loaded into the 

MALDI analyser. Initial samples were processed by the direct method (Wunschel et al., 

2005). Identification together with confidence scores were obtained (table-4.1) and 

interpreted as shown in table-4.4. Based on the initial results both extended direct transfer 
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and formic acid extraction methods (see appendix) were used for further identification 

and confirmation by MALDI (table 4.2 and 4.3).  

Table 4.1: Direct method result of the antagonistic organism by MALDI-TOF. 

 

 

Table 4.2: Extended direct transfer method results of the antagonistic organism by MALDI-
TOF. 

 

 

Table 4.3: Formic acid extraction results of the antagonistic organism by MALDI-TOF. 
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Table 4.4: Meaning of score values and colour codes in MALDI identification system which 
are self-explanatory. 

 
 

4.5 Discussion on Organism’s Species Identifications 

MALDI-TOF identified the organism as Bacillus pumilus by all three methods. A 

duplicate smear was done in all three methods and E. coli ATCC 25923 strain was used 

as control. On initial direct method, score values for the identification was B. pumilus 1.8 

having a low identification confidence. Improvements for identification score values from 

extended direct transfer methods and formic acid extractions for B. pumilus were 2.093 

and 2.391 respectively giving high identification confidence by Bruker’s manual 

(MALDI Biotyper CA System).  

Bacillus pumilus is a spore forming Gram positive bacillus that produces beta haemolytic 

colonies on blood agar (Logan and Vos, 2015). It is catalase, oxidase and DNase negative, 

resistance to Penicillin (Liu and Jurtshuk, 1986; O’Donnell et al., 1980; Parvathi et al., 

2009).  

Cultural, morphological information from Gram stain and spore stain, physiological and 

biochemical characteristics and MALDI identifications by all three methods confirmed 

identification of the antagonistic organism as B. pumilus. This organism was initially 

isolated from the chalky soil of this research project supervisor Professor Sally Cutler. 

Bacillus pumilus was also found on two other samples collected from Dagenham area of 

London with same characteristics.  
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Chapter 5: Fermentation of antagonistic microbes for their metabolites 

 

5.1 Introduction 

Fermentation media optimisation is essential for the growth of microorganism and their 

primary and secondary metabolites productions. Microorganisms produces various types 

of secondary metabolites including antibiotics (Malik, 1980). Carbon sources, nitrogen 

sources, pH, temperatures, incubation periods, agitation, aeration, nutrition are the most 

essential components in the fermentation media requires optimisation to stimulate the 

secondary metabolites production for example antibiotics (Cheng et al., 2015; Dubey et 

al., 2008; Marwick et al., 1999; Singh and Rai, 2012).  

 

5.2 Fermentation methods 

Bacillus pumilus was found as antagonistic organism for this study. Conical flask and 

Duran bottles were used for optimisation of fermentation process in this study to see the 

differences in container types as this study did not used any fermenters. Two hundred ml 

of nutrient broth (with 5% glucose) were prepared into 2×conical flasks (500ml), closed 

with cotton wool and 200 ml of nutrient broth into 2×Duran bottles (500ml) and 

autoclaved at 121º C for 15 minutes. They were then allowed to cool at room temperature 

and each flask and bottle were inoculated with 1 ml of 1 McFarland turbid microorganism 

suspension and incubated up to 7 days. After 7 days incubation fermentation broths were 

checked for inhibitory metabolite production. Twenty ml of fermented medium were 

taken into 50 ml universal tube from both bottles and flasks and centrifuged for 15 

minutes at 3000 rpm. Supernatant were then tested by the disc diffusion method against 

S. aureus ATCC 25922 and E. coli ATCC 25923 and checked for any zone of inhibition.  

 

5.3 Fermentation with and without aeration 

As the test organisms was an aerobe, aeration is one of the key factor requires 

optimisation in fermentation depending on the organism type (Hentges, 1996; Wang and 

Zhang, 2007). To facilitate the aeration of fermentation media, Duran bottles were loosely 

capped placing a 0.2 µm pore size filter paper to prevent contamination, whereas Duran 

bottles and flasks were tightly closed and sealed with parafilm to make stop aeration. 

Cultures were then incubated for up to 7 days checked for zone of inhibition (chapter-
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5.2). Fermentations without aeration were unable to produce any zone of inhibition 

whereas one with aeration produced zone of inhibition against S. aureus ATCC 25922.  

 

5.4 Fermentation with and without agitation 

Agitation helps mixing the organisms and temperature throughout the fermentation media 

(Smith et al., 1990), and has been shown to enhance the fermentation process (Maxon, 

1959; Singh et al., 2017; Smith et al., 1990; Wang and Zhang, 2007).  To determine if 

agitation would benefit production, fermentation broths were compared using a shaker 

incubated at 37º C for 7 days or static aerobic incubator at 37ºC for 7 days. After 7 days 

incubation, broths were tested for antibiotic production as described in 5.2. Inhibitory 

zones (9 mm) were seen using S. aureus ATCC 25922 in both cases, i.e. with or without 

agitation.  

