
Spatial Configurations: Complex Systems Experiment of

Design Automation

Choesnah Idarti, MSc., B.Eng Arch.

Submitted for an MPhil.
Postgraduate Research MPhil Computing and Technology
School of Architecture, Computing and Engineering
University of East London

28 February 2013

2

Abstract

The study of design does not seem to shift from the paradigm that design process is a complex and

seems similar to the nature of a black box system. It is a process which can be viewed solely in terms

of its input and output, without a detail prescription of the process to produce that output. The

complex nature of design process, and architecture design in particular have been explained by

experts (Alexander 1964, Anderson 1966 to name a few), but this thesis underlines the work around

of the rigid clear box system of computing to get a reliably working non-wired-in process to support

the notion of architecture design as a complex system.

The clear box nature of computing process is a fundamental characteristic of computing, so the

process to be proposed has to work within this framework. The process would have to be prescribed

or otherwise it cannot be executed. Many machines which given the same input and the same

process, will all result in the same output. A single machine which given the same input and the

same process to execute for many times will all result in the same output each time. However, the

development of computing has enabled the processing of multiple inputs. The significant of parallel

computing is that it seems to provide a window of epistemic autonomy within a process.

There is a large philosophical and theoretical discussion behind the notion of epistemic autonomy

which this thesis tried to introduce a preliminary summary, and sums it into the following

description. A system consists of one single bird and a process of how to fly may result in a bird

flying. Given many birds and implementing flying process synchronously to all the birds could result

in a swarm of birds. There is not much different to see one bird or many birds flying in the sky,

except that in many birds that each are using the same flying process would result in an underlying

flying configurations. The underlying flying configuration is not part of the system; it is an emergence

of the system. So the emergence structure of flying bird was enabled by a window of epistemic

autonomy which comes from the use of many flying birds as opposed to a single flying bird.

A window of epistemic autonomy seems to have been created in the programming experiments with

the implementation of a basic Agent-Based Model (ABM) as ABM is inherently an autonomous non-

wired in process (Cilliers, 1993). The coding is based on a system introduce by Reynolds (1987) which

a program was already built and modified many times in projects within CECA – UEL. To put simply,

the inputs are multiple copies of one type of entity placed in using randomizing code, and the

process synchronously applied to all these copies are to move towards the closest out of other three

neighboring entities.

The utilization of ABM into the programming experiment seems parallel with the findings in the

literature review where it proposes a summary of a production of space by way of using a binary

approach known to be brought up by Lefebvre (1974). Lefebvre seems to suggest that the very basis

of spatial production is that space consists of either a moving or a non-moving social entity. Thus the

criteria above since then been adapted to accommodate a simple social relations and this is called

Social Preference Matrix (SPM). SPM is an original contribution in the form of coding that comes out

of this thesis’s programming experiment. To put simply, SPM enables the identification of heading

towards the nearest out of three neighboring entities only when it is the specific entity it relates to

in the SPM. When this is triggered, both entities i.e. the one moving towards to and the designated

3

entity both will eventually within a specific constant distance with each other, and these will stay in

a loop of attract and repel, which is perceived as simulation of these being stop moving.

The development of the programming experiment have found that when all entities are identified as

occupying entities, eventually all entities will loop in attract and repel, i.e. all eventually will be non-

moving. When introduce with non-occupying entities, i.e. those not identified and included in the

SPM, then the possibility to have similar characteristic to what is known in the Configurational

Theory as the movement space appears.

The specific of architectural production may be seen as an opposite of the dynamics seen in an

underlying configuration of bird swarm. Architectural subjects particularly regarding spatial

configurations seems to be required to be static; there is not known liquid or ever-changing spatial

configurations. Thus instead merely producing a system of moving around entities in space, this then

had to be translated into some static versions of events. In this programming experiment, these

were built on the basis of notations provided by the Configurational Theory (Hillier, 1996).

Interestingly, he also stated in his previous work (Hillier, 1978) that there is a production of space

where a larger space is being divided into smaller space.

There is a body of research into programming headed by Mitchell, et.al (1976), which stretches for

about three decades afterwards. However as far as the literature investigation went, none has

seemed to explore the notion of epistemic autonomy in the production of spatial configurations.

Following this finding, the programming experiment then added in a program called Voronoi

Diagram (version coded in the programming experiment is as prescribed by Akl and Lyons, 1993)

which enables several significant developments in producing spatial configurations by way of

dividing space.

Firstly, the production of space by way of dividing space is based on an emergence of underlying

configuration out of possible social relations between entities occupying the space. Secondly, the

division is based on maximum arrangement of occupiable space between all occupying and non

occupying entities, because Voronoi Diagram divided space equally in between all of the identified

entities. Thirdly; a part from an emergence spatial relations by way of utilization of SPM within the

ABM, the employment of Voronoi Diagram also enables the emergence of shapes and dimensions

out of the divided space.

At the end of this study, the programming experiment has resulted in a programming framework

named Spatial Languaging. A part from that there seems to be a promising field of research into

programming under the notion of epistemic autonomy specifically develops for architectural

systems, because there are numerous methods of parallel processing and many different media of

implementing ABM. More importantly, the notion of structural emergence seems applicable to

many aspects of architecture and all worth exploring.

4

Contents

Abstract .. 2

Table of Figures ... 6

Table of Codes ... 7

1. Introduction .. 9

2. Literatures ... 11

2.1. Space: a social theory of space ... 11

2.2. Alpha Syntax: methods ... 12

2.2.1. Grid Method: Cellular Automaton .. 12

2.2.2. Non-grid method: Formal Languages .. 13

2.3. Voronoi Diagram: a method to divide space ... 14

2.3.1. Voronoi Diagram as Social Art... 15

2.3.2. Voronoi Diagram as Urban Plan Generator ... 16

2.3.3. Voronoi Diagram as Spatial Configurations generator ... 16

2.4. Agent-based Model: Simulation of Random Movement ... 17

3. Spatial Languaging: The Program ... 18

3.1. Agent-based Model Basic Procedures... 18

3.1.1. Create Agents ... 18

3.1.2. Move Agents .. 18

3.2. Agent-based Model for Spatial Languaging ... 18

3.2.1. Create Visitors and Occupiers ... 19

3.2.2. Create Types of Occupying Agents .. 19

3.2.3. Social Preference Matrix ... 20

3.3 Voronoi Diagram .. 21

3.4. The Main Procedure ... 22

3.5. Program Setup ... 23

3.5.1. Global Setup ... 23

3.5.2. Run the Program .. 24

3.6. Programming Results ... 24

3.6.1. Program Execution ... 24

3.6.2. Graphic Output... 25

3.6.3. Version Development ... 25

4. Discussions .. 26

5

4.4. Self-organizing Spatial Configurations .. 26

4.5. Epistemic Autonomy .. 29

4.6. Re-iterating Distributed Representation for Design Process .. 31

4.7. Synthetic Gestalt .. 33

Bibliography .. 35

Appendix 1 Sample Results .. 41

Graphic Set 1. Total Segregation with 30% occupiers ... 41

Graphic Set 2. Segregation according to type with 30% occupiers .. 42

Graphic Set 3. Integrated population with 30% occupiers .. 43

Graphic Set 4. Total segregation with 50% occupiers ... 44

Graphic Set 5. Segregation according to type with 50% occupiers .. 45

Graphic Set 6. Integrated population with 50% occupiers .. 46

Graphic Set 7. Total Segregation with 80% occupiers ... 47

Graphic Set 8. Segregation according to type with 80% occupiers .. 48

Graphic Set 9. Integrated population with 80% occupiers .. 49

Appendix 2 Sample Debugging: Social Preference Matrix ... 50

Appendix 3 Sample Numerical Outputs.. 51

Appendix 4 The Code ... 54

Module boundarystuff ... 54

Module brownian .. 60

Module friends .. 69

Module voronoibits ... 74

Appendix 5 CD contents .. 83

6

Table of Figures

Figure 1 Elementary Space .. 11

Figure 2 (interior-exterior) Spatial Relation .. 12

Figure 3 (exterior-exterior) Spatial Relation ... 12

Figure 4 Leak Method (hover over picture to follow link

http://www.youtube.com/watch?v=QrJ5gKvjfsk) .. 13

Figure 5 the Alpha Syntax - copyright Paul Coates 2010 ... 13

Figure 6 L-System (hover over picture to follow link http://www.youtube.com/watch?v=wd8rt-dIaks)

.. 14

Figure 7 Alpha Syntax 2.0 earlier to recent – copyright Paul Coates 2010 ... 14

Figure 8 Voronoi Diagram (hover over picture to follow link

http://www.youtube.com/watch?v=E9qHEssEWGU) ... 15

Figure 9 Scott Snibbe Interactive Art (hover over picture to follow link

http://www.youtube.com/watch?v=1p96bTARFKc) .. 15

Figure 10 Kaisersrot Voronoi Diagram (hover over picture to follow link

http://www.youtube.com/watch?v=Zw7_JFHi5hk&feature=player_embedded) 16

Figure 11 Social Preference Matrix, Text File and the Corresponding Matrix 20

Figure 12 Spatial Languaging Main Procedure .. 23

Figure 13 A Set of resulting Spatial Configurations (hover over picture to follow link

http://www.youtube.com/watch?v=ME0Ci5SDMuc) ... 26

Figure 14 the Dog picture by David Marr 1982 (hover over picture to follow link

http://en.wikipedia.org/wiki/Gestalt_psychology) ... 31

Figure 15 Layers of Distributed Representation ... 33

7

Table of Codes

code 1 Assigning Visitors and Occupiers .. 19

code 2 Social Preference Array .. 21

code 3 Voronoi Diagram Procedure ... 22

code 4 Program Setup ... 23

8

To my family, Erlangga, Haniya, Aleena, my late Mum and my Dad for their reimbursable continuous
supports,

And

To my programming tutor, Paul Coates who understood my vision and helped me to manifest the

other pair of boots gifted by Hillier to both of us his pupils.

9

1. Introduction

... ARCHITECTURAL RESEARCH SHOULD ALWAYS FALL BETWEEN WHATEVER POLAR OPPOSITES ONE CARES TO

DEFINE.. (COATES, 2010, P.1)

Ludwig von Bertalanffy (1968) aims for a theory that unifies all explanations with his General System

Theory (GST). GST is not the only field of study that works towards theory of everything, but recent

development in agent-based modeling seems to provide sufficient verification for GST visions of

universality. The grand aspiration may already been fulfilled when Stephen Wolfram published an

empirical and systematic study of simple programs. Wolfram (2002, p.465) concludes that simple

programs with different rules can have similar behavior, such as some natural systems which seem

very different but behave in similar ways. It is proposed that such scheme is applicable across

different fields of sciences. This emphasizes on isomorphism between different systems and might

explain similarity in either their internal structures or their external behaviors.

Paul Coates (2010, p.1) suggested that architects and other designers would be interested in this

development because it manifests a new epistemology. Form is a complex with many interrelated

aspects, creating a simple program based on a particular known aspect of form might lead to a

production of interesting forms. A simple program which is parallel to an existing system related to

form may demonstrate a similar structure or behavior and pattern of forms. Among these programs

are computer models which explore the notion such as how space produces society and how society

produces space.

Preliminary works for such production of space has been done by Bill Hillier with “a theory of space

with its own descriptive autonomy, i.e. a theory without interpreting other theory” (Hillier &

Hanson, 1984, pp. 5-9). A space of a social theory of space is an elementary cell which is a dichotomy

of the outside and the inside. For that space to grow there are two ways; firstly, by subdividing it

thereby maintaining the internal permeability, or secondly, by aggregating it thereby maintaining

the external continuous permeability (ibid., p.19)

Accompanying Hillier proposal above, the Alpha Syntax program was developed by Paul Coates.

Alpha Syntax exclusively an application of the second method of the proposed spatial growth, it

aggregates cells which connect throughout with an axiomatic permeable cell. There are two versions

of Alpha Syntax program developed; a grow method by orthogonal constrains i.e. within cellular

grids (ibid., chapter 2) and the tree branching which is a grow method free from orthogonal

constrains (Coates, 2010, pp.153-154). So far, there is no development of a specific computer

program in any of Hillier’s publications which applies the growth method of dividing the internal

space.

Later on, Hillier proposed a theory of architecture and a social theory of architecture (Hillier, 1996).

Theory of architecture stated that architecture is a theory applies to building. It implies that

architecture is a physical manifestation of how the architect regulates the elements of a building. A

social theory of architecture introduced by Hillier stated that the configuration of space influenced

and can be influenced by the configuration of space (ibid., p.31). The social theory of architecture

seems to suggest isomorphic mapping between configuration of people and spatial configuration. It

is how a spatial system would influence a configuration of people who are using that space, whereas

10

those changes in spatial configuration might have been caused by the same configuration of people.

If a space as defined by the social theory of architecture represents a dichotomy of inside and

outside, it might indicate that spatial systems is a dual to a system created by configuration of

people.

The proposition would be that an isomorphic mapping of space and social simulation would add to

the theory of architecture; it would be that architecture is a physical manifestation of how social

system might regulate the elements. The aim of this thesis is to create a simple program that might

lead to a production of space using the assumption that if there is a dichotomy between a spatial

configuration and a configuration of people, then a simple program simulating configuration of

people is isomorphic to a production of spatial configuration.

Simulating configuration of people requires a model of spatially occupying entities which follow

simple configurational rules. This can be achieve using agent-based model of spatially occupying

entities such as Boids (Reynolds, 1987) which coupled with agent’s preference such as Thomas

Schelling Frog Pond scheme (see similar model by Epstein & Axtell, 1996). Thomas Schelling racial

dynamics model could be expanded into more categories as it has already contain a very simple

social rules; either an agent is a friend or not, to the other agent.

With isomorphic assumption, a simulation of agent-based model of configuration of people would

mean simultaneous productions of spatial configurations. However how to map the emergent

spatial configurations forming out of the feed provided by the agent-based model simulation?

Referencing to a couple of projects related to dividing a space, the possible solution is to represent

the emerging spatial configurations as a specific bounded universe consist of many of bounded cells

mapped by each spatially occupied agents.

Accordingly, this program can be proposed as the first growth method of a social theory of space by

Hillier & Hanson (1984, chapter 2), which is a method of subdividing the space. Using algorithmic

geometry planar dividing method called Voronoi Diagram (Boisonnat & Yvinec, 1998, p.405) and a

color scheme representation of agents which also use to color the divided cells, spatial

configurations as isomorphic map of Euclidian bounded social interactions can be manifested.

The existing algorithms modified in the program are agent-based simulations already developed at

the Centre for Evolutionary Computing in Arcitecture (CECA) and a newly developed computational

geometry method called Voronoi Diagram. The specific small original contribution made in the

program is a social preference module within the agent-based simulation. It is a two dimensional

array that feed from a social relationship table. A text document containing a matrix of that table;

either a friend or not friend (binary) between agents of different types is prepared by the user and

this will feed into the module; it is the basic of social construct of otherwise random localized

chances of the forming of configurations of people.

This program is a specific framework for exploration of spatial design with notion of actual spatial

use by configurations of people as its foundation and thus it is called Spatial Languaging. The

isomorphic assumption follows the principle of General System Theory, thus mapping of other

aspects of environment in a design process would made visible development of more spatial

generators.

11

2. Literatures

2.1. Space: a social theory of space

Any computer program basically consists of elements and methods processing these elements. A

simple program seems to refer to the use of the most basic elements and particular methods that

process elements within micro context or local rules however results in observable un-programmed

behavior of the whole. For example a simple program consists of random mobile spatial entities with

an instruction to follow other entities that is closer to itself. After a while, this set of basic elements

and local method would be perceived to give rise to; firstly a flocking configuration, and later on a

notion of a leader. These emergent behaviors of both flocking and leadership were not programmed

by the programmer. These are simple programs as explained by Stephen Wolfram (2002) and which

Paul Coates and students programmed for architecture.

For spatial configuration within a social theory of space, Hillier suggested that the most basic

element would be a cell which represents a dichotomy of the inside and the outside. Therefore

space could be identified into two categories; the interiors and the (collective) exteriors (1984, p.19).

 FIGURE 1 ELEMENTARY SPACE

There were several kinds of notations adopted by Hillier in his publications, therefore a convention is

required. The graphical notation as seen on the right above in Fig. 1, and there is also notation which

seems to be use for written discussion or in paragraphs, where he uses the letters X and Y. The

letter X is used for interior and Y for exterior. The graphical notation will not be use within this

document, but diagrammatic notation as seen on the left in Fig. 1 above will be use in diagrams and

the use of X and Y in corresponding texts.

This elementary space serves the purpose as (Hillier & Hanson, 1984, p.52):

1. an elemental structure that characteristically is an irreducible objects and relations,

2. independent notation which can be use in discussion or analysis about space,

3. being part of a coherent system where many elementary spaces related to one another,

4. the only element of combinatorial system based on specific syntax which makes up more

complex structures.

 Interior

(Part of collective) exteriors

12

There is no formal mention of local rules for processing the elements given by Hillier, therefore the

assumptions are as follows; there is the interior to exterior spatial relation, and the exterior to

exterior spatial relation. In Hillier terminology these are the syntaxes.

FIGURE 2 (INTERIOR-EXTERIOR) SPATIAL RELATION

FIGURE 3 (EXTERIOR-EXTERIOR) SPATIAL RELATION

Originally, there were 8 different set of syntaxes but only one set of syntax as shown above was

developed because the rest were over-constrained, and had been tested and summarized as

incapable to produce varied results as what had been given by the chosen set (Coates, 2010, p.138).

2.2. Alpha Syntax: methods

The elementary space and the micro spatial relations as explained by Hillier Space Syntax theory

provide the ingredient for generations of more complex form. Generative methods such as Diffusion

Limited Aggregation (Batty, 1994) and Lindenmayer System (Prusinkiewicz & Lindenmayer, 1990)

which uses elementary form and local rules, and both produce similarly complex fractal forms.

However they consist of entirely different algorithms and thus different in the way they process the

basic elements and use different context in defining local rules.

Although each algorithm is unique, they could produce forms which as a whole can be perceived as

similar forms produced by two different methods. There are two ways to process the basic elements

which concern with an application of local rules; grid base or non-grid method. The grid method is

known as Cellular Automaton, and the non-grid is graph rewriting method, for example the

Lindenmayer system. Alpha Syntax features developments which seems to incorporate these

methods.

2.2.1. Grid Method: Cellular Automaton

Celullar Automaton (or CA) is a successive addition of patches on grid following a set of state-bound

rules, leading to more complex universe of patches than the initial state of that universe. Wolfram

(2002) provides the most extensive study of Cellular Automaton. The universe changes from a simple

to a complex one step at a time. Parts are added at each step and their assign locations are in

correspond to the set of existing local parts. Chronology and local continuity are the key features of

13

this method of form where previous forms will dictate the later forms, and form at the next stage is

within local of form at the previous stage.

FIGURE 4 LEAK METHOD (HOVER OVER PICTURE TO FOLLOW LINK HTTP://WWW.YOUTUBE.COM/WATCH?V=QRJ5GKVJFSK)

Alpha Syntax was developed by Paul Coates following Space Syntax framework and inspired by

Maruyama 1969 flow diagram (Coates, 2010, p.131). It employs CA method known as the leak

method. The above figure is the Monte Carlo simulation created using the same method.

FIGURE 5 THE ALPHA SYNTAX - COPYRIGHT PAUL COATES 2010

2.2.2. Non-grid method: Formal Languages

This is a successive part-replacing method of a simple initial object using a set of rewriting rules,

which lead to more complex form of its initial. Formal Languages is made of sets of strings and

methods for generating, recognizing and transforming these strings (Chomsky, 1957). Formal

Languages, including L-System applies initiator and recursive generator to the basic element, i.e.

strings to get the more complex form.

http://www.youtube.com/watch?v=QrJ5gKvjfsk

14

FIGURE 6 L-SYSTEM (HOVER OVER PICTURE TO FOLLOW LINK HTTP://WWW.YOUTUBE.COM/WATCH?V=WD8RT-DIAKS)

Paul Coates further on to develop the Alpha Syntax program based on Diffusion Limited Aggregation

method which result is a resonance to an L-System method known as the Branching structures

(2010, pp. 152-157). Branching structures characteristically has a sequence of parts which is known

as axis. An axis is essentially a chain which the beginning of form is connected through out by the

same elements. From this main structure, the rules will produce branches adding more elements

and thus the form becomes more complex. Alpha Syntax has Y spaces creating the continuous axis,

and it branches as X spaces are added at each step of the program.

Figure below shows an emerging axis created by simple rule of f f [-f] [-f] using L-System. Later

version of Alpha Syntax was created with similar continuous axis.

FIGURE 7 ALPHA SYNTAX 2.0 EARLIER TO RECENT – COPYRIGHT PAUL COATES 2010

2.3. Voronoi Diagram: a method to divide space

Voronoi Diagram is an algorithm which manifests smaller bounded spaces within a large undefined

plane. It divides congruent space between points. To draw a Voronoi diagram is to connect all

Voronoi vertices. The algorithm will search for the Voronoi vertices which are the centers of a circle

http://www.youtube.com/watch?v=wd8rt-dIaks

15

where the nearest (least) three points are on its circumference, and such no other point will be

inside the circle (Akl & Lyons, 1993, pp.99-101).

FIGURE 8 VORONOI DIAGRAM (HOVER OVER PICTURE TO FOLLOW LINK HTTP://WWW.YOUTUBE.COM/WATCH?V=E9QHESSEWGU)

The shape of each Voronoi cell is unique because its sides are the manifestation of otherwise

invisible exact middle spaces in between the centre of one cell to another point of the opposing cell.

These shapes can be altered and such Voronoi Diagram is known as generalized Voronoi Diagram.

Because these shapes created entirely based on the positions of the centre of the cells, they would

have irregular angles. The generalized Voronoi Diagram contains rules which alter the angles and

further on some generalized Voronoi Diagram alter the shape entirely by ruling how many sides

there should be out of a cell.

2.3.1. Voronoi Diagram as Social Art

Scott Snibbe used Voronoi Diagram to create an interactive social art installation (Snibbe, 1999). The

space is divided synchronously according to people who join in a specific bounded plane. As they

walk around, these lines are updated to note the exact boundaries where spaces between people

are congruent at each time.

FIGURE 9 SCOTT SNIBBE INTERACTIVE ART (HOVER OVER PICTURE TO FOLLOW LINK

HTTP://WWW.YOUTUBE.COM/WATCH?V=1P96BTARFKC)

This project shows significant insight into how space could be synchronously mapped in

configurational terms. It demonstrates the simulation of spatial configurations which are made of

the occupied space (X space) and the movement space (Y space) in real time.

http://www.youtube.com/watch?v=E9qHEssEWGU
http://www.youtube.com/watch?v=1p96bTARFKc

16

2.3.2. Voronoi Diagram as Urban Plan Generator

Kaisersrot project use Voronoi Diagram as an urban plan generator (Kaisersrot, 2001 & 2003). It is a

generalized Voronoi Diagram which use repels and attracts rules between the points which triggered

straight after the points were placed in and thus creates congruent space in between them. Voronoi

then divides the plan, and naturalizing the organic shapes of the original Voronoi cells into

rectangular shapes. Kaisersrot also programmed in nodal configurations synchronously. For example

one can drag a church across and a group of specified buildings will follow and configure all around it

following the same process as if it is placed in as in the beginning. A fixed size road is then added up

by the user. The road has its starting point, crossroads and ending point placed in manually.

FIGURE 10 KAISERSROT VORONOI DIAGRAM (HOVER OVER PICTURE TO FOLLOW LINK

HTTP://WWW.YOUTUBE.COM/WATCH?V=ZW7_JFHI5HK&FEATURE=PLAYER_EMBEDDED)

2.3.3. Voronoi Diagram as Spatial Configurations generator

Snibbe’s art and Kaisersrot projects seems to suggest that Voronoi Diagram is a good medium to

enable isomorphic mapping of spatial configurations and configurations of people. In Snibbe’s art,

Voronoi Diagram seems to convey a natural sense of structural mapping of space as it is being used

by configurations of people. In Kaisersrot, Voronoi Diagram functions directly as configurational

generator.

Spatial configurations as explained by Hillier emerged from the relations between one cell to other

cells. Similarly, configurations of people must have embedded within them the relations between

one individual to the others. Under this assumption, there would be preliminary work into

developing a set of meta-relations between the entities which represents configurations of people.

Kaisersrot has been successfully generating urban plans. However the use of Voronoi Digram was to

generate a pre-set assumption of how one cell should be related to each other. The church nodal

configurations and particularly the use of repel and attract are the procedures coded in to ensure

there are certain relations between a cell to the other cells. The notion of isomorphic mapping on

the other hand is about resulting in emergent configurations as opposed to the generation of pre-set

configurations.

http://www.youtube.com/watch?v=Zw7_JFHi5hk&feature=player_embedded

17

Therefore, the program should be a manifestation of exploring the randomness of configurations of

people, which in part can be made possible by manifesting real-time random movement of people as

much as has been shown in Scott Snibbe’s project and thus to capture the emergent spatial

configurations using Voronoi Diagram.

2.4. Agent-based Model: Simulation of Random Movement

ABM or Agent-based Model is a type of simulation which is developed to observe emergent

behaviors of a dynamic complex system. In Boids (Reynolds, 1987) flocking behavior and a notion of

leader are noted to have been emerged out of an initially random movement of spatially occupying

movement entities called boids. Each boid were simply programmed to direct its own heading to

follow the nearest other moving boids. Once all boids have the same headings, the notion of flocking

boids and its leader appear.

Emergent properties within such simulation can be exploited to produce emergent spatial

configurations. Un-programmed configurations of people can be manifested through random

movement of the agents, and such program already existed on AutoCAD platform in the Centre for

Evolutionary Computing in Arcitecture (CECA) research archive. However, there is not a function of

class types of agents and how different types of agents relate to each other. Classification of agents

will create more structured chances of configuration which some of such behaviors have been

demonstrated by Schelling’s frog pond (Epstein & Axtell, 1996).

Thomas Schelling pond model was critical in population dynamic research, because it maps the

otherwise unseen configuration of frogs and turtles in space based on each individual preference

criteria. The simulation was really simple; there were two groups of turtles and frogs (ibid.) and each

frog was programmed to only settle at a locality which has a minimum number of other frogs, and

the same rule applies to turtles. The emergent spatial segregation of frogs and turtles was not

program into each individual frog or turtle but a result of local interactions between them.

The lesson from Schelling frog pond model is that by having different individuals with different

preferences can result in interesting spatial configurations.

FIGURE 11 SCHELLING SEGREGATION (HOVER OVER PICTURE TO FOLLOW LINK

HTTP://WWW.YOUTUBE.COM/WATCH?V=A_XTBOYO8JC)

file:///D:/choesnah/choesnah/Spatial%20Languaging%202011-/Spatial%20Languaging%202011/11
http://www.youtube.com/watch?v=A_XtboyO8jc

18

3. Spatial Languaging: The Program

3.1. Agent-based Model Basic Procedures

The Centre of Evolutionary Computing in Architecture (CECA) had several types of ABM applications

available in various computing platforms. Some of these are in various programming language such

as Visual Basic which can be modified in AutoCAD programming platform from version 2004

onwards. To have the program built in AutoCAD platform or any other drawing platform would

enable efficient transition from generations of conceptual spatial configurations into eventual

development of spatial designs.

There are basic procedures within these programs which identifies with ABM and they are as follows

3.1.1. Create Agents

This procedure enables manifestation of how an agent should look like on screen. There are

programs in CECA that based on ABM platforms such as NetLOGO (Wilensky, 1999). There are also

programs which were developed using software such as AutoCAD and these use circles as

manifestation of agents (DRAW CIRCLE is a command available in AutoCAD). This command is

coupled with a random placement of the circle.

3.1.2. Move Agents

There are basic geometrical calculations to get the circles moving around the screen, which pull local

data of each agent to process the next step. To move forward, there are calculations related to

random heading and this will use a constant as the step range. The use of random heading to get the

agent on to the next step would enable greater chances of emergent behavior. Besides these

calculations, there are other calculations which involved with situations each agent would be in,

such as too close to other agents, or too close to the boundary of the universe. And as the

simulation involves many agents, there is a state called limbo world or synthetic synchronicity; a

state where each agent’s corresponding parameters are calculated for the next step to get all agents

simultaneously into their next positions.

3.2. Agent-based Model for Spatial Languaging

This program Spatial Languaging (SL) requires development of ABM basic procedures of creating

agents. There are two hierarchies of creations to be manifested; the visitors and the occupiers, and

the type of each agent created within the occupiers. Then there is a Social Preference Matrix that

relates to how each agent should move when it bumps into a particular agent.

19

3.2.1. Create Visitors and Occupiers

The first hierarchy is whether or not an agent is a visitor or an occupier. The early version of SL has

shown that all agents within ABM will eventually settle and thus all of them identify with occupiers.

This is unfortunate for generations of spatial configurations as these will need “roads” or movement

spaces, or Y spaces as known in Hillier’s terminology. To avoid top down entry of such spaces (as

shown in Kaisersrot project), it is logical to embed them directly into ABM and thus these spaces

would be an emergent property of the overall spatial configurations.

The program has a procedure to control how many percentages of visitors out of the overall agents’

population. This is currently coded within the program as opposed to a user controlled entry,

although it is possible to change it into a user entry.