 

5.5 Fermentation with different glucose concentrations 

Carbon source plays an important role in microbial growth and is an essential part of the 

growth medium to produce primary and secondary metabolites. Moreover, in many 

instances carbon sources enhances the biomass formation of primary and secondary 

metabolites and hence the antibiotic production (Marwick et al., 1999). Not all carbon 

sources work in the same way and vary in production of secondary metabolites, for 

example glucose interferes with penicillin production (Sanchez and Demain, 2002), but 

favours bacilysin production from Bacillus species (Ozcengiz et al., 1990), on the other 

hand, lactose favour penicillin production (Rokem et al., 2007). In this study, 0.5%, 1% 

and 5% glucose were added to the fermentation nutrient broth and antimicrobial 

metabolites production were checked as described in section 5.2. No zone of inhibitions 

was seen in broth without carbon source or in 0.5% glucose, but zones of inhibition were 

seen in both 1% and 5% glucose contained fermentation broth. Zones of inhibition (9 

mm) were only seen using S. aureus ATCC 25922.  

 

5.6 Fermentation with addition of nitrogen sources 

Like carbon, nitrogen sources thought to influence antibiotic production and different 

nitrogen sources have been used in fermentation media and vary in their effects (Singh et 

al., 2017). For example, ammonium triggers antibiotic production by Streptomyces 

griseofuocus whereas suppress the isopenicillin antibiotic production by Actinomycete 
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species (James et al., 1996; Junker et al., 1998). Amino acid also used as nitrogen sources 

and play important role for certain types of antibiotic production (Marwick et al., 1999). 

Role ammonium as a nitrogen source was tested as it was readily available in the 

laboratory, other nitrogen sources were not tested due to lack of budget and study 

duration. Three different ammonium concentration, 0.5%, 1% and 5% were added to the 

fermentation media and for this study. After 7 days, metabolites productions were 

checked as described in section 5.2. Zones of inhibition (9 mm) were seen without 

addition of ammonium and in 0.5% and 1% of ammonium, but not with 5% ammonium.   

 

5.7 Determination of optimum pH for fermentation medium 

Different organisms require different level of pH for their growth and metabolite 

production. Production of inhibitory zones were tested at pH levels of 3, 5, 7, 9, 11 and 

evaluated for antibiotic production. pH level was adjusted using HCl and NaOH for acidic 

and basic pH respectively prior to inoculation and incubation for 7 days, using 200 ml of 

fermentation media in both conical flasks and Duran bottles. Zones of inhibition were 

checked as described in section 5.2. No zones of inhibition were seen in pH 3 and 11and 

9 mm clear zone were observed for pH 5, 7 and 9.  

 

5.8 Discussion 

Bacillus pumilus is an aerobic organism (Logan and Vos, 2015) and  found to produce 

antibiotic only in the aerobic incubation and no antibiotics production in anaerobic 

condition. Bacillus pumilus forms spore in anaerobic condition, hence primary and 

secondary metabolites are not produced. No effect of agitation seen in this experiment as 

B. pumilus was able to produce antibiotic with or without agitation. Bacillus pumilus is 

highly motile organism (Logan and Vos, 2015) and this could be the reason they did not 

require any agitation as they were very motile within the fermentation media.   

Carbon sources (1%-5%), pH between 5 to 9 and incubation temperature 30º to 40º C in 

aerobic condition were key in the production of secondary metabolites. Thus, a final 

fermentation compositions and conditions were determined from this optimisation and 

used throughout this experimental process for metabolite production.  

 

 

 



 

37 

 

Chapter 6: Extraction of metabolites, their activities and structure elucidation 

 

6.1 Introduction to the Extraction 

Metabolite extractions were done after 7 days incubation of the fermentation broth with 

5% glucose at 37ºC under aerobic conditions without agitation. Twenty ml B. pumilus 

fermented broth were collected in a separate 50 ml universal container, spun down at 

10000 rpm for 10 minutes and supernatant was collected for disc diffusion test and to 

compare with organic solvent extracts. Rest of the broth were filtered through a fresh 

piece of cotton wool as instructed by Dr Rahman, UEL, through personal communication 

and extracted using organic solvents. Extractions and supernatant were then tested for 

antimicrobial activities.  

 

6.2 Selection of Solvents 

Antibiotics are type of secondary metabolites produced by the microbes. Such secondary 

metabolites are generally extracted with organic solvents (such as dichloromethane, 

butanol, methanol) from the fermentation culture filtrates. Selection of solvents are key 

to isolate target metabolites or compounds as they might have different interactions in 

polar and nonpolar solvent and can lead to failure of complete or partial isolation. Prior 

to extraction, solubility of the antibiotic in organic solvent is a very important factor for 

purification by solvent extraction process. If metabolites are highly soluble in a 

convenient water immiscible organic solvent, they can be easily extracted from the culture 

filtrate. To determine the extraction capability of the metabolites, organic solvents such 

as ethyl acetate, butanol and methanol (from nonpolar to polar) were sequentially used 

and evaluated using S. aureus ATCC 25922 and E. coli ATCC 25923.  