For c = 1 To pts
 randpoint(0) = random(-universe * 0.8, universe * 0.8) 'choose random x y z the array is autocads way of holding a point
 randpoint(1) = random(-universe * 0.8, universe * 0.8)
 randpoint(2) = 0
 walker.diameter = startdiam 'sizs(Int(random(1, nsize)))
 walker.steplength = walker.diameter
 walker.heading = random(0, 360)
 Set acircle = ThisDrawing.ModelSpace.AddCircle(randpoint, walker.diameter / 2) 'walker is represented as circle
 walker.circleid = acircle.ObjectID
 If Rnd > 0.2 Then 'change here to control how many percentage of visitors
 walker.colour = Int(random(1, CDbl(groups)))
 Else
 walker.colour = 256 ‘these will be visitors
 End If
 acircle.color = walker.colour 'colour the circle according to the required number of types of agents
 acircle.Layer = "circle_layer"
 acircle.Update
 walker.begin.x = randpoint(0) ' set walker's position to be that same as the circle
 walker.begin.y = randpoint(1) ' (using my preferred way of defining a point
 walker.begin.z = 0
 thecircles(c) = walker
Next c

CODE 1 ASSIGNING VISITORS AND OCCUPIERS

The proportion in the code above correspond to 20% of the whole population of circles created on

the screen will be assigned as visitors agents. These circles will be assigned different colors, which is

specific and not available to assign occupier agents with the same color of visitors (i.e. color 256).

3.2.2. Create Types of Occupying Agents

The next hierarchy of agent relates to creating entities which enables manifestation of different

preferences, i.e. different types of agents identify with different preferences and thus would yield to

interesting configurations as has been indicated by Schelling’s frog pond simulation.

The occupier agents will then be assigned random proportions of different types of agents. The

number of types is a user controlled entry and is entered at the beginning of the simulation. Random

proportions of types refer to creating more chances as oppose to coded-in proportions of each

different agents. So user will be able to enter how many types of occupying agents but cannot

control how many agents of each type would be.

20

Different color circles will then assign randomly to agents, but these will not use the specific color

has already assigned for visitor agents.

3.2.3. Social Preference Matrix

The Schelling frog pond model (Epstein & Axtell, 1996) uses a proportion of local friend for a type to

settle in the locality. This is simplified within SL; for each three closest neighbor, if there is a friend

nearby then move towards it and then slow down. Therefore Social Preference Matrix (SPM) relates

to procedure about agent’s movement; it controls when agent will change its movement.

SPM is a user entry in a form of a text file and corresponds to the number of types will be required

for the simulation. The user needs to write a preference matrix which has the same size as the

number of types of agents that will be in the simulation. For example, 5 different types of agents will

need a SPM in a size 5 by 5 as follows.

 Agent A Agent B Agent C Agent D Agent E

Agent A 1 0 0 0 0

Agent B 0 1 0 0 0

Agent C 0 0 1 0 0

Agent D 0 0 0 1 0

Agent E 0 0 0 0 1

FIGURE 11 SOCIAL PREFERENCE MATRIX, TEXT FILE AND THE CORRESPONDING MATRIX

The binary 1 and 0 is in use to identify the other agent is a friend or not friend. Thus SPM above

correspond to dynamic segregation within the population where each agent will only settle with the

same type. Integration or segregation within the population can be structured using this preference

matrix by changing any 0 to 1; however random placement and movement will enable emergent

configurations as opposed to structured and coded-in configurations.

21

ReDim originalpoints(1 To pts) As mypoint
ReDim thecircles(0 To pts) As agent
'fills in the array thecircles with the randomly scattered circles
ReDim limbocircles(1 To pts) As agent
ReDim relations(1 To groups, 1 To groups) As Boolean
'2d array of compatible agents
ReDim cols(1 To groups) As Integer
Dim rel As Integer
 rellies = "c:\stuffs\relationships.txt"
 Open rellies For Input As 2#
 For i = 1 To groups
 For j = 1 To groups
 Input #2, rel
 relations(i, j) = (rel = 1)
 Next j
 Next i
 Close #2

CODE 2 SOCIAL PREFERENCE ARRAY

3.3 Voronoi Diagram

Voronoi Diagram is coded according to the following steps:

1. Find all voronoi vertices (vv) which are the centre of circles defined through sets of three

nearest points (points are supplied by the locations of all agents), as such that there are no

other points inside these circles.

2. Draw a line from a vv to the nearest vv, and do this to all vv.

3. At the perimeter, a vv will be connected to an imaginary vv which defined as an extended

line from that vv to the middle of the two points which defined that vv.

4. Then each polygon can be created as voronoi cell, where each will contain one location of

the corresponding agent to that cell.

Voronoi Diagram procedure is called in at appointed loop of step. In the code below it is called in at

each 60th step. The user enters how long the simulation will run by entering how many steps the

simulation would be. If they enter 1200 steps, then Voronoi Diagram will be created at the 60th,

120th, 180th, 240th, etc. until the 1200th steps. This will correspond to a production of 20 pieces of

Voronoi Diagram and thus 20 pieces of individual spatial configurations.

22

If counter Mod 60 = 0 Then 'Mod 50 = 0 means every 50-th to get Voronoi Diagram
 gestalt counter, ci, cj 'gestalt is the subroutine where Voronoi Diagram procedures contained in it
 If savestuff Then
 ThisDrawing.SendCommand ("_vscurrent" & vbCr & "R" & vbCr)
 Set allpolys = ThisDrawing.SelectionSets.add("allofit")
 allpolys.Select acSelectionSetAll
 ThisDrawing.Regen acActiveViewport
 ThisDrawing.SaveAs (pathname + Str$(counter))
 ThisDrawing.Export (pathname + Str$(counter)), "BMP", allpolys
 allpolys.Delete
 End If
 thelay.Lock = True
 boundarylayer.Lock = True
 ThisDrawing.SendCommand "_erase" & vbCr & "all" & vbCr
 ThisDrawing.SendCommand vbCr
 thelay.Lock = False
 boundarylayer.Lock = False
 ThisDrawing.Regen acActiveViewport
End If

CODE 3 VORONOI DIAGRAM PROCEDURE

3.4. The Main Procedure

The program in common language can be described as follows.

1. At t = 1 agents created and then move randomly in space.

2. At t = 2 agent’s next step is triggered by predefined conditions such as three nearest

neighbors, then agents take action according to SPM

3. At t = 3 if the relations between self and the other agent in SPM = 1 then this agent heads

towards, and stays in slow down loop.

4. At t = 4 the Voronoi Diagram is called at a specific step and divides the space.

5. At t = 5 the Voronoi Diagram colours the cells corresponding to the colour of agents.

6. At t = 6 the Voronoi Diagram picks up any trapped Y spaces, then move them randomly back

into the universe.

7. The program loops back to t = 1

23

FIGURE 12 SPATIAL LANGUAGING MAIN PROCEDURE

3.5. Program Setup

3.5.1. Global Setup

The simulation was built on AutoCAD software, thus it needs to run on AutoCAD version 2004

onwards with Visual Basic programming platform installed.

It needs a new folder to be named “stuff” in the root drive C:/. Otherwise this new folder can be

called under different name but one needs to modify the code within the subroutine as shown

below.

 Set thelay = checkforlayer("circle_layer")
 Set boundarylayer = checkforlayer("boundary") 'dont erase boundary as well as circles
 seed = val(InputBox("seed", "any numbers", 978345210))
 ticks = val(InputBox("how may times round the block ", "steps", 500))
 'this is how many steps to run program which is proportional to mod n =0, so adjust as necessary
 Rnd (-1)
 Randomize (seed)
 savestuff = (InputBox("want to save stuff", "y, folder c:\stuffs") = "y")
 If savestuff Then
 pathname = "c:\stuffs\" + InputBox("type name for saved drawings", "naming the drawings")
 Open globaldatapathname For Append As #1
 Write #1, "counter ¦ number of occupied cells ¦ total area of occupied cells"
 Close #1
 End If
 thelay.Lock = False
 boundarylayer.Lock = False
 groups = InputBox("how many groups ?", "different groups represented by different colours", 6)
 pts = InputBox("how many people?", "size of population", 70)
 ReDim originalpoints(1 To pts) As mypoint
 ReDim thecircles(0 To pts) As agent 'fills in the array thecircles with the randomly scattered circles
 ReDim limbocircles(1 To pts) As agent
 ReDim relations(1 To groups, 1 To groups) As Boolean '2d array of compatible agents
 ReDim cols(1 To groups) As Integer
 Dim rel As Integer
 rellies = "c:\stuffs\relationships.txt" ‘make sure text file called relationships.txt is available in c:\stuff
 Open rellies For Input As 2#

CODE 4 PROGRAM SETUP

24

In the folder stuff there should be 2 text files; relationships.txt and data.txt, and dwg file;

basepoly.dwg. Relationships.txt contains SPM data and data.txt should be a blank file. Basepoly.dwg

contains specific drawing layers that make up a bounded universe in a size of 200 x 200 unit of

space. The size of 1 agent is unit of space.

Data.txt will be written with statistic information which currently contains three parameter: counter,

totalspacetypes, totalareas. Counter is the step at which the Voronoi Diagram is called,

totalspacetypes is how many agents are currently occupying, and totalareas is the size of

occupation.

From these two numbers we can tell if the simulation had finished with all occupiers had occupying

the space or not, and if the total occupation match to the percentage set on for the creation of the

visitors. If the totalareas shown the number corresponding to 80% of the size of the universe when

the set for visitors is 0.2, then it confirms that the program compiled accordingly.

3.5.2. Run the Program

These are the steps to run the program:

1. Open AutoCAD, then open basepoly.dwg

2. Type in AutoCAD command line vbaman and search directory to open the program

spatial_languaging.dvb. Once vb window opens, go back to AutoCAD drawing window.

3. Type in AutoCAD command line vbarun, and choose run macro.

4. Enter all ABM input parameters as required. Choose save file if want to produce spatial

configurations, otherwise SL will run ABM and create Voronoi Diagram without saving image

files of spatial configurations. Saved images can be found in C:/stuff

Note: Basepoly.dwg should not be saved at the end of each simulation. Basepoly.dwg should be

re-open to run new simulation with different ABM input parameters.

3.6. Programming Results

3.6.1. Program Execution

Spatial Languaging program executes simulations which are corresponding to the proposed

mechanics of isomorphic mapping of ABM into Voronoi Diagram. It generates ABM with correct

number of agent’s color as entered in the beginning of the simulation and these agents randomly

placed and then move about the universe (Appendix 3). It also executes SPM correctly (Appendix 2).

It generates spatial configurations in the form of dwg and bmp files. It also manages data output in

data.txt (Appendix 3). All input parameters for ABM and embedded parameters (which have to be

access from within the code in order to modify them, see Appendix 4) are sensitive to changes

where different value will resulted in different ABM behaviours and different spatial configurations.

25

3.6.2. Graphic Output

The graphical outputs correspond to the parameters as expected. The proportion of occupier gives

results to the colored occupied cells with exactly the same spatial proportion; for example

generation of 80% occupiers will result in 80% colored space (Appendix 3). The integrated society

where SPM contains more relations with value of 1 and combine this with larger occupier

percentage will fill the occupational space quicker.

Interestingly the emergent geometry demonstrated forms analog to that of real settlements, where

segregated SPM creates small scattered spaces, and the integrated creates dense spatial

configurations. All spatial arrangements of these spaces and their dimensions were entirely an

emergent property of the simulation. How space is being used in terms of movement by its

inhabitants give results to not only the arrangements of “rooms” but also its dimensions. It is a

phenomenon that can be described as self-organizing spatial configurations which produce

arrangement of space according to its uses with the corresponding dimensions of each space

simultaneously.

The population density coupled with occupier and visitor ratios are fundamental to the kind of space

which would emerge. From the observer’s viewpoint, a population which is made of 50% occupier

agents and 50% visitor agents seems to generate interesting graphics compared to other settings

(see Appendix 1 Graphic set 4, 5, and 6). These graphic sets comparatively produce same effect of

perception although different social matrix was applied to each set. This might be explained as the

gestalt effect of background and foreground. Furthermore some graphics show the emergent of

beady ring phenomenon (Hillier, 1984, p.59)

The underlying gestalt effect computed by the Voronoi diagram follows the theoretical wholeness of

a spatial configuration and fully implemented under these principles into each of the graphics. This is

done by responding to a non-conforming configuration, such as a trapped Y space (movement space)

in the middle of occupied spaces. This step enables a continuation of movement space over the

whole space created without having to coded-in a continuous movement space.

3.6.3. Version Development

The ABM with Social Preference Matrix (SPM) and the Voronoi diagram manages to produce spatial

configurations. The early version of ABM setup did not create visitors and all agents were identified

as occupiers. The results did not conform to syntactical configurations because there were no Y

spaces or movement spaces created. All agents in the early version were eventually found their

preference and thus all cells generated were colored/occupied cells.

26

FIGURE 13 A SET OF RESULTING SPATIAL CONFIGURATIONS (HOVER OVER PICTURE TO FOLLOW LINK

HTTP://WWW.YOUTUBE.COM/WATCH?V=ME0CI5SDMUC)

The series of images above is a result of simulation based on the second version ABM setup and it is

the program submitted for this thesis. At the end of the first row, more agents had grouped together

indicating almost all agents found their preferences. The second row and the third row are images

which shown emergent beady rings and these configurations are more conforming to syntactic

configurations in comparison to the first and the fourth row. Halfway over the third row and the

fourth row show that configurations had reached equilibrium and all these had more or less the

same syntactic configurations and more or less the same total area where differ only in their cell

shapes.

Is this mean Y space or movement space is somehow a form of an axiom? Considering there is no

starting point of Y space indicated from the beginning of the simulation, these movement spaces

could be considered as indirectly axiomatic. The present of equilibrium configurations seems to

suggest that there is a maximum point in time to which all occupier agents would map into X spaces

where these occupied spaces. At this point there will only be minimal varieties in geometry (shapes

of cells and their dimensions) of a stable topology.

4. Discussions

4.4. Self-organizing Spatial Configurations

A model is an imitation, which is produced from simplification of the original. The convention states

that the original is always a lot more complex than its model (Cilliers, 1998, p.10). In architecture, a

model is part of the design process and thus the simplified precedes the complex actual. Christopher

Alexander (1964) explains that design is a synthesis of form which production of form is about

finding a good arrangement and proper relations of the parts. The dilemma is that how is the search

http://www.youtube.com/watch?v=ME0Ci5SDMuc

27

for good arrangement and relations of the parts using simplified concepts would match the

complexity of the real?

Mechanically, design is an act applying a formula, or recipe, to manifest form using known parts via

specific arrangements or relationships which believe to give good result. Science as we know it today

was brought to such advancement because scientists can explain subjects in a mechanic sense. The

specific study which puts forward the possibility to explain anything in terms of its mechanics is

known as the field of System Theory and its newest form is known as the field of Dynamical System

Theory. Thus, architecture also been subjected to the mechanic frame of thinking, and there would

be a mechanic interpretation of the production of architecture through the medium of modelling.

Christopher Alexander showed that eventually design process will result in some degree of fitness of

the form to its context. What search method prescribed above which could produce form that is a

‘good fit’ for its complex context? Stanford Anderson (1966) criticized that there is too much

oversimplification of the mechanical method that does not regard the fact that a good arrangement

of parts varies from time to time, because context (all parameters that should be taken into account

in the production of form) is believed to always in states of changes. There is not simply a set that

will guarantee a good fit for all times. Thus Anderson argued for the lack of sensitivity of problem-

solving method as one as proposed by Alexander. He then suggested that a mechanical method

could be used to produce complex objects such as architecture only when it is responsive to the

initially undefined problems and equally responsive to the infinite of potential problems that come

during, and later on the process.