 

6.3 Ethyl Acetate Extraction 

Filtered broth (200 ml) was taken onto a 500 ml separation funnel followed by addition 

of 100 ml of ethyl acetate which were then mixed by inverting and shaking several times. 

It was then placed onto metal stand allowed to separate the solvent mixtures. When a 

visible separation was seen, it was then collected into a conical flask. Top layer was the 

ethyl acetate extract whilst the bottom layer was the aqueous fraction from the filtered 

broth as shown in the Figure 6.1 below. This procedure was repeated 3 times and ethyl 

acetate were evaporated using a rotary evaporator (Rotavapor®) by BUCHI. 



 

38 

 

 

 

 

Figure 6.1: Metabolite extraction. Figure shows 
organic solvent (ethyl acetate) on top layer and 
aqueous broth at the bottom layer in the separating 
funnel. 

 

 

6.4 Butanol Extraction 

Followed by ethyl acetate extraction, 200 ml broth was taken into a 500 ml separating 

funnel and extracted with 100 ml n-butanol following the same method as described in 

section 6.3. Top layer of the mixture was butanol extract and bottom layer was aqueous 

fractions from the filtered broth. Similarly, this procedure was repeated 3 times and 

collected butanol extraction were evaporated using a rotary evaporator (Rotavapor®). 

 

6.5 Methanol Extraction 

Like Ethyl acetate and butanol extraction, filtered broth with further extracted with 

methanol using similar methods described in section 6.3. Similarly, these extractions were 

repeated thrice followed by evaporation of methanol using the same rotary evaporator.  

Dried extracts (ethyl acetate, n-butanol and methanol) were used to evaluate the 

antimicrobial activities following by isolation of compounds.  
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6.6 Solvents Evaporation 

Rotary evaporator (Rotavapor®, R-215 by BUCHI) is consist of vacuum controller (V-

850) with a library of 43 specified solvents list, rotation controller, condenser with 

evaporating flask feed via stopcock, vapour ducting, heating bath (B-491) and distillation 

chiller.  

 

6.6.1 Evaporation Procedure 

Seventy-five ml solvent extracts were taken into a 200 ml round bottom flask and attached 

to rotavapor ducting for evaporation. Water bath was set to 40º C and increases 

temperature up to 60º C depending on evaporation rate. Boiling point and required 

temperature for a solvent system was available in the solvent library of the Rotavapor. 

Round bottom flask was submerged into water bath for evaporation to take place. 

Evaporating solvents were selected from the solvent library using vacuum controller (V-

850) and rotation of round bottom flask was set to 125 rpm and started evaporation. Most 

of the solvents were evaporated leaving some liquid in the round bottom flask for 

collection into a small glass bijou using glass pipette. Collected extractions in glass bijou 

were left in the laminar airflow for complete dry.  

 

 

 

Figure 6.2: Rotary evaporator (Rotavapor®, R-215 
by BUCHI) system for solvent evaporation. 
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6.7 Inhibitory Activities of Extractions 

For the isolation and purification of the active metabolites on large scale from the crude 

solvent extraction of the fermented culture, it was essential to determine the presence of 

metabolites in the solvent extracts by means of disc diffusion before further purification. 

In order to find the active metabolites, all the crude extractions were tested by disc 

diffusion methods against Staphylococcus aureus ATCC 25922 and Escherichia coli 

ATCC 25923.  

Two×three filter paper discs were prepared with ethyl acetate, butanol and methanol 

extractions and 2×3 discs with ethyl acetate, butanol and methanol solvent only with equal 

volume of 25 µl on each disc, then allowed to dry. Two sets of Mueller Hinton agar plates 

were seeded with S. aureus ATCC 25922 or E. coli ATCC 25923 to give semiconfluent 

growth and 3 discs with extractions and 3 discs with solvent only were placed onto the 

plate and incubated for 24 hours. All tests were duplicated.  

After 24 hours incubation plates were checked for any zone of inhibition around the discs. 

Zone of inhibitions were seen on the plates with S. aureus ATCC 25922 fermentation 

broth supernatant (12 mm) and butanol extracts (10 mm). No zone around ethyl acetate 

and methanol extracts and no zone on plates seeded with Escherichia coli ATCC 25923 

were seen. Butanol extract was further assessed with TLC to separate extract constituent 

compounds. 
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Figure 6.3: Inhibitory effect of metabolite. 
Figure showing zone of inhibition in S. aureus 
ATCC 25922 (BD=Direct from broth, 
BE=Butanol extractions and B=Control.  

 

6.8 Chromatographic Analysis of the Crude n-Butanol Extract  

Chromatographic analysis was employed to further characterise inhibitory agents present 

in the crude extract. Various chromatographic systems are available for example, TLC 

(Thin Layer Chromatography), HPLC (High-Performance Liquid Chromatography), 

Column Chromatography. For this study, preparative thin layer chromatography (PTLC) 

technique was adopted using different solvent systems. 

 

6.8.1 Thin Layer Chromatographic (TLC) Analysis of the Extracts 

Thin layer chromatography (TLC) is a widely used chromatographic technique which 

work based on the principle that an analyte move up or across through a solid phase 

(usually silica gel) with the help of mobile phase (usually, combination of solvents or a 

single solvent) by the capillary action (Watson, 2012).  

 

6.8.1.1 Analytical TLC 

Initially, n-butanol extract was screened using several small cuts of original TLC plates 

(20 × 20, Merck, Germany) with the following characteristics to determine the number of 

compounds in the crude extract, solvent systems and Rf values (Aszalos and Frost, 1975).  

Plate size: 8 cm  5 cm 

 Stationary phase: Thin film of silica gel mesh 60 coated with florescence 

indicator, F254.   
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 Film thickness: 0.5 mm   

 Type of development: Ascending and one dimensional. 

 

 

Figure 6.4: Analytical TLC plate. TLC plate showing several 
compounds under UV lights. 

 

Several solvent system combinations (Table 6.1) with various ratios of solvent mixtures 

were tested with and without addition of acetic acid. 20 ml of solvent systems were tested 

for optimisation purposes. A line was drawn above 1 cm from the bottom edge of the 

plate and n-butanol extract was placed along the line in four different spots. Plate was 

then placed into TLC tank and removed when solvent reached 1 cm below the top edge 

of the plate. Plate was then dried and observed under UV light using both shortwave 

(254nm) and longwave (366nm) and circle the band(s) using a pencil. Plates were then 

sprayed with 1% vanillin in sulphuric acid to detect non-UV absorbed compound(s). n-

Butanol extracts on analytical TLC showed 3 bands for compounds separation and one 

strong band, referred as compond-3, as shown in Figure 4. Dichloromethane, Methanol 

and Acetic acid in a ratio of 15 : 5 : 0.02 were found effective mobile phase in the isolation 

of the compounds. 
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Table 6.1: Solvent systems used as a mobile phases in TLC for optimisation. 

Code Solvent systems Ratio 

A Hexane : EtOAc 12 : 8 

B Hexane : EtOAc  16 : 4 

C Hexane : EtOAc 8 : 12 

D Dichloromethane : MeOH 18 : 2 

E Dichloromethane : MeOH 15 : 5 

F Dichloromethane : MeOH : AcOH  15 : 5 : 0.02 

 

 

 

6.8.1.2 Preparative Thin Layer Chromatography (PTLC) 

A macro scale separation of compounds was done using preparative thin-layer 

chromatography (PTLC) by applying a thick adsorbent layer of silica gel. PTLC has 

several advantages such as less run time, small sample volume, easy to use,  easy isolation 

and collection of compounds compared to column chromatography for the isolation of 

pure compounds (Wing and Bemiller, 1972).  

In order to isolate the compounds from the butanol extracts, 20 × 20 cm TLC silica gel 

60 F254 plates (Merck, UK) were taken and drawn a line 2 cm above the bottom edge of 

the TLC plate where samples were loaded along with the drawn line using capillary tubes. 

Plates were then allowed to dry before loading to a TLC glass tank containing mobile 

phase. Once the tank was covered, the mobile phase moved up the TLC plate by means 

of capillary action separating target compounds. When mobile phase reached 1 cm below 

the top edge of the TLC plates, they were then taken out of the tank and allowed to dry. 

Once TLC plates were dried, they were then observed under the UV light and marked the 

visible bands using a pencil.  

 

6.8.2 Compound Isolation  

Bands of interest marked on the TLC plates under UV light were scrapped off the TLC 

plates and collected individually in separate beakers. Then approximately 20 ml of mobile 
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phase (Dichloromethane : methanol = 3:1) was added to the beaker to dissolve the 

compounds present in the silica gel. Silica gel was stirred using spatula and mixed well 

with the solvent and left for 5 minutes. A filter paper 125 mm in diameter was used to 

strain out compound from the silica gel and collected in a round bottom flask followed 

by evaporation of solvents by using rotary evaporator. Compound was collected in a pre-

weighed small bijou, dried out completely in the Laminar flow hood or using nitrogen 

gas and stored in fridge (4-7º C) for further analysis (antimicrobial assays and NMR 

analysis).  

 

6.8.3 Determination of Rf (Retardation Factor) Values of the Resolved Fractions 

Once bands were marked either using UV light sources or 1% vanillin-sulphuric acid 

spray, Rf values were calculated using the following formula:  

Rf value =  
Distance travelled by the compounds (solute)

Distance travelled by the solvent front   

Rf value is the characteristic of a compound in a specific solvent (Watson, 2012).  

 

6.9 Nuclear Magnetic Resonance (NMR) Spectroscopy 

NMR is a very powerful tool applied in analytical chemistry to determine molecular 

structure of an organic compound. NMR works on a principle that when radiation is 

applied in the radiofrequency region some atoms like protons (1H) and carbon (13C) spins 

with the force of magnetic field and aligned either with or against the applied magnetic 

field.  Frequencies ranges used for excitation and the complex splitting patterns are 

distinctive characters of the chemical structure of the given molecule (Watson, 2012).  