This means the challenge is to define a mechanic of design that adapts. Throughout such a process,

it should be made possible to introduce new parameters of good fit, so that the eventual fitness is

an emergence of all possible interactions within the universe until that specified time frame within

the formal evolutionary process. If one steps back to the notion of a model, it is intriguing to find out

why a formula manifested from deducing a complex, can be expected to produce something quite

complex. John Frazer (1995) uses evolutionary methods for the production of architectural form and

demonstrated that using nature’s recipe of genetics, the aim to produce an object that is far more

complex than its formula can be achieved. Genetics is widely accepted as the mechanical process for

the ever increasingly complex forms. But how does this evolutionary process become responsive to

the ever changing context?

The phrase “form that fits its context” is an architectural ideal. Taking all the physical and

environmental, and all other possible complex problems into account and process it; then let’s

suppose it is a dwelling design proposed for a happy couple. This is initially called “a flat”. Later in

time, it will need to be called “a house” to serve the couple and their children. And later, it may turn

back as “a flat”. It is not possible for the first “flat” be the same as the later “flat”, because it is in a

different time with a different set of complex problems. There is also no guarantee that the initial

physical and environmental setting will be the same. The “form that fits a context” could only be

true for an architectural production only when it is about a production at any particular point in

time. Genetics on its own cannot deliver a “fit to context” if it has not a way to take into account

whatever required at different times. This is what is required for the mechanics of adaptation, the

ability to enable the processes of interactions at micro level within all the new systems that create

the context of that form which feeds it back iteratively into the form.

28

Such setting means that any form along an infinitely continuous process will need to take

information from its context and to use it. The process means invoking new arrangements, new

relations between parts; and perhaps even new parts to be defined. The new form itself then will

invoke feedback which is then fed again into the process. In this way, the context itself evolves, since

it requires information to be processed and action to be taken; just as what was needed for the

production of form. Accordingly, it is not simply an evolution of form, but it is a dynamic self-

organizing system with interacting systems of form and its context, are changing through times and

thus increasingly becoming more complex. This self-organizing system is characteristically infinite,

which is guaranteed to continue forever as long as the feedback mechanisms between these they

are still going on.

Essentially, the self-organizing system of space and people as an infinite loop functions between

form and context. John Holland (1998, pp.125-141) named such a scheme as the Constraint

Generating Procedure (CGP). He presented the concept as the foundation of emergent phenomena

in complexity science. Agent-based Model is the significant element in the construction that leads to

emergence behaviour (ibid., pp.116-118 and Ferber, 1999, pp.15-16). ABM structures interaction

between parts locally. It enables synchronous processing of information thus possible to treat

changes gradually. However, construction of each ABM will need to find its own mechanics of self-

organization. There is no specific recipe or over-arching procedure of self-organizing mechanism.

The work of Ashby, Beer and Pask (Cariani, 1993) suggests that the mechanics of emergence and its

underlying self-organization is a paradox. Emergence can only be shown to occur when the

structural outcome is not dependant on the details of the epistemic definition. Once again, there is

no definition for specific mechanics at micro level. However, developing a computational method is

fundamentally constructing basic or micro elements of a system and applying structural interactions

between them. The feedback mechanism between interacting systems is another layer of structural

interaction which consists of interactions between different elements of different systems. When

emergence is literally happening, is it then possible then to identify the mechanics underlying it? The

clue would be in the interactions at these different levels, and the mechanism of emergence can be

identified when one knew how these systems interact.

The complex system study of biology came up with some clearer sense of what are interactions

between dynamic systems. Chilean biologist, Maturana explained that interaction is essentially a

structural coupling which is the state of coordination of coordination of actions (Maturana & Varela,

1980, pp.xx-xxi). This could be interpreted as a mechanism of arrangement and rearrangement at

micro level within infinite iteration of feedback out of (at least) two systems that are structural

coupling. The program Spatial Languaging is an application of such mechanics which in this case is

based on mutual perturbation of architectural forms in a social context. It demonstrates that system

such as configuration of people (as people would have used space) can be developed as an open-

ended interactive system. An open-ended interactive system would have to have a flexible structure

so that structural coupling between its micro elements and other system’s micro elements; i.e. the

individual parts of the system can be mutually modified (ibid., p.107). The flexible structure seems to

suggest that the most basic relations come from the most basic element such as binary system, from

which would set the ground for the most wide combinatorial possibility.

29

Space Syntax theory (Hillier & Hanson, 1984) is a true form of deduction, synthesis, and formulation

of space hence it provides elements which is truly basic for the construction of Spatial Languaging

program. Space Syntax is the structuralist approach to architecture, very close to Nietschzian

primordiality of space as described by Lefebvre (1974, p.22) that space can only be defined as either

occupied or unoccupied; that is in binary form could be expressed as a 1 and 0 or X and Y. The space

syntax theory also provides binary relationships between the occupied and the unoccupied space. It

opens a wide combinatorial possibility because rules of relationships only apply locally. As long as

there is a way to feed this system where individual space can be defined randomly, the possible

combination of cell spaces that creates the overall spatial configuration is always indefinite at the

time of initialisation.

Thus, ABM would provide isomorphic feeds for the mapping of spatial configurations using the

locations of its agents in space. An agent is characteristically a randomly mobile and thus inherently

unpredictable in terms of their location in space. The relations between agents in ABM could only be

defined by the types of interactions. For Spatial Languaging program, the type of interaction is as per

preference which are either 1 or 0. When an agent is near enough to three other agents it would go

towards the one it prefers to be local with. The Space Syntax theory seems to strongly suggest an

isomorphic mechanism between spatial configurations and configurations of people. Space can only

be defined by those who are currently in that space, and thus creation of space is identified with a

being to be in a certain place in space.

This creates a form of ‘fit’. Which specific configuration of people corresponds better to a specific

configuration of space? Both Hillier (1996) and Alexander (1964) seems to agree that configuration is

a form of combination of binary form of 1 and 0 (i.e. x space and y space). Combinations of these

occupied and unoccupied spaces could result in a complex (of space) which at the same time (when

it interacts with a configuration of people) fit into the context of how it can be use by particular

socio-spatial configurations. So thus my understanding is that an experiment to produce complex

spatial configuration can be done using principles introduced by Space Syntax with a mutual

perturbing framework as the mechanism.

4.5. Epistemic Autonomy

For many researchers in the field of design computing, the goal would be to develop design

generators which as much independent of human as the creator of space (who draw it) and to

enlarge the capacity of the processor (which process it)to design. This aim backs up with the

realization of the contemporary tools and thoughts about how we could design. The approach

implemented in Spatial Languaging program is to achieve this kind of self-organization. It aims to

process design in a self-organizing way.

According to Pask (Cariani, 1993), in a self-organizing set there should be some degree of epistemic

autonomy. Literally this means there is no such thing as total autonomy, where a result comes from

nothing. Computer modelling requires input to process, and processing methods keeps on advancing

through times. In Spatial Languaging program, multiple processing is done by the Agent-based

Model (ABM), and there is also a feedback process between ABM and Voronoi Diagram where actual

changes of forms of different stages could be visualized. Although it is not possible to have a total

30

autonomy, epistemic autonomy is suggested to be fundamental to a self-organizing system. This

could mean that an epistemic autonomy should not preclude the inherent isomorphic quality of all

systems involved. As such, the spatial configurations and the configurations of people would be

isomorphic and that epistemic autonomy of these configurations only applied to the emergence of

geometry, morphology and topology of the configurations.

Secondly, it would also mean that there is a degree of autonomy in regards to structural emergence.

The structure of spatial configurations within this project is a dual of the social structure manifested

in the use of space and then mapped so it is visible by the Voronoi Diagram. This type of structural

emergence is different to axiomatic structure in at least two aspects; axiomatic structuring uses the

structural elements as part of the emerging structure, and self-organizing structure does not.

Axiomatic structure starts with one of its own structural element, and grows into larger structure by

combining other structural elements with that axiom. This kind of emergence was incorporated in

the Alpha Syntax (Coates, 2010, pp.153-157). Contrastingly, self-organization give rise to its own

structural elements manifested through the map with underlying mapping conventions involved in

it. Spatial Languaging program produces structures which are manifested, as opposed to growing.

Furthermore the other aspect is of the convention itself; the mutual perturbation is a map which

relies on its mapping convention, whilst the axiomatic structure uses a convention to emerge. The

mapping convention is the key to the main co-morphogenetic process since it enables feedback

mechanisms. In agreement with the contemporary philosophy of computer modelling each

interacting part has its own formative structure (Cilliers, 1998, p.10). In analogy spatial

configurations are theorized by the spatial sciences, whilst social interactions are similarly theorized

by the social sciences.

Specific mapping convention accommodates the emergence of those particular structures

recognizable as spatial configurations and as social interactions because by way of feedback both

systems will keep changing. Otherwise its structural parts would not comply with what is

recognizable as spatial configurations or social interactions and therefore the development of Social

Preference Matrix (SPM) is inevitable because the matrix feeds the system with a would be social

structure, it is the mapping convention of who should interact with whom.

Self-organization implies a set where some elements already exist, in which there is some degree of

epistemic autonomy of the form. It is not possible, working within a self-organizing framework to get

a total autonomy. The epistemic autonomy achieved within the emerging spatial configurations of

this project is gained through the isomorphic understanding of spatial structure and social structure,

which is made possible by ABM and the spatial configurations is an emerging structure brought out

by the Voronoi Diagram.

The complexity of architectural design means there are more isomorphic layers within the self-

organization of form where all systems are simultaneously self-perturbing. Thus it is interesting to

know how to set up these interacting layers; is there a hierarchy where social structure and spatial

structure should be within this set of layers? Or perhaps are these layers inter-connected real time

as such only the required interactions brought in the specific layer forward to co-evolve at any

particular time?

31

Post-structuralist view of modelling (Cilliers, 1998, pp.58-88) requires a particular theory to be

fundamental to a model. Thus if there are more architectural theories which involves different

systems which structurally coupling then is it possible to construct more self-organizing design

process? From these experiments there would be new architectural theories as a result of observing

these self-organizing simulations.

4.6. Re-iterating Distributed Representation for Design Process

FIGURE 14 THE DOG PICTURE BY DAVID MARR 1982 (HOVER OVER PICTURE TO FOLLOW LINK

HTTP://EN.WIKIPEDIA.ORG/WIKI/GESTALT_PSYCHOLOGY)

Distributed representation is an approach to the problem of representations for building a complex

system, where the complex system is built as a tool to learn about that complex system (Cilliers,

1998, pp.12-13). Design process in some way is learning about the environment and the

requirements of the built environment. Considering the availability of ABM and the understanding of

self-organizing systems, then it should be possible to represent the environment more thoroughly

than ever before. Therefore, it seems this is the right time to embrace systems thinking and to apply

new techniques to process design.

Agent-based Model (ABM) is a typical framework for distributed representation because its

characteristics are sufficient in enabling emergence phenomena. Self-organization is a process

where a simple system can develop a complex structure from unstructured beginnings (ibid., p.12).

Distributed representation of design process seems feasible only via ABM because it is

characteristically parallel processing.

ABM is made out of many individual units but these units by themselves are much less meaningful

without the emergence of global structure from which the observer can perceived (or learned

about) it. Consequently, the observer is an essential part of a complex system that made out of

distributed representation. ABM is the dual of spatial configurations in order to produce them. The

interacting network of ABM, spatial configurations and the observer embodies the principles of

distributed representation of design. A missing piece within the network would mean a failed

distributed representation of design process.

http://en.wikipedia.org/wiki/Gestalt_psychology
http://en.wikipedia.org/wiki/Gestalt_psychology

32

Distributed representation of design requires a strong over-arching design theory. Theory is a form

of existing knowledge about complex system, and it precedes the model by providing the elements

of the model (ibid., p.130). An observer would learn from the model as they perceived the model

and can decide which behaviours already known and which are emergent. There is nothing new if

the existing is not identifiable. Distributed representation of design process would use the elements

provided by design theory in order to enable the emergence of new kinds of spatial designs.

Distributed representations of design not only have a specific interacting network of ABM – space -

observer, but also produce a continuity of evolving results. Designs produce by utilizing distributed

representation will result in series of spatial designs and all these results are individual designs.

Design is then a complex system which as a whole and as its parts is always undergoing repetitions,

reiterations, and transformations because this is the means of design to becoming into being; i.e.

when design is actually identified by the observer. These are the specific characteristics of

distributed representation of design process; autonomous, self-organizing, cognitive and observer-

related. These are designs which are identified as the second-order characteristics.

Distributed representation of design is also characteristically a continuously co-evolving system

because it is based on isomorphic structural coupling. Society and space are isomorphic in the way it

will influence each other; anything happened to an individual element in one system will affect

element or elements in the other system which will eventually feedback iteratively. The mechanism

to describe the relations between the model and the observer is interactive, from which the series of

operating procedures can be explained using an autopoietic framework. Autopoietic framework for

this kind of interaction is known as syn-referential, i.e. the coordination of coordination of actions,

where innate structure of both the model and the observer is coordinating with each other over

time(Maturana & Varela, 1980, pp.9-11). This is a structural coupling and thus isomorphic, embodies

in autopoietic term languaging.

Spatial Languaging is a program which generates spatial configurations. Spatial Languaging is also

proposed as a term to describe a general framework in which the problematic representation and

systematic understanding of architecture and design process can be addressed and sufficient

simulations of design process as a complex can be developed. Languaging in itself is a specific term

in relation to SL program, which points to the corresponding Space Syntax theory that has been

interpreted in the identification of the mechanics of interactions between configuration of space and

configuration of people.

Interactions or languaging in autopoiesis terminology is an infinite recursive coordination of

coordination of action. This essentially means that to respond to the received information from

outside its own system, it would have to be flexible structurally and capable to re-arrange its parts

accordingly in response to that information. The internal changes will be feedback to the outside

system, where there will be more information available for it to respond. The term languaging

invokes sufficiency so that interactions between configuration of space and configuration of people

are meaningful. The recursive coordination of coordination also defines the method of distributed

representation of design process between the interacting systems in it.

33

4.7. Synthetic Gestalt

One of the main findings of this study is that feedback mechanism that work for analyzing parts of a

system seems to work at a global level. Spatial Languaging program simulates a similar phenomenon

of global observation among other observable behaviours it produced. The agents are individuals

with simple embedded features to act locally, but Voronoi Diagram process and analyze these

agents as a whole entity. This is called a synthetic gestalt phenomenon.

What happened in the program was that where an agent creates a cell of space which does not

conform to the local neighbourhood rules, then this agent will be relocated in the next step. This

affects agents as a form of feedback perturbing into the system of agents without intervening with

the epistemic autonomy of the program to produce permeable configurations. It indicates that a

local or bottom-up network could send and receive feedback by employing a global or top-down

processor. This is significant when one believes a machine is made of parts and they all connected in

such a way with feedback mechanisms that help the machine to restructure its parts over time. If

architecture and or design process is such machine, the existence of a top down processor like

synthetic gestalt in an evolutionary scheme could be the key to hold all the interacting elements of

design process.