 

6.9.1 NMR Spectral Data Analysis of Compound 3 (RP-3) 

Compound 3 was analysed to elucidate its structure using a series of 1D (1H, 13C, DEPT 

135) and 2D (COSY, HSQC and HMBC) NMR spectroscopy at Liverpool John Moore 

University by Dr Rahman. The 1H NMR spectrum (CD3OD, 600 MHz, Table-7) revealed 

the presence of a methyl as doublet at δH1.38, two olefinic protons at δH 5.61 (δ, J = 7.6 

Hz), a series of methine and methylene protons resonating between δH 2.01 – 4.51 Hz. The 
13C NMR (CD3OD, 125 MHz) showed the presence of a number of carbons including 

carbonyls (δC 167.5, 169.3, 173.0, 172.1) two olefinic methines (δC 101.8 and 143.8 ppm), 

a methyl (δC 15.8 ppm), methylenes (δC 23.5, 29.5, 38.4, 46.4, 47.2, 55.3) and methine 

carbons (δC 52.3, 59.0, 60.0 and 69.3 ppm). Based on the interactions/coupling in the 
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COSY, HSQC and HMBC the compounds confirmed the presence of following structural 

features 

 

 

 

Figure 6.5: Possible structural features of compound 
3 represented by NMR. 

 

 

So, it is concluded that compound 3 (RP-3) is mixture of 3 compounds. Because of time 

constraints and limitation upon extracted sample, it was not possible to proceed further to 

scale up the amount and further purification by preparative HPLC and subsequent 

confirmation of structures by NMR experiments and further mass spectrometric analysis.  
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Table 6.2: 1H (600 MHz), 13C (150 MHz) NMR data of compound 3 and their correlations in the 
HMBC experiment.  

  1H  13C (HSQC) HMBC 

7.40, d, j = 7.6 Hz 143.8 (CH) 101.8 (CH), 167.5 (CO), 153.6 (?) 

5.61, d, j = 7.6 Hz 101.8 (CH) 143.8, 167.5 (CO) 

4.46, t 69.3 (CH) 59.0 (CH), 55.3 (CH2) 

4.22, m 60.0 (CH 169.3 (CO), 15.8 (CH3) 29.6 (CH2) 

4.51 dd/m 59.0 (CH) 173.0 (CO), 38.4 (CH2) 

3.66 (dd) + 3.43 (d) 55.3 (CH2) 59.0 (CH), 69.3 (CH), 38.4 (CH2). 

4.22 m 52.3 (CH) 15.3 (CH3), 29.5 (CH2). 

4.10 d + 3.74 d 47.2 (CH2)  172.1 (CO), 166.6 (CO) 

3.51 – 3.54 46.4 (CH2)  29.5 (CH2), 23.5 (CH2)  

2.27 + 2.07 38.4 (CH3) 173.0 (CO), 69.3 (CH), 55.3 (CH2), 59.0 

(CH) 

2.32 29.5 (CH2)  46.4 (CH2), 23.5 (CH2)  

2.01 23.5 (CH2)   

1.38 d 15.8 (CH3) 52.3 (CH), 169.3 (CO) 

 

 

6.10 Antibacterial Screening (in vitro) of the Compound 3 (RP-3) 

The prime objective of performing the antibacterial screening was to determine the 

susceptibility of the pathogenic microorganisms to the test compound which was isolated 

using TLC. To determine the antimicrobial activities of the isolated compound 3 (RP-3), 

both disc diffusion and broth microdilution assay for minimum inhibitory concentration 

(MIC) were done (Carson and Riley, 1995).  

 

6.11 Microbial Strains Subculture 

Microbial test strains evaluated included S. aureus ATCC 25922, E. coli ATCC 25923, 

Klebsiella pneumoniae UEL strain and ATCC 700603 (Extended spectrum β-lactamase) 

strain, Pseudomonas aeruginosa ATCC 17934, Candida albicans ATCC 10231 were 

subcultured on day before disc diffusion and broth microdilution assays.  
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6.12 Disc Diffusion Assay 

Disc diffusion assays were performed for qualitative or semiqualitative assessment of 

antimicrobial activity for both the extract and isolated compound. Two MH agar plates 

for each test organisms were seeded with S. aureus ATCC 25922, E. coli ATCC 25923 

K. pneumoniae UEL strain and ATCC 700603 (Extended spectrum β-lactamase) strain, 

P. aeruginosa ATCC 17934, C. albicans ATCC 10231. Each MH agar plate included 1 

disc with butanol extract, 1 disc with isolated test compound 3 (we call it, RP-3) and 1 

disc of butanol on its own as control and incubated for 24 hours (Figure 1). All the discs 

were prepared using 25 µl   Plates were checked after 24 hours incubation and recorded 

for antimicrobial activity.  

 

 

Figure 6.6: Inhibitory effect of extract and 
compound 3. Disc diffusion showed zone of 
inhibition in butanol extract (9mm) (E), 
compound 3 (8mm) (C) and zone to butanol (B).  

 

6.13 Broth Microdilution Assay Procedures 

Broth microdilution quantifies the relative potency and the lowest concentration of an 

antimicrobial agent required to inhibit the growth of the microorganisms in vitro.  