Synthetic gestalt could be existed within all self-organizing systems, it could be use to explain the

process known as homeostatic state. This is a state where elements of a system that were put

together could stabilize and reach equilibrium which then could demonstrate some recognizable

function (Cariani, 1993). Distributed representation of design process is a self-organizing set which

will always require an element within it which will act as synthetic gestalt.

Where elements of design identified by a strong over-arching design theory such as Space Syntax

theory, other theories related in the actual construction of built environment would be the one

which will be the synthetic gestalt of that model.

FIGURE 15 LAYERS OF DISTRIBUTED REPRESENTATION

Therefore, the system of structural constructions embodies, and itself is the embodiment of

synthetic gestalt. This is the main principle that enables automating design in a self-organizing way.

If spatial configurations theory enables the processing of many spaces into actual spatial

34

configurations, then other theory and other system will enable the processing of other aspects of

space they relate to.

35

Bibliography

Abraham, Matthew, 2000 “The Critical Idiom of Postmodernity and Its Contributions to an Understanding of

Complexity. A review of Paul Cilliers, Complexity and Postmodernism: Understanding Complex Systems”.

London: Routledge, 1998. in Postmodern Culture Volume 10, Number 2, the Johns Hopkins University Press

Akin, Omer, Dave B and Pithavadian S. 1992 “Heuristic Generation of Layout (HeGeL) based on a paradigm for

problem structuring” in Environmental and Planning B 19 pp. 33-59

Akl, S.G., Lyons, K.A., 1993, Parallel Computational Geometry, Prentice Hall: New Jersey

Alexander, C, 1964, Notes on the Synthesis of Form, Harvard University Press: Cambridge, Massachusetts

Alexander, C., Ishikawa, S., Silverstein, M., 1977, the Pattern Language: Towns, Buildings, Construction, Centre

for Environmental Structure, University of California: Berkeley, California

Anderson, SO. 1966, Problem-Solving and Problem-Worrying, Unpublished lecture manuscript given at

Architectural Association, London, March 1966 and ACSA Teachers Seminar, Cranbrook, June 1966

Axelrod, R, 2005, Agent-based Modelling as a Bridge between Disciplines. In Handbook of Computational

Economics Vol. 2: Agent-based Computational Economics, Handbooks in Economic Series. North-Holland Eds

Kenneth L. Judd and Leigh Tesfatsion. Forthcoming available online http://www-

personal.umich.edu/~axe/research/ABM_Perspectives.pdf last accessed 15 March 2006

Bayazit, N., 2004, “Investigating Design: a Review of Forty Years of Design Research”, Design Issues Volume 20,

Number 1, Winter 2004, MIT Press: Cambridge Massachusetts avalaible online last accessed 6 February 2006

http://mitpress.mit.edu/journals/pdf/desi_20_1_16_0.pdf

Baybars I, 1982, "The generation of floor plans with circulation spaces" Environment and Planning B 9 445-456

Batty, M., Longley, P., 1994, Fractal Cities: a Geometry of Form and Functions, Academic Press Professional

:San Diego

Baudrillard, J., 1994, Simulacra and Simulation, trans Sheila Faria Glaser, The University of Michigan Press

Baudrillard, J., 2003, Mass, Identity, Architecture. Architecture Writings of Jean Baudrillard, Francesco Proto

(Ed.), Wiley Academy, England

Barney, B., 2006, Introduction to Parallel Computing, for Lawrence Livermore National Laboratory, a website

operated by University of California for the Department of Energy’s National Nuclear Security Administration,

California, USA. Available at http://www.llnl.gov/computing/tutorials/parallel_comp/#Whatis last accessed 1

September 2006

Bertalanffy, L V, 1962 “General System Theory - A critical review”, General Systems, 7:1-20

Bertalanffy, L V, 1968, General System Theory Foundations Development Applications, Penguin Books, England

Bloch C J, 1979, "Catalogue of small rectangular plans", Environment and Planning B 6 155-190

Boissonnat, J-D., Yvinec, M., 1998, Algorithmic geometry, Cambridge University Press: Cambridge

Bonabeau, E, Dorigo, M. & Theraulaz, G., 1999, Swarm Intelligence From Natural to Artificial Systems, Oxford

University Press: New York.

http://www-personal.umich.edu/~axe/research/ABM_Perspectives.pdf
http://www-personal.umich.edu/~axe/research/ABM_Perspectives.pdf
http://mitpress.mit.edu/journals/pdf/desi_20_1_16_0.pdf
http://www.llnl.gov/computing/tutorials/parallel_comp/#Whatis

36

Bridges A H, 1979, "Analysis in architectural design" architectural design" in PArC 79 Proceedings (Online

Publications, Pmner, Middx; AMK, Berlin) PP 175-185

Bryne D., 1999, “Book Review Paul Cilliers Complexity and Postmodernism: Understanding Complex System”,

Journal of Artificial Societies and Social Simulation Volume 2 Issue 2 available at

http://jasss.soc.surrey.ac.uk/2/2/review1.html Last accessed 27 August 2006

Cariani, P., 1993, “To Evolve an Ear: Epistemological Implications of Gordon Pask’s Electrochemical Devices”,

Systems Research, 10 (3):19-33, available at

http://homepage.mac.com/cariani/CarianiWebsite/PaskPaper.html last accessed 11 August 2006

Chomsky, N., 1957, Syntactic Structures, The Hague, Muton

Cilliers, P., 1998, Complexity and Postmodernism: Understanding Complex Systems, Routledge, London

Coates, P., 2010, Programming.Architecture, Routledge, London

Corbusier, 1923, Towards a New Architecture

Cousin J, 1970, "Topological organization of architectural space" Architectural Design 10, pp. 491-493

Craik, K.J.W., 1943, “The nature of Explanation”

Cullen, P.-A., 2000, “Contracting, Co-operative relations and Extended enterprises”,

 Technovation, 20 (7), pp. 363-372.

Damski, Jose C. and Gero, John S. 1997, “An Evolutionary Approach to Generating Constraint-Based Space

Layout Topologies”, CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] Munchen (Germany),

4-6 August 1997, pp. 855-864

Dawkins, R., 1986, the Blind Watchmaker, Norton and Company Inc

Derrida, J., 1976, Of Grammatology, trans. Gayatri Chakravorty Spivak, Baltimore & London: Johns Hopkins

University Press

Eastman C M, 1970, "Representations for space planning" Communications of the ACM 13 242-250 Abstraction

as a tool of automated floor-plan design

Eliasmith, C., 2004, Distributed Representation Dictionary of Philosophy of Mind last edited 2004, last accessed

11 August 2006 available at http://philosophy.uwaterloo.ca/MindDict/distributedrepresentation.html

Eastman C M, 1972, "Preliminary report on a system for general space planning" Communications of the ACA

11 15 76-87

Epstein, J. M., & Axtell, R. L., 1996, Growing Artificial Societies: Social Science from the Bottom Up, The MIT

Press.

Ferber, J. 1999, Multi-agent Systems an Introduction to Distributed Artificial Intelligence, Addison-Wesley,

London

Flemming U, 1977 Automatisierter Grcrndrissentwurf. Darstellung, Erzeuguiig und Dimensionierung Vorl dicht

gepacktcn, rechtwinkligen Fla'chenanordnungen doctoral dissertation, Department of Building Planning and

Construction, Technical University of Berlin, Berlin

http://jasss.soc.surrey.ac.uk/2/2/review1.html
http://homepage.mac.com/cariani/CarianiWebsite/PaskPaper.html
http://philosophy.uwaterloo.ca/MindDict/distributedrepresentation.html

37

Flemming U, 1978a. "Representation and generation of rectangular dissections" Proceedings of the Fifteenth

Design Automation Conference (ACM-SIGDA/IEEE-DATC, New York) pp 138-144

Frazer, JH., 1995, an Evolutionary Architecture, Architectural Association: London

Garson, J., 2002, "Connectionism", The Stanford Encyclopedia of Philosophy (Winter 2002 Edition), Edward N.

Zalta (ed.), available at http://plato.stanford.edu/archives/win2002/entries/connectionism/ last accessed 21

August 2006

Galle P, 1981, "An algorithm for exhaustive generation of building floor plans" Communications of the ACM 24

813-825

Gero J S, 1977, "Note on `Synthesis and optimization of small rectangular floor plans' of Mitchell, Steadman,

and Liggett" Environment and Planning B 4 81- 88

Gero, JS and Damski, J, 1997, “A symbolic model for shape emergence”, Environment and Planning B: Planning

and Design 24: 509-526.

Giddens, A, 1984, The Constitution of Society. Outline of the Theory of Structuration, Polity, Cambridge

Giedion, S., 1948, Mechanization Takes Command, Oxford University Press: Oxford

Gilbert, N., Troitzsch, K.G., 1999, Simulation for the Social Scientist, Open University Press, Buckingham

Gilbert, N., 1995, “Emergence in Social Simulation”, in Artificial Societies the Computer Simulation of Social

Life, Editor Nigel Gilbert, Rosaria Conte, UCL Press: London

Gilleard J, 1978, "LAYOUT-a hierarchical computer model for the production of architectural floor plans"

Environment and Planning B 5 233-241

Goldspink, C., 2000, “Modeling Social Systems as Complex: Towards a Social Simulation Meta-model”, Journal

of Artificial Societies and Social Simulation Vol. 3 No. 2 available at http://jasss.soc.surrey.ac.uk/3/2/1.html last

accessed 9 September 2006

Goldspink, C., 2002, “Methodological Implications of Complex System Approaches to Sociality: Simulation as a

foundation for knowledge”, Journal of Artificial Societies and Social Simulation Vol. 5 No. 1 available at

http://jasss.soc.surrey.ac.uk/5/1/3.html last accessed 9 September 2006

Grason J., 1968, "A dual linear graph representation for space-filling location problems of the floor plan type"

in Emerging Methods in Environmental Design and Planning Ed. G T Moore (MIT Press, Cambridge, MA) pp

17U-178

Hayes, B, 1999, “E-pluribus Unum Simulating Herds. Flocks and Schools”. American Scientist Online January-

Volume 87 No. 1, available online http://www.americanscientist.org/amsci/issues/Comsci99/compsci1999-

01.html last accessed 3 March 2006

Hejl, P.M., 1984, “Towards a Theory of Social Systems. Self-Organization and Self-Maintenance, Self-Reference

and Syn-Reference”. IN H. ULRICH, G. J. B. P. (Ed.) Self-Organization and Management of Social Systems. New

York

Heylighen, A, 2000, In Case of Architectural Design: Critique and Praise of Case-based Design in Architecture,

Doctoral Thesis, Katholieke Universiteit Leuven: Leuven, last accessed 6 February 2006

http://www.alnresearch.org/Data_Files/dissertation/full_text/heylighenPhD.pdf last accessed 13 January 2007

http://jasss.soc.surrey.ac.uk/3/2/1.html
http://jasss.soc.surrey.ac.uk/5/1/3.html
http://www.alnresearch.org/Data_Files/dissertation/full_text/heylighenPhD.pdf

38

Heylighen F., Joslyn, C. 2001, "Cybernetics and Second Order Cybernetics", in: R.A. Meyers (ed.), Encyclopedia

of Physical Science & Technology, Vol. 4 (3rd ed.), (Academic Press, New York), p. 155-170

Heylighen, F, 1998, What are Cybernetics and Systems Science? Basic Concepts of the System Approach,

Principia Cybernetica Web http://pespmc1.vub.ac.be/SYSAPPR.html last accessed 6 February 2006

Hillier, B, 1996, Space is the Machine, Cambridge University Press: Cambridge

Hillier, B., Leaman, 1978, “Space Syntax”, Environment and Planning B, Vol. 3

Hillier, B., Hanson, J, 1984, The Social Logic of Space, Cambridge University Press: Cambridge

Hofstadter, D.R., 1979, Godel, Escher, Bach: an Eternal Golden Braid a Metaphorical Fugue on Minds and

Machines in the Spirit of Lewis Carroll, The Harvester Press Ltd, London

Holland, J.H., 1998, Emergence from Chaos to Order, Oxford University Press: Oxford

Kaisersrot, 2001, Design Your Own Neighbourhood, http://www.kaisersrot.com/kaisersrot-

02/2001_DesignYourOwnNeighbourhood.html last accessed 13 January 2007

Kaisersrot, 2003, Madestein, Den Haag (NL), http://www.kaisersrot.com/kaisersrot-

02/2003_Madestein,_Den_Haag_%28NL%29.html last accessed 12 October 2010

Korf R E, 1977, "A Shape Independent Theory of Space Allocation", Environment and Planning B, 37-50

Krishnamurti, R., Roe, P. H. O'N, 1978, “Algorithmic aspects of plan generation and enumeration,” Planning &

Design, 5, 157–177.

Lawson, B., Park, S., 2000, “Asynchronous Time Evolution in Artificial Society Model”, Journal of Artificial

Societies and Social Simulation vol. 3, no. 1,

http://www.soc.surrey.ac.uk/JASSS/3/1/2.html last accessed 13 January 2007

 Lefebvre, H., 1991, the Production of Space 1974, trans.D. Nicholson-Smith, Blackwell, Cambridge.

Levin, P. H, 1964, “Use of Graphs to Decide the Optimum Layout of Buildings." Architects' Journal October 7

Levy, S., 1992, Artificial Life – Quest for a new creation, Penguin Books

Li, S.-P., Frazer, J.H. and Tang M.-X. 2000, A Constraint Based Generative System for Floor Layouts, CAADRIA

2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN

981-04-2491-4] Singapore 18-19 May 2000, pp. 441-450

Luhmann, N., 1986, 'The Autopoiesis of social systems' in Geyer, F. and van der Zouwen, J. (eds.),

Sociocybernetic Paradoxes, London, SAGE Publications

Maturana, H.R. & Varela, F, 1980, Autopoiesis and Cognition Realization of the Living, Reidel: Holland

Maturana, H., 1995, The Nature of Time available at http://www.inteco.cl/biology/nature.htm last accessed 18

August 2006

Maver, TW. 1970, A Theory of Architectural Design where the Role of Computer is Identified, Building Science:

Miller, I., 1993, Self-organization in biological systems: The Holistic Patterning Process of Chaos and Antichaos

http://www.geocities.com/iona_m/ChaosTheory/chaostheory4.html last accessed 10 October 2008

http://pespmc1.vub.ac.be/SYSAPPR.html
http://www.kaisersrot.com/kaisersrot-02/2001_DesignYourOwnNeighbourhood.html
http://www.kaisersrot.com/kaisersrot-02/2001_DesignYourOwnNeighbourhood.html
http://www.kaisersrot.com/kaisersrot-02/2003_Madestein,_Den_Haag_%28NL%29.html
http://www.kaisersrot.com/kaisersrot-02/2003_Madestein,_Den_Haag_%28NL%29.html
http://www.soc.surrey.ac.uk/JASSS/3/1/2.html
http://www.inteco.cl/biology/nature.htm
http://www.geocities.com/iona_m/ChaosTheory/chaostheory4.html

39

Minsky, M., 1968, “Matter, Mind, and Models”. In: Minsky, M. (ed.): Semantic Information Processing.

Cambridge, Mass.: MIT Press, S. 425-432

Mitchell, W.J., Philip Steadman, and Robin S. Liggett. 1976, "Synthesis and Optimization of Small Rectangular

Floor Plans," Environment and Planning B: Planning and Design 3, no. 1 pp. 37-70.

Nehaniv, C.L. 1996, Cellular Automata and Self-reproduction, University of Aizu, Japan available at hyperactive

book http://homepages.feis.herts.ac.uk/~comqcln//CM/ca.html last accessed 22 August 2010

Noble, J. & Biddle, R, 2004, Companion to the 19th annual ACM SIGPLAN conference on Object-oriented

programming systems, languages, and applications, pp. 112 – 115

Parsons, T., 1982, "Action, Symbols and Cybernetic Control." in Ino Rossi (ed.) Structural Sociology. New York:

Columbia University Press

Pask, G., 1961, an Approach to Cybernetics, Hutchinson & CO: London

Pask, G., 1969, “The Architectural Relevance of Cybernetics”, Architecture Design Journal, pp.494-496

Petzinger, T. 2000, Complexity Reading List, http://www.petzinger.com/complexity.shtml last accessed 6

February 2006

Preparata, F.P,, Shamos, M.I . 1985, Computational Geometry - An Introduction. Springer-Verlag. 1st edition;

2nd printing, corrected and expanded, 1988

Prusinkiewicz, P., Lindenmayer, A., 1990, The Algorithmic Beauty of Plants (The Virtual Laboratory), Springer-

Verlag.

Resnick, Mitchell, 1994, Turtle, Termites and Traffic Jams Exploration in Massively Parallel Microworlds, MIT

Press: Cambridge, MA

Reynolds, C. W., 1987, “Flocks, Herds, and Schools: A Distributed Behavioral Model”, in Computer Graphics,

21(4) (SIGGRAPH '87 Conference Proceedings) pages 25-34.

Schelling, T, 1971, Dynamic models of Segregation, Journal of Mathematical Sociology, 1, 143-186

Schelling, T, 1978 Micromotives and Macrobehaviour, W. W. Norton and Company

Sims, K., 1994, “Evolving Virtual Creatures”, Computer Graphics (Siggraph '94 Proceedings), July 1994, pp.15-

22. available at http://web.genarts.com/karl/papers/siggraph94.pdf last accessed 21 August 2006

Snibbe, S, 1999 “Boundary Functions” http://www.youtube.com/watch?v=1p96bTARFKc Phaeno Wolfsburg

Last accessed 13 March 2009

van Gelder, T.J., 1990, “Why Distributed Representation is Inherently Non-Symbolic”, in G. Dorffner (ed.)

Konnektionismus in Artificial Intelligence und Kognitionsforschung. Berlin: Springer-Verlag, pp; 58-66

van Gelder, T.J., 1999, “Distributed versus local representation”. In R. Wilson & F. Keil ed., The MIT

Encyclopedia of Cognitive Sciences. Cambridge MA: MIT Press, 236-8. pdf

Varela, F., H. Maturana, and R. Uribe, 1974, “FOCAL REFERENCE: Autopoiesis: The organization of living

systems, its characterization and a model”, BioSystems, Vol. 5 (1974), pp. 187-196

Varela, F., Thompson E. & Rosch E., 1992, the Embodied Mind, MIT Press, Ca. Mass.

http://homepages.feis.herts.ac.uk/~comqcln/CM/ca.html
http://www.petzinger.com/complexity.shtml
http://web.genarts.com/karl/papers/siggraph94.pdf
http://www.youtube.com/watch?v=1p96bTARFKc

40

Whitaker, R., 1995a, Autopoietic Theory and Social Systems: Theory and Practice available at

http://www.acm.org/sigs/sigois/auto/AT&Soc.html last accessed 18 August 2006

Whitaker, R., 1995b, Self-Organization, Autopoiesis and Enterprises available at

http://www.acm.org/sigs/sigois/auto/Main.html last accessed 11 August 2006

Whitaker, R. 2001, Autopoiesis Checklist: Observer Web Focus File http://www.enolagaia.com/AT.html last

accessed 17 August 2006

Wilensky, U., 1999, NetLOGO (Version 4.1.3. year 2011), http://ccl.northwestern.edu/netlogo/ last accessed 8

August 2010

Winograd, T., Flores, F., 1986, Understanding Computers and Cognition: a New Foundation for Design,

Addison-Wesley Publishing Company, Reading, MA.

Wolfram, S., 2002, A New Kind of Science, Wolfram Media Inc., Illinois

http://www.acm.org/sigs/sigois/auto/AT&Soc.html
http://www.acm.org/sigs/sigois/auto/Main.html
http://www.enolagaia.com/AT.html

41

Appendix 1 Sample Results

Graphic Set 1. Total Segregation with 30% occupiers
There are 10 different types of agents, friends with the same type.

1. Seed number;

i.e. the number of which

simulation initialize =

555,

2. Snap at 1000

steps

3. Chances of

occupier-visitor

generation 30% which

under assumption that

70% of space would be

movement space,

4. Agent types

are 10,

5. Social

Preference matrix applied

1,0,0,0,0,0,0,0,0,0

0,1,0,0,0,0,0,0,0,0

0,0,1,0,0,0,0,0,0,0

0,0,0,1,0,0,0,0,0,0

0,0,0,0,1,0,0,0,0,0

0,0,0,0,0,1,0,0,0,0

0,0,0,0,0,0,1,0,0,0

0,0,0,0,0,0,0,1,0,0

0,0,0,0,0,0,0,0,1,0

0,0,0,0,0,0,0,0,0,1

6. Size of

population at 250 agents.

7. Additional

output how many agents

that have settled in.

42

Graphic Set 2. Segregation according to type with 30% occupiers
There are 10 different types; friends with the same type and one type friendly to all other types.

1. Seed number;

i.e. the number of which

simulation initialize =

555,

2. Snap at 1000

steps

3. Chances of

occupier-visitor

generation 30% which

under assumption that

70% of space would be

movement space,

4. Agent types

are 10,

5. Social

Preference matrix applied

1,1,1,1,1,1,1,1,1,1

1,1,0,0,0,0,0,0,0,0

1,0,1,0,0,0,0,0,0,0

1,0,0,1,0,0,0,0,0,0

1,0,0,0,1,0,0,0,0,0

1,0,0,0,0,1,0,0,0,0

1,0,0,0,0,0,1,0,0,0

1,0,0,0,0,0,0,1,0,0

1,0,0,0,0,0,0,0,1,0

1,0,0,0,0,0,0,0,0,1

6. Size of

population at 250 agents.

7. Additional

output how many agents

that have settled in.

43

Graphic Set 3. Integrated population with 30% occupiers
There are 10 different types, friends with the same type and 5 types friendly to all other 5 types.

1. Seed number;

i.e. the number of which

simulation initialize =

555,

2. Snap at 1000

steps

3. Chances of

occupier-visitor

generation 30% which

under assumption that

70% of space would be

movement space,

4. Agent types

are 10,

5. Social

Preference matrix applied

1,0,0,0,0,0,0,0,0,0

0,1,0,0,0,0,0,0,0,0

0,0,1,0,0,0,0,0,0,0

0,0,0,1,0,0,0,0,0,0

0,0,0,0,1,0,0,0,0,0

0,0,0,0,0,1,1,1,1,1

0,0,0,0,0,1,1,1,1,1

0,0,0,0,0,1,1,1,1,1

0,0,0,0,0,1,1,1,1,1

0,0,0,0,0,1,1,1,1,1

6. Size of

population at 250 agents.

7. Additional

output how many agents

that have settled in.

44

Graphic Set 4. Total segregation with 50% occupiers
There are 10 different types of agents, friends with the same type.

1. Seed number;

i.e. the number of which

simulation initialize =

555,

2. Snap at 1000

steps

3. Chances of

occupier-visitor

generation 50% which

under assumption that

50% of space would be

movement space,

 4. Agent types

are 10,

5. Social

Preference matrix applied

1,0,0,0,0,0,0,0,0,0

0,1,0,0,0,0,0,0,0,0

0,0,1,0,0,0,0,0,0,0

0,0,0,1,0,0,0,0,0,0

0,0,0,0,1,0,0,0,0,0

0,0,0,0,0,1,0,0,0,0

0,0,0,0,0,0,1,0,0,0

0,0,0,0,0,0,0,1,0,0

0,0,0,0,0,0,0,0,1,0

0,0,0,0,0,0,0,0,0,1

6. Size of

population at 250 agents.

7. Additional

output how many agents

that have settled in.

45

Graphic Set 5. Segregation according to type with 50% occupiers
There are 10 different types; friends with the same type and one type friendly to all other types.

1. Seed number;

i.e. the number of which

simulation initialize =

555,

2. Snap at 1000

steps

3. Chances of

occupier-visitor

generation 50% which

under assumption that

50% of space would be

movement space,

4. Agent types

are 10,

5. Social

Preference matrix applied

1,1,1,1,1,1,1,1,1,1

1,1,0,0,0,0,0,0,0,0

1,0,1,0,0,0,0,0,0,0

1,0,0,1,0,0,0,0,0,0

1,0,0,0,1,0,0,0,0,0

1,0,0,0,0,1,0,0,0,0

1,0,0,0,0,0,1,0,0,0

1,0,0,0,0,0,0,1,0,0

1,0,0,0,0,0,0,0,1,0

1,0,0,0,0,0,0,0,0,1

6. Size of

population at 250 agents.

7. Additional

output how many agents

that have settled in.

46

Graphic Set 6. Integrated population with 50% occupiers
There are 10 different types, friends with the same type and 5 types friendly to all other 5 types.

1. Seed number;

i.e. the number of which

simulation initialize =

555,

2. Snap at 1000

steps

3. Chances of

occupier-visitor

generation 50% which

under assumption that

50% of space would be

movement space,

4. Agent types

are 10,

5. Social

Preference matrix applied

1,0,0,0,0,0,0,0,0,0

0,1,0,0,0,0,0,0,0,0

0,0,1,0,0,0,0,0,0,0

0,0,0,1,0,0,0,0,0,0

0,0,0,0,1,0,0,0,0,0

0,0,0,0,0,1,1,1,1,1

0,0,0,0,0,1,1,1,1,1

0,0,0,0,0,1,1,1,1,1

0,0,0,0,0,1,1,1,1,1

0,0,0,0,0,1,1,1,1,1

6. Size of

population at 250 agents.

7. Additional

output how many agents

that have settled in.

47

Graphic Set 7. Total Segregation with 80% occupiers
There are 10 different types of agents, friends with the same type.

1. Seed number;

i.e. the number of which

simulation initialize =

555,

2. Snap at 1000

steps

3. Chances of

occupier-visitor

generation 80% which

under assumption that

only 20% of space would

be movement space,

4. Agent types

are 10,

5. Social

Preference

1,0,0,0,0,0,0,0,0,0

0,1,0,0,0,0,0,0,0,0

0,0,1,0,0,0,0,0,0,0

0,0,0,1,0,0,0,0,0,0

0,0,0,0,1,0,0,0,0,0

0,0,0,0,0,1,0,0,0,0

0,0,0,0,0,0,1,0,0,0

0,0,0,0,0,0,0,1,0,0

0,0,0,0,0,0,0,0,1,0

0,0,0,0,0,0,0,0,0,1

6. Size of

population at 250 agents.

7. Additional

output how many agents

that have settled in.

48

Graphic Set 8. Segregation according to type with 80% occupiers
There are 10 different types; friends with the same type and one type friendly to all other types.

1. Seed number;

i.e. the number of which

simulation initialize =

555,

2. Snap at 1000

steps

3. Chances of

occupier-visitor

generation 80% which

under assumption that

only 20% of space would

be movement space,

4. Agent types

are 10,

5. Social

Preference matrix applied

1,1,1,1,1,1,1,1,1,1

1,1,0,0,0,0,0,0,0,0

1,0,1,0,0,0,0,0,0,0

1,0,0,1,0,0,0,0,0,0

1,0,0,0,1,0,0,0,0,0

1,0,0,0,0,1,0,0,0,0

1,0,0,0,0,0,1,0,0,0

1,0,0,0,0,0,0,1,0,0

1,0,0,0,0,0,0,0,1,0

1,0,0,0,0,0,0,0,0,1

6. Size of

population at 250 agents.

7. Additional

output how many agents

that have settled in.

49

Graphic Set 9. Integrated population with 80% occupiers
There are 10 different types, friends with the same type and 5 types friendly to all other 5 types.

1. Seed number;

i.e. the number of which

simulation initialize =

555,

2. Snap at 1000

steps

3. Chances of

occupier-visitor

generation 80% which

under assumption that

only 20% of space would

be movement space,

4. Agent types

are 10,

5. Social

Preference matrix applied

1,0,0,0,0,0,0,0,0,0

0,1,0,0,0,0,0,0,0,0

0,0,1,0,0,0,0,0,0,0

0,0,0,1,0,0,0,0,0,0

0,0,0,0,1,0,0,0,0,0

0,0,0,0,0,1,1,1,1,1

0,0,0,0,0,1,1,1,1,1

0,0,0,0,0,1,1,1,1,1

0,0,0,0,0,1,1,1,1,1

0,0,0,0,0,1,1,1,1,1

6. Size of

population at 250 agents.

7. Additional

output how many agents

that have settled in.

50

Appendix 2 Sample Debugging: Social Preference Matrix

The Social Preference Matrix for the sample above is as below.