One hundred µl of MH broth was dispensed to all wells in columns 1 to 11 in 96 well 

microtiter plate using a multi-channel pipette. A 100 µl of test compound solution was 
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dispensed to first 2 wells (A and B) of column 1 in 96 well plates and another 100 µl of 

control antibiotic (Norfloxacin, Sigma-Aldrich, UK) solution was dispensed to next 2 

wells (C and D) of column 1 for S. aureus ATCC 25922. Similarly, A 100 µl of test 

compound solution was dispensed to E and F and 100 µl of control antibiotic 

(Norfloxacin) solution to G and H of column 1 for E. coli ATCC 25923.  

McFarland turbid (0.5) was added for S. aureus ATCC 25922, and saline (0.9% NaCl) 

solution added to A, B, C and D wells of column 1. Similarly, 0.5 McFarland turbid of E. 

coli ATCC 25923 saline (0.9% NaCl) solution was added to E, F, G and H wells of 

column 1 in 96 well plate. The contents of column 1 were mixed thoroughly transferred 

100 µl to all wells up to column 11 leaving 12th column as sterility control. It was then 

incubated for 18 hours at 37º C aerobically.  

 

 

 

Figure 6.7: MIC. Ninety-six well plate shows column 11 as growth control 
and column 12 as sterility control. Letter T on the plate denoted for test 
compound and N for Norfloxacin (known antibiotic) and SA for S. aureus 
and EC for E. coli. Light yellow colour indicates no microbial growth and 
light black for microbial growth.  
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6.13.1 Incubation and result observation 

After 24 hours incubation period, 20 µl of MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide, a yellow tetrazole) (Sigma-Aldrich, UK) (Rahman et al., 

2008a) solution was added to all wells. The plate was then incubated for another 10-20 

minutes and observed for the colour changes from light yellow to light black. Light yellow 

colour indicates no microbial growth and light black for microbial growth.  

 

6.14 Results 

In disc diffusion assays, 9 mm zone of inhibition for S. aureus ATCC 25922 were seen 

in butanol extract and 8 mm for compound 3, but no zone for butanol alone. These zone 

of inhibition measures are mean of three replicates. No zone of inhibition was seen in E. 

coli ATCC 25923, K. pneumoniae and ATCC 700603 (Extended spectrum β-lactamase) 

strain, P. aeruginosa ATCC 17934, C. albicans ATCC 10231 for compound-3. Having 

no zone with ethanol and methanol extractions helped to avoid false zone of inhibition 

during the experimental process.  

There were no inhibitory activities seen at 128 µg/ml concentration for both organisms. 

Subsequently, 512 µg/ml and 1024 µg/ml concentration were tested (data not shown), 

and no inhibitory activities seen against the test organisms.  
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Chapter 7: Discussion and conclusion 

 

7.1 Discussion of overall findings of the study 

The demand for novel antimicrobials has prompted many to search extreme environments 

to attempt to fill this need. Given that most microbes surrounding us are non-cultivable, 

it is possible that there is a vast untapped resource much closer to home. This study used 

the concept of in-situ environmental cultivation using iChip-like devices as well as 

developed an improved culture medium for the isolation of previously uncultivated 

microorganisms and screened them for secondary metabolites. Another important aspect 

was sub-culturing the iChip isolates onto an appropriate medium and “domesticating” 

them. Here term domesticating means, organisms those were not previous grown in the 

laboratory culture medium (novel isolate) but grew in iChip or soil supplemented nutrient 

agar (SSNA) needed to maintain their growth in traditional laboratory medium for further 

study and their characterisations. This study found that SSNA supported the growth from 

90% wells of iChip devices when sub-cultured but only around 50-60% growth was seen 

on NA and TSA from ichip subcultures. It was believed that soil supplement helped the 

growth from ichip subcultures as organisms used soil as their main source of nutrition. . 

Other studies also showed soil extracts enabled to isolate previously uncultivated 

microorganisms (Hamaki et al., 2005; Nguyen et al., 2018). 

SSNA also stopped overgrowth of any microbial species including swarming of Proteus 

mirabilis ATCC 12453 (swarming strain). Impressively, SSNA retained viability of 

stationary of month-old S. aureus ATCC 25922 and E. coli ATCC 25923 and P. mirabilis 

ATCC 7002 plates and had reproducibility. These qualities made SSNA the optimal 

medium for the isolation of soil microorganisms.  

This study found an antagonistic microorganism and identified as Bacillus pumilus. Cell 

free supernatant of B. pumilus fermented broth showed 12 mm zone of inhibition against 

S. aureus ATCC 25922 and butanol extract and TLC compound-3 showed 9 mm and 8 

mm zone of inhibition respectively. Compound-3 had fragments of 3 chemical structures 

containing peptide bonds and aliphatic chains. Known peptide antibiotic vancomycin also 

has similar structural feature and active against Gram positive organisms by inhibiting 

cell wall synthesis of the organisms. Compound found in this study is active against S. 

aureus which suggest that this might target the cell wall of the organism like vancomycin. 