1,0,0,0,0,0

0,1,1,1,1,1

0,1,1,0,0,1

0,1,0,1,0,1

0,1,0,0,1,1

0,1,1,1,1,1

51

Appendix 3 Sample Numerical Outputs

INPUTS

Populations 210 agents

Universe size 400x400 units

Schelling total segregation matrix with 20% visitors

OUTPUTS
O R I G I NA L D A T A O U T P R E S E N T A T I O N D A T A

Counter Cells Total area Image Number time line % population % area

60 39 14574.54 60 1 18.57 9.11

120 71 25778.33 120 2 33.81 16.11

180 94 35519.00 180 3 44.76 22.20

240 118 51761.67 240 4 56.19 32.35

300 125 57049.38 300 5 59.52 35.66

360 131 63102.09 360 6 62.38 39.44

420 136 61934.58 420 7 64.76 38.71

480 139 69477.81 480 8 66.19 43.42

540 148 69292.88 540 9 70.48 43.31

600 149 68579.15 600 10 70.95 42.86

660 154 74602.57 660 11 73.33 46.63

720 155 80206.85 720 12 73.81 50.13

780 155 83259.79 780 13 73.81 52.04

840 156 79067.33 840 14 74.29 49.42

900 156 84699.35 900 15 74.29 52.94

960 157 76401.08 960 16 74.76 47.75

1020 158 81634.62 1020 17 75.24 51.02

1080 158 87503.61 1080 18 75.24 54.69

1140 159 90990.41 1140 19 75.71 56.87

1200 160 88776.08 1200 20 76.19 55.49

1260 160 93454.35 1260 21 76.19 58.41

1320 160 97443.92 1320 22 76.19 60.90

1380 160 88706.67 1380 23 76.19 55.44

1440 160 82555.87 1440 24 76.19 51.60

1500 161 89630.25 1500 25 76.67 56.02

1560 161 89343.03 1560 26 76.67 55.84

1620 161 82037.65 1620 27 76.67 51.27

1680 161 80304.71 1680 28 76.67 50.19

1740 161 86584.95 1740 29 76.67 54.12

1800 161 87190.27 1800 30 76.67 54.49

1860 161 89737.71 1860 31 76.67 56.09

1920 161 90286.46 1920 32 76.67 56.43

1980 162 93233.59 1980 33 77.14 58.27

2040 162 86310.04 2040 34 77.14 53.94

2100 162 78751.19 2100 35 77.14 49.22

2160 163 84528.95 2160 36 77.62 52.83

2220 163 85494.33 2220 37 77.62 53.43

2280 163 79675.41 2280 38 77.62 49.80

2340 163 83658.09 2340 39 77.62 52.29

2400 164 90863.43 2400 40 78.10 56.79

2460 165 92574.10 2460 41 78.57 57.86

2520 165 92614.09 2520 42 78.57 57.88

2580 165 85127.14 2580 43 78.57 53.20

2640 165 93845.83 2640 44 78.57 58.65

2700 165 96098.81 2700 45 78.57 60.06

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00
1 11

21

31

41

51

61

71

81

91

10
1

11
1

12
1

13
1

14
1

15
1

16
1

% population

% area

52

2760 165 91800.38 2760 46 78.57 57.38

2820 165 86502.05 2820 47 78.57 54.06

2880 165 90060.80 2880 48 78.57 56.29

2940 165 83563.28 2940 49 78.57 52.23

3000 166 87476.31 3000 50 79.05 54.67

3060 166 91701.59 3060 51 79.05 57.31

3120 166 92542.66 3120 52 79.05 57.84

3180 166 92151.80 3180 53 79.05 57.59

3240 166 92721.17 3240 54 79.05 57.95

3300 167 89355.92 3300 55 79.52 55.85

3360 167 82157.69 3360 56 79.52 51.35

3420 167 88056.18 3420 57 79.52 55.04

3480 167 86505.55 3480 58 79.52 54.07

3540 167 82509.07 3540 59 79.52 51.57

3600 167 89206.91 3600 60 79.52 55.75

3660 167 85972.63 3660 61 79.52 53.73

3720 167 90224.32 3720 62 79.52 56.39

3780 167 90470.58 3780 63 79.52 56.54

3840 167 92427.12 3840 64 79.52 57.77

3900 167 92811.74 3900 65 79.52 58.01

3960 167 86972.14 3960 66 79.52 54.36

4020 167 92406.46 4020 67 79.52 57.75

4080 167 91088.95 4080 68 79.52 56.93

4140 167 87421.54 4140 69 79.52 54.64

4200 167 88217.31 4200 70 79.52 55.14

4260 167 93036.15 4260 71 79.52 58.15

4320 167 79916.13 4320 72 79.52 49.95

4380 167 85358.09 4380 73 79.52 53.35

4440 167 87316.54 4440 74 79.52 54.57

4500 167 84166.83 4500 75 79.52 52.60

4560 167 84028.40 4560 76 79.52 52.52

4620 167 82270.77 4620 77 79.52 51.42

4680 167 85493.67 4680 78 79.52 53.43

4740 167 84739.61 4740 79 79.52 52.96

4800 167 89772.28 4800 80 79.52 56.11

4860 167 94191.51 4860 81 79.52 58.87

4920 167 87576.95 4920 82 79.52 54.74

4980 167 84365.35 4980 83 79.52 52.73

5040 167 82389.28 5040 84 79.52 51.49

5100 167 83245.06 5100 85 79.52 52.03

5160 167 87237.87 5160 86 79.52 54.52

5220 167 82643.31 5220 87 79.52 51.65

5280 167 87621.99 5280 88 79.52 54.76

5340 167 93525.72 5340 89 79.52 58.45

5400 167 90622.11 5400 90 79.52 56.64

5460 167 94151.86 5460 91 79.52 58.84

5520 167 88030.47 5520 92 79.52 55.02

5580 167 82595.33 5580 93 79.52 51.62

5640 167 84007.15 5640 94 79.52 52.50

5700 167 85814.00 5700 95 79.52 53.63

5760 167 84014.47 5760 96 79.52 52.51

5820 167 88389.56 5820 97 79.52 55.24

5880 167 91552.30 5880 98 79.52 57.22

5940 167 90616.26 5940 99 79.52 56.64

6000 167 88132.75 6000 100 79.52 55.08

6060 167 97073.08 6060 101 79.52 60.67

6120 167 90482.75 6120 102 79.52 56.55

6180 167 89185.97 6180 103 79.52 55.74

6240 167 90808.94 6240 104 79.52 56.76

6300 167 87175.06 6300 105 79.52 54.48

6360 167 94795.51 6360 106 79.52 59.25

6420 167 91894.78 6420 107 79.52 57.43

6480 167 96290.18 6480 108 79.52 60.18

6540 167 97113.21 6540 109 79.52 60.70

6600 167 91511.67 6600 110 79.52 57.19

6660 167 93972.27 6660 111 79.52 58.73

6720 167 83960.90 6720 112 79.52 52.48

6780 167 94251.83 6780 113 79.52 58.91

6840 167 91606.15 6840 114 79.52 57.25

6900 167 95056.65 6900 115 79.52 59.41

6960 167 93806.55 6960 116 79.52 58.63

7020 167 93794.16 7020 117 79.52 58.62

7080 167 81933.29 7080 118 79.52 51.21

7140 167 80350.77 7140 119 79.52 50.22

7200 167 79381.41 7200 120 79.52 49.61

7260 167 88469.91 7260 121 79.52 55.29

7320 167 80574.62 7320 122 79.52 50.36

7380 167 88969.37 7380 123 79.52 55.61

7440 167 82051.74 7440 124 79.52 51.28

7500 167 83071.61 7500 125 79.52 51.92

7560 167 85001.19 7560 126 79.52 53.13

7620 167 82945.48 7620 127 79.52 51.84

7680 167 83095.41 7680 128 79.52 51.93

7740 167 87264.97 7740 129 79.52 54.54

7800 167 83192.41 7800 130 79.52 52.00

7860 167 86213.34 7860 131 79.52 53.88

7920 167 85096.78 7920 132 79.52 53.19

7980 167 83430.35 7980 133 79.52 52.14

8040 167 88796.16 8040 134 79.52 55.50

53

8100 167 90549.14 8100 135 79.52 56.59

8160 167 92224.49 8160 136 79.52 57.64

8220 167 84993.56 8220 137 79.52 53.12

8280 167 91468.37 8280 138 79.52 57.17

8340 167 88132.64 8340 139 79.52 55.08

8400 167 88795.90 8400 140 79.52 55.50

8460 167 89914.22 8460 141 79.52 56.20

8520 167 87786.70 8520 142 79.52 54.87

8580 167 89864.82 8580 143 79.52 56.17

8640 167 96655.03 8640 144 79.52 60.41

8700 167 93086.99 8700 145 79.52 58.18

8760 167 86186.71 8760 146 79.52 53.87

8820 166 92391.91 8820 147 79.05 57.74

8880 166 89648.77 8880 148 79.05 56.03

8940 166 87341.41 8940 149 79.05 54.59

9000 166 91344.91 9000 150 79.05 57.09

9060 166 85620.48 9060 151 79.05 53.51

9120 165 89101.45 9120 152 78.57 55.69

9180 165 84911.91 9180 153 78.57 53.07

9240 165 96239.50 9240 154 78.57 60.15

9300 165 97591.43 9300 155 78.57 60.99

9360 165 100000.04 9360 156 78.57 62.50

9420 165 87452.41 9420 157 78.57 54.66

9480 165 89667.15 9480 158 78.57 56.04

9540 166 85188.29 9540 159 79.05 53.24

9600 166 93193.57 9600 160 79.05 58.25

9660 166 92056.85 9660 161 79.05 57.54

9720 166 91675.43 9720 162 79.05 57.30

9780 166 85900.66 9780 163 79.05 53.69

9840 166 83121.96 9840 164 79.05 51.95

9900 166 90718.33 9900 165 79.05 56.70

9960 166 89459.74 9960 166 79.05 55.91

54

Appendix 4 The Code

The program is spatial_languaging.dvb and it is compiled in AutoCAD Visual Basic programming.

Spatial_languaging.dvb contains 4 modules as follows.

Module boundarystuff

' version based on may 06 for presentation no changes to overall system but
' to get the agents to stop running away had to do a kludge and just trap and chuck back inside
' main breakthrough was to realise that the circle representation became uncoupled from the actual agent
' once i redefined the circle center to syncronise with the agent pos it look like it was
' rewrote push as carefullypush
' teatime is now really straightforward
' 21st jan 2007

Public bound As AcadRegion 'global definition for the polygon on the screen
Public polys() As AcadLWPolyline
Public boundarypoly As AcadLWPolyline
Const fuzz = 0.1 'make fuzz bigger to ignore more points
Const vcolour = acWhite
Public ticks As Integer

Public recs As Integer

Sub main()
 Dim name As String
 pts = 0
 getpolynodes 0

 'recs = InputBox("gens", "howmany", "2", 5000, 5000)
 'ZoomExtents
 dobrownian 0
 'counterform.Show

 End Sub

 Sub recurse(token As Integer)
 Dim filename As String
 Dim topleft As mypoint, bottomright As mypoint
 Dim message, title, default As String, counter As Integer
 Dim j As Integer, k As Integer, i As Integer, seed As Integer
 Dim newpoint As mypoint, status As Integer, newpointscount As Integer
 Dim r As Integer
 Dim newpoints() As mypoint, this As mypoint

 Rnd (0)
 Randomize
 counter = 0

 Do
 If counter > 0 Then

 eraseregions (0)
 End If
 'ThisDrawing.Regen acActiveViewport

 voronoi (i)

 ' For i = 1 To pts

55

 ' drawpoint originalpoints(i), acRed, 2
 ' Next i

 For i = 1 To pts
 drawpoly cells(i)
 Next i

 erasepolylines (0)
 'ZoomExtents
 'colourin cells
 ' ThisDrawing.Regen acActiveViewport
 MsgBox ("ok")

 ca (i)
 counter = counter + 1
 filename = caseries + Str(counter) + ".dwg"

 ThisDrawing.SaveAs filename

 Loop Until counter > recs
 'Unload counterform

 End Sub

Sub ca(d As Integer)

 Dim i As Integer, j As Integer, nbs As Integer, totaldist As Double
 Dim mytype As Integer, typecounter As Integer
 Dim count As Integer
 Dim jumps As Integer

 ' neues versie die automatien
 ' each cell has a state 1 or 0
 ' if i am an x then unless i have at least 1 y need agent to jump
 ' if i am a y then unless i have at least 1 y need jump
 jumps = 0
 For i = 1 To pts

 count = 0
 mytype = cells(i).spacetype

 For j = 1 To neighbour(i).tot 'cell i's nbs

 count = count + cells(neighbour(i).item(j)).spacetype
 Next j

 If count = neighbour(i).tot Then

 cells(i).jump = True
 jumps = jumps + 1
 End If

 Next i

End Sub

Function blur(p As mypoint) As mypoint
 p.x = p.x + Rnd * fuzz

56

 p.y = p.y + Rnd * fuzz
 blur = p
End Function

Function nottoobig(a As mypoint) As Boolean
If a.x > 100000 And a.y > 100000 Then
 nottoobig = False
 Else
 nottoobig = True
End If
End Function
Function unique(this As mypoint, thepoints() As mypoint, tot As Integer) As Boolean
Dim i As Integer
unique = True
If tot > 0 Then

 'make this a var so i can see why it always fails
 For i = 1 To tot
 If (Abs(this.x - thepoints(i).x) < fuzz) Or (Abs(this.y - thepoints(i).y) < fuzz) Then
 ' coordinates less than fuzz apart treated as the same
 unique = False
 Exit For
 End If
 Next i

 End If

End Function

 Sub erasepolylines(d As Integer)
 Dim gpCode(0) As Integer
 Dim dataValue(0) As Variant
 Dim groupCode As Variant, dataCode As Variant
 Dim allpolys As AcadSelectionSet
 Dim apoly As AcadLWPolyline

 'erase all polylines apart from those on layer boundary

 Set allpolys = ThisDrawing.SelectionSets.add("stuff")
 Mode = acSelectionSetAll
 gpCode(0) = 0
 dataValue(0) = "LWPOLYLINE"
 groupCode = gpCode
 dataCode = dataValue
 allpolys.Select Mode, , , groupCode, dataCode

 If allpolys.count > 0 Then
 For Each apoly In allpolys
 If apoly.Layer <> "boundary" Then apoly.Delete
 Next

 End If

 allpolys.Delete

 End Sub
 Sub eraseregions(d As Integer)
 Dim gpCode(0) As Integer
 Dim dataValue(0) As Variant
 Dim groupCode As Variant, dataCode As Variant
 Dim allregions As AcadSelectionSet

57

 Dim aregion As AcadRegion
 Set allregions = ThisDrawing.SelectionSets.add("stuff")
 Mode = acSelectionSetAll
 gpCode(0) = 0
 dataValue(0) = "REGION"
 groupCode = gpCode
 dataCode = dataValue
 allregions.Select Mode, , , groupCode, dataCode

 If allregions.count > 0 Then
 For Each aregion In allregions
 If aregion.Layer <> "boundary" Then aregion.Delete
 Next

 End If

 allregions.Delete

End Sub

Sub getpolynodes(dummy As Integer)

Dim gpCode(0) As Integer
Dim dataValue(0) As Variant
Dim groupCode As Variant, dataCode As Variant
Dim apoint(2) As Double
Dim circ As AcadCircle, count As Integer
Dim ssetobj As AcadSelectionSet
Dim ss As Variant

pts = 1: count = 1
checkforboundary 0

If ThisDrawing.SelectionSets.count > 0 Then

ThisDrawing.SelectionSets.item("stuff").Delete

End If

'--look for site boundary in christians darwing on layer 05 boundary-------------------------
' ------------ and extract points for voronoi -------------------------------------
 Set ssetobj = ThisDrawing.SelectionSets.add("stuff")
 Mode = acSelectionSetAll
 gpCode(0) = 8
 dataValue(0) = "boundary"
 groupCode = gpCode
 dataCode = dataValue
 ssetobj.Select Mode, , , groupCode, dataCode
 bb% = ssetobj.count

 If ssetobj.count > 0 Then ' found some polys
 If ssetobj.count > 1 Then
 MsgBox ("too many boundaries")
 Exit Sub
 End If

 Set boundarypoly = ssetobj.item(0) 'make boundarypoly global for recreation purposes
 boundarypoly.Layer = "boundary"
 'extractpoints boundarypoly, count

 Else
 MsgBox ("noboundary")
 End If

 ssetobj.Delete

 Set ssetobj = ThisDrawing.SelectionSets.add("stuff")
 '--look for buildings in christians darwing on layer 00 site blds-------------------------
 'and extract points