Vancomycin is active against MRSA and complete extraction of this study compound 
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could have similar activities. Further fermentation and extraction optimisations are 

needed to isolate the compound completely and defined their characteristics and 

activities. However, novel peptide antibiotic pumilicin 4 by B. pumilus WAPB4 strain 

reported active against MRSA, VRE and other Gram positive bacteria for the first time 

(Aunpad and Na-Bangchang, 2007).  

 Bacillus pumilus known to produce various secondary metabolites like antibacterial and 

antifungal compounds, enzymes, proteases and so on (Dehghanifar et al., 2019). B. 

pumilus are reported as a plant growth promoter (de-Bashan et al., 2010; Gutiérrez‐

Mañero et al., 2001) and biopesticides  (Molina et al., 2010). B. pumilus plays an 

important role in biodegradation of naphthalene (Calvo et al., 2004), carbendazim (Zhang 

et al., 2009), polyaromatic hydrocarbons (Patowary et al., 2015), chlorpyrifos and its by-

products (Anwar et al., 2009) and keratinolytic activity (El-Refai et al., 2005) in the 

environments. B. pumilus can cause cutaneous and subcutaneous infections (Logan and 

Vos, 2015) and food poisoning (From et al., 2007)  in human. Metabolites production can 

be subjected to several factors or even a single change in fermentation medium can 

resume secondary metabolites production.  Study by (Meyers et al., 1991) showed that 

when 12 strains B. pumilus were cultured in Difco nutrient broth isolates grew poorly and 

were unable to degrade cyanide. But same strains when cultured in Oxoid nutrient broth 

under the same conditions, grew well and degraded cyanide rapidly. Beside it, Oxoid 

nutrient broth made up using deionised water was unable to degrade cyanide whereas 

same broth made up using tap water was able to degrade cyanide. Further investigation 

found that tap water contained manganese and addition of 0.01 mg Mn2+ per litre Oxoid 

nutrient broth with deionised water was able to degrade cyanide.   In B. pumilus XH195 

strain when glucose or sucrose were used as carbon source in the fermentation medium 

acetoin productions were 63.0g/L or 58.1g/L respectively (Xu et al., 2012). Another study 

reported that antifungal chitinase from B. pumilus was produced only in the presence of 

chitin in the medium (Ghasemi et al., 2010). Hence, secondary metabolite production 

might need precursor or triggering compound. So, B. pumilus isolated in this study need 

further experiments to trigger secondary metabolite production.   

For this study, extraction solvents ethyl acetate, butanol and methanol were selected based 

on Dr Rahman’s  standard protocol and other published studies where these solvents were 

mostly used (Ciric et al., 2011; Rajan and Kannabiran, 2014; Sapcariu et al., 2014). 

However, polypeptide compounds produced by B. pumilus (NKCM 8905) and B. pumilus 
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(AB211228) were isolated by ammonia sulphate precipitation followed by distilled water 

and hexane extraction (Sawale et al., 2014), Pumilin was isolated by ammonia sulphate 

precipitation followed by ethanol extraction (Bhate, 1955), antifungal phenazine from B. 

pumilus MTCC7615 was extracted using benzene (Padaria et al., 2016), Iturin from B. 

pumilus HY1 was isolated from the broth supernatant collected in a concentrated HCl and 

followed by methanol extraction (Cho et al., 2009). Selection of solvents are key to isolate 

target metabolites or compounds as they might have different interactions in polar and 

nonpolar solvent and can lead to failure of complete or partial isolation. In this study, 

compound found were partially identified as a mixture of 3 fragments and this could be 

due to solvent systems and other parameter within the experiments. Hence solvent 

selection is very important in secondary metabolites isolation which can be achieved by 

trial and error experiments and might require excessive time before a perfect solvent is 

found for any metabolite.  

1D, 2D and HMBQ NMR data revealed compound 3 with a mixture of possible 3 

compounds or their fragments (Chapter 6; Figure-6.5). Re-isolation of the compound and 

repeat of NMR was only the approach to answer it but was not possible at this stage of 

the study due to time constrains. However, presence of numbers of C, H, NH, CO indicate 

a potential chemical structure or its analogue that could possibly be an antimicrobial 

compound as it falls in the Lipinski’s rule, for example molecular weight, Hydrogen 

bonding (Benet et al., 2016).  

The study highlighted several further directions worthy of exploration, for example, 

identification of organism was done to a species level, B. pumilus by MALDI TOF and 

not identified to strain level using molecular methods such gene sequencing, DNA 

hybridization and DNA banding pattern based methods due to lack of fund for this study. 

Identification of strain was very important as different strains of B. pumilus produces 

different metabolites, antibacterial, antifungal and analgesic. First antibacterial activities 

of B. pumilus was observed by Gilliver in 1949 (Gilliver, 1949) and Pumilin, a non-

peptide antibiotic was reported as first antibiotic from this organism (Bhate, 1955). This 

report was B. pumilus species only, not strain involvement in the Pumilin production. 

Different strains of B. pumilus have subsequently been reported with regard to 

involvement in different antimicrobials and other secondary metabolites (Dehghanifar et 

al., 2019; Ghasemi et al., 2010; Leifert et al., 1995; Padaria et al., 2016). For example, B. 

pumilus CL27 produces peptide antimicrobial compound and B. pumilus CL45 produces 
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non-peptide antifungal compound and the production of the compound was fermentation 

composition dependent (Leifert et al., 1995). B. pumilus SG2 antifungal chitinase 

(Ghasemi et al., 2010), B. pumilus HY1 antifungal Iturin (Cho et al., 2009), B. pumilus 

E-1-1-1 fungal aflatoxin degrading enzyme,  B. pumilus (NKCM 8905) and B. pumilus 

(AB211228) both strains reported as polypeptide compounds with antibacterial and 

antifungal activities (Sawale et al., 2014). B. pumilus marine strain reported for its anti-

quorum sensing activities (Nithya et al., 2010). However, novel peptide antibiotic 

pumilicin 4 by B. pumilus WAPB4 strain reported active against MRSA, VRE and other 

Gram positive bacteria for the first time (Aunpad and Na-Bangchang, 2007). Also, B. 

pumilus AQ717 and B. pumilus XH195 strain (DSM-16187) were patented for corn 

rootworm disease and acetoin production, respectively (Sansinenea and Ortiz, 2011; Xu 

et al., 2012).  

Study by Toymentseva et al showed when they analysed two strains of  B. pumilus 7P 

and 3-19 using next generation sequencing and search for secondary metabolite clusters 

within the genome using antiSMASH program, it revealed 11 potential gene clusters for 

the synthesis of bacilysin, lichenysin, bacteriocin, and other substances (Toymentseva et 

al., 2019). Bacillus pumilus in this study could possibly be completely a new strain with 

unknown activities yet to discover. 

In this study, initial extraction was done by chemical solvent systems and compounds 

were separated by TLC. Some studies used ammonium sulphate precipitation methods 

form extractions and then TLC for compound separation (Dehghanifar et al., 2019; 

Munimbazi and Bullerman, 1998; Sawale et al., 2014). Another extraction process 

described concentration of cell free supernatant by lyophilization then followed by small 

volume of methanol extraction (Aunpad and Na-Bangchang, 2007) and this method is not 

common as it was not reported elsewhere. Hence compound found in this study could not 

be defined and compare with other findings but open an opportunity for further study on 

this isolate.  

 

Although, disc diffusion method showed inhibition but MIC even at 1064 µg/ml (highest 

concentration for MIC determination) failed to show inhibition following purification. As 

NMR data revealed fraction of compound mixture. Inhibitory activities may be synergic 

with other compounds present in the crude extract or compound might have lost its 

activities during solvent separation. Interestingly, previously published work cited did not 
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show any MIC data for any antibacterial compounds investigated. It is most likely no one 

found a significant MIC within MIC test parameter (<1064 µg/ml).  

iChip devices and SSNA used in this study helped recover previously uncultivated 

microorganisms. B. pumilus isolated in this study well known for secondary metabolites 

productions by its different strains and identified strain in this study could potentially be 

one of the novel strains.  

 

7.2 Limitations 

Time and funding were the main limitations for this study. Due to lack of time and money 

many areas could not be explored to answer key finding. This study could investigate 

further optimise fermentation, compound extractions and purifications techniques. Beside 

it, the compound isolated from this study was not tested for antifungal activities as UEL 

microbial stock had no fungal species and could not collaborate with other institute for 

antifungal studies due to time constrain. Study could also investigate antifungal activities.  

Spore formations of B. pumilus were not checked after fermentation periods as it was too 

late to repeat all the experiment from fermentation stage. B. pumilus can survive in harsh 

condition due to its spore forming abilities and if fermentation medium does not support 

their growth, they might form spores. Hence impact on secondary metabolites production 

 

7.3 Conclusion 

Development of iChip devices and SSNA medium in this for cultivating previously 

uncultivated organisms opens further study opportunities for exploration and exploitation 

of the experimental procedures to find potential new antimicrobial agent. Optimisations 

in various stages in this study helped gaining new knowledge that could be utilised in 

further studies and research. Continuing with this study and literature available on B. 

pumilus, further investigation could unlock its potential secondary metabolites.   
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                                                 Appendices  
 
 

 

Figure 1: MALDI-TOF spectra of unidentified organism-1. No organism’s match found in the 
extended research database against these spectra.  

 



 

64 

 

 

Figure 2: MALDI-TOF spectra of unidentified organism-2. No organism’s match found in the 
extended research database against these spectra.  

 

 

 

 

Figure 3: MALDI-TOF spectra of unidentified organism-3. No organism’s match found in the 
extended research database against these spectra.  
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Above spectra in MALDI-TOF were seen in organisms from iChip subculture which were 

believed to be novel microorganisms or previously uncultivated microorganisms found 

in this study. These three spectra are some example, but this study found more organisms 

those produced spectra but no matches in the database. However, these organisms did not 

show any inhibitory effect, so they were not followed any further.  

 

 

 

 

 