58

 dataValue(0) = "blds"
 groupCode = gpCode
 dataCode = dataValue
 ssetobj.Select Mode, , , groupCode, dataCode
 bb% = ssetobj.count
 If bb% = 0 Then
 MsgBox ("click to continue")
 Else
 ReDim polys(bb% - 1) As AcadLWPolyline '' make polys global for recreation purposes too

 For i = 0 To ssetobj.count - 1
 Set polys(i) = ssetobj.item(i)
 polys(i).Layer = "boundary"
 extractpoints polys(i), count
 Next i 'each polyline

 End If

 '--lsubtract bldgs from boundary region and -------------------------

 makeboundaryregion 0

 pts = pts - 1

 '--look for circles anywhere ? -------------------------
 ssetobj.Delete

 Set ssetobj = ThisDrawing.SelectionSets.add("stuff")

 gpCode(0) = 0
 dataValue(0) = "CIRCLE"
 groupCode = gpCode
 dataCode = dataValue
 ssetobj.Select Mode, , , groupCode, dataCode

 If ssetobj.count > 0 Then ' found some circles
 count = ssetobj.count

 For i = 0 To ssetobj.count - 1

 Set circ = ssetobj.item(i)
 If circ.Layer = "circles" Then

 pts = pts + 1
 ReDim Preserve originalpoints(1 To pts) As mypoint
 originalpoints(pts).x = circ.center(0) '+ Rnd
 originalpoints(pts).y = circ.center(1) '+ Rnd
 originalpoints(pts).z = 0
 End If

 Next i
 End If

ssetobj.Delete

End Sub
Sub extractpoints(thispoly As AcadLWPolyline, count As Integer)

Dim coords As Variant, lb As Long, ub As Long, apoint(2) As Double, p As mypoint
''Static count As Integer

59

 coords = thispoly.Coordinates
 lb = LBound(coords)
 ub = UBound(coords)
 'pts = pts + ((ub + 1) - lb) / 2

 If count = 1 Then ReDim originalpoints(1 To 1) As mypoint

 For j = lb To ub Step 2

 p.x = coords(j): p.y = coords(j + 1)
 apoint(0) = coords(j): apoint(1) = coords(j + 1)

 If unique(p, originalpoints, count - 1) Then
 ReDim Preserve originalpoints(1 To count) As mypoint
 originalpoints(count).x = apoint(0) '+ Rnd
 originalpoints(count).y = apoint(1) '+ Rnd
 originalpoints(count).z = 0
 count = count + 1
 pts = pts + 1

 If apoint(0) = 0 Or apoint(1) = 0 Then
 dd = 0
 End If

 Else
 'MsgBox ("skipping")
 End If

 Next j 'points of each polyline
End Sub
Function gethatchvalue(pos As mypoint) As String
Dim thingy As AcadSelectionSet, thing As AcadHatch
Dim corner1(2) As Double, corner2(2) As Double
Dim gpCode(0) As Integer, name As String
'Dim aline As AcadLine
Dim dataValue(0) As Variant
Dim groupCode As Variant, dataCode As Variant

 Mode = acSelectionSetCrossing
 corner1(0) = pos.x - 3.5: corner1(1) = pos.y - 3.5: corner1(2) = 0
 corner2(0) = pos.x + 3.5: corner2(1) = pos.y + 3.5: corner2(2) = 0
 ' Set aline = ThisDrawing.ModelSpace.AddLine(corner1, corner2)

 ' aline.Update

 Set thingy = ThisDrawing.SelectionSets.add("things")
 gpCode(0) = 0
 dataValue(0) = "HATCH"
 groupCode = gpCode
 dataCode = dataValue
 thingy.Select Mode, corner1, corner2, groupCode, dataCode

 If thingy.count > 0 Then ' found some stuff
 For Each thing In thingy
 name = thing.Layer
 If name = "00-X-large" Or name = "00-Small" Or name = "00-medium" Or name = "00-large" Then Exit For

 Next thing
 End If
 thingy.Delete
 If name = "" Then gethatchvalue = "ERROR" Else gethatchvalue = name

End Function
Function makeregion(poly As AcadLWPolyline) As AcadRegion
 Dim thepoly(0) As AcadEntity 'thing to use in addregion
 Dim boundary As Variant 'assign with addregion
 Dim boundy() As AcadRegion 'thing you redim

60

 Set thepoly(0) = poly 'poly is the polygon
 boundary = ThisDrawing.ModelSpace.AddRegion(thepoly)

 ReDim boundy(UBound(boundary)) As AcadRegion

 Set makeregion = boundary(0)

End Function
Sub checkforboundary(dum As Integer)
Dim thelayers As AcadLayers, alayer As AcadLayer, found As Boolean
 found = False
 Set thelayers = ThisDrawing.Layers
 If thelayers.count > 0 Then
 For Each alayer In thelayers
 If alayer.name = "boundary" Then found = True
 Next
 End If

 If Not found Then Set alayer = ThisDrawing.Layers.add("boundary")

End Sub
Function checkforlayer(aname As String) As AcadLayer
Dim thelayers As AcadLayers, alayer As AcadLayer, found As Boolean
 found = False
 Set thelayers = ThisDrawing.Layers
 If thelayers.count > 0 Then
 For Each alayer In thelayers
 If alayer.name = aname Then found = True
 Next
 End If

 If Not found Then
 Set checkforlayer = ThisDrawing.Layers.add(aname)
 Else
 Set checkforlayer = ThisDrawing.Layers.item(aname)
 End If

End Function

Sub makeboundaryregion(dd As Integer)
 Dim ahole As AcadRegion, boundary As AcadRegion
 Dim totpol As Integer
 checkforboundary 0
 ' totpol = UBound(polys)

 Set boundary = makeregion(boundarypoly) 'globalvar boundarypoly
 ' For i = 0 To UBound(polys) 'globalvar polys()
 ' Set ahole = makeregion(polys(i))
 ' boundary.Boolean acSubtraction, ahole
 ' Set bound = boundary 'global var bound
 ' bound.Layer = "boundary"
 'Next

 Set bound = boundary 'global var bound
 bound.Layer = "boundary"

End Sub

Module brownian

'20 jan 2010
'adds back in visitor percentage

'12 jan 2010

61

'what needed to run the program: base poly.dwg turn off boundary layer before the run, change background MENU
TOOLS/OPTIONS/DISPLAY/COLORS
'a folder called stuffs on C:, relationships.txt. data.txt
'has to save and naming file to get a display of coloured cells when simulation runs
'comments cleaned. bug unsolved yet: dwg and bmp can't capture coloured cells. could well be plot and render bug in autocad.

'dwg/bmp got coloured using visualstyles solved 16 feb 2011 -- choesnah
'for purpose of recording/showing ABM movement, turn off ThisDrawing.SendCommand ("_vscurrent" & vbCr & "R" & vbCr) -- choesnah
16 feb 2011

' ADD TEXTOUT for analysis 27 jan 2007 -choesnah
' basic skeleton for moving circlees with simple agents who are circlees
' most of the bits not needed are commented out or missing
' included steplength and diameter 5/8/03

' 16th april 2004 simplified clustering with only colours, and integrated voronoi
' with area and perimeter calculations
' to do - aggregate smallest cells and redo voronoi as larger cells
'startdiam added used in reset++

'9th dec get up relations and transfer chum to function rather than data type

Const universe = 200
Const wobble = 45
Const pi = 3.14159
Public pathname As String

Public Type agent
 circleid As Long
 heading As Double
 colour As Integer
 diameter As Double 'formerly known as steplength ,
 steplength As Double
 begin As mypoint
 finish As mypoint
 plus As Double
 minus As Double
 forward As Double
 stuck As Integer
 neighbour As Long 'object id of the friend
 groupnumber As Integer
 spacetype As Integer
 jump As Boolean
 stopped As Integer 'counts up how many consecutive times its been stationary
End Type

Public Const globaldatapathname = "c:\stuffs\data.txt"
Public savestuff As Boolean
Public alllayers As AcadLayers
Public thelay As AcadLayer, boundarylayer As AcadLayer
Public boundary As Acad3DSolid
Public maxgoes As Integer
Public thecircles() As agent 'we dont know how many circles to draw, thus not to put "1 to pts" inside brackets
Public limbocircles() As agent
Public relations() As Boolean
Public startdiam As Double
Public groups As Integer
Public cols() As Integer

Sub dobrownian(tt As Integer)
 Dim walker As agent, c As Integer
 Dim topleft As mypoint, bottomright As mypoint
 Dim acircle As AcadObject, randpoint(2) As Double
 Dim t As Long
 Dim origin(2) As Double
 Dim rellies As String

 startdiam = 2

 Set thelay = checkforlayer("circle_layer")
 Set boundarylayer = checkforlayer("boundary") 'dont erase boundary as well as circles

62

 seed = val(InputBox("seed", "any numbers", 978345210))
 ticks = val(InputBox("how may times round the block ", "steps", 500)) 'this is how many steps to run program which is proportional to
mod n =0, so adjust as necessary

 Rnd (-1)
 Randomize (seed)
 savestuff = (InputBox("want to save stuff", "y, folder c:\stuffs") = "y")

 If savestuff Then
 pathname = "c:\stuffs\" + InputBox("type name for saved drawings", "naming the drawings")
 Open globaldatapathname For Append As #1
 Write #1, "counter ¦ number of occupied cells ¦ total area of occupied cells"
 Close #1
 End If

 'ThisDrawing.SendCommand "_erase" & vbCr & "all" & vbCr
 'ThisDrawing.SendCommand vbCr

 thelay.Lock = False
 boundarylayer.Lock = False

 groups = InputBox("how many groups ?", "different groups represented by different colours", 6)
 pts = InputBox("how many people?", "size of population", 70)

 ReDim originalpoints(1 To pts) As mypoint
 ReDim thecircles(0 To pts) As agent 'fills in the array thecircles with the randomly scattered circles
 ReDim limbocircles(1 To pts) As agent
 ReDim relations(1 To groups, 1 To groups) As Boolean '2d array of compatible agents
 ReDim cols(1 To groups) As Integer
 Dim rel As Integer

 rellies = "c:\stuffs\relationships.txt"

 Open rellies For Input As 2#

 For i = 1 To groups '(n is how many type of agents/colours)

 For j = 1 To groups
 Input #2, rel
 relations(i, j) = (rel = 1)
 Next j
 Next i

 Close #2

For c = 1 To pts 'nd means unbiased sample

 randpoint(0) = random(-universe * 0.8, universe * 0.8) 'choose random x y z the array is autocads way of holding a point
 randpoint(1) = random(-universe * 0.8, universe * 0.8)
 randpoint(2) = 0

 walker.diameter = startdiam 'sizs(Int(random(1, nsize)))
 walker.steplength = walker.diameter
 walker.heading = random(0, 360)

 Set acircle = ThisDrawing.ModelSpace.AddCircle(randpoint, walker.diameter / 2)
 'walker is represented as circle

 walker.circleid = acircle.ObjectID

 If Rnd > 0.2 Then 'change here to control how many percentage of visitors
 walker.colour = Int(random(1, CDbl(groups)))
 Else
 walker.colour = 256
 End If

 acircle.color = walker.colour 'colour the circle by groupnumber

63

 acircle.Layer = "circle_layer"
 acircle.Update

 walker.begin.x = randpoint(0) ' set walker's position to be that same as the circle
 walker.begin.y = randpoint(1) ' (using my preferred way of defining a point
 walker.begin.z = 0

 thecircles(c) = walker '

Next c

teatime (0) 'a cup of tea is good example of brownian system

End Sub
Sub gestalt(counter As Integer, ci As Integer, cj As Integer)
Dim numcols() As Integer
Dim jj As Integer
ReDim numcols(1 To groups) As Integer

For c = 1 To pts
 originalpoints(c).x = thecircles(c).begin.x + random(0, 0.001)
 originalpoints(c).y = thecircles(c).begin.y + random(0, 0.001)
 If thecircles(c).spacetype = 1 Then
 dd = 0
 End If

 originalpoints(c).spacetype = thecircles(c).spacetype
 originalpoints(c).kuller = thecircles(c).colour
Next c

 voronoi (0)

 Open globaldatapathname For Append As #1

totalareas = 0
totalspacetypes = 0
 For jj = 1 To groups
 numcols(jj) = 0
 Next jj

 For i = 1 To pts
 drawpoly cells(i)
 If cells(i).spacetype = 1 Then
 For jj = 1 To groups
 If cells(i).kuller = cols(jj) Then numcols(jj) = numcols(jj) + 1 'counting up all the polygons that spacetype 1 (occupied) = we know how
many agents clump
 'Write #1, "how many cells occupied now?"; numcols(jj)
 Next jj

 totalspacetypes = totalspacetypes + 1
 totalareas = totalareas + cells(i).area
 End If

 Next i
 erasepolylines (0)
 ThisDrawing.Regen acActiveViewport

 Write #1, counter, totalspacetypes, totalareas ' counter = at what step, totalspacetypes = ??? and totalareas = total area rendered
 For jj = 1 To groups
 'Write #1, numcols(jj);
 Next jj
 Close #1

 ca (0)

For c = 1 To pts
thecircles(c).jump = cells(c).jump
If thecircles(c).begin.x > universe Then

64

 dd = 0
 End If
'thecircles(c).spacetype = 0 'this will hapen in reset
Next c

End Sub

Function hitsomething(myself As agent) As Boolean
Dim circ As AcadCircle, pt As Variant, intersect As Boolean

Set circ = ThisDrawing.ObjectIdToObject(myself.circleid)
circ.Radius = myself.diameter * 4
'circ.Update

intersect = False

 'Find the intersection points between thecircles(i) and boundary
 pt = circ.IntersectWith(boundarypoly, acExtendNone)
 If VarType(pt) <> vbEmpty Then
 If UBound(pt) > -1 Then
 intersect = True
 Else
 intersect = False
 End If
 Else
 intersect = False
 End If

hitsomething = intersect 'withboundary(myself)
If Not hitsomething And outside(myself) Then
dd = 0
End If

circ.Radius = myself.diameter / 2 'set back
'circ.Update
End Function

Function intersectwithboundary(myself As agent) As Integer

Dim howfar As Double
howfar = universe * 0.8

If myself.begin.x <= -howfar Or myself.begin.x >= howfar Or myself.begin.y <= -howfar Or myself.begin.y >= howfar Then
 intersectwithboundary = True
Else
 intersectwithboundary = False
End If
End Function

Sub teatime(dummy As Integer)
Dim i As Integer, j As Integer, d As Double, towards As Double, away As Double
Dim w As agent, therad As Double
Dim near As Double, thej As Integer
Dim needed As Double, altered As Integer
 Dim allpolys As AcadSelectionSet

' works by running through all circles and
' 1 if too close then back off one diameter
' 2 if nearest bloke is chum then adopt heading after backoff
'
' searching is done on thecircles array and changes to position and heading are made
' to limbocircles which are copied back to the circles at the end of each generation
' seem to have disabled jump reset just relocates randomly now inside universe * 0.8 11/ 4/06

Dim ci As Integer, cj As Integer

Dim stopped As Integer, muststop As Integer, counter As Integer
counter = 0

65

Do
 counter = counter + 1
 ''-----------------------store current circles

 ' check limbo and circles relations
 ' try jumping (first time only) and go home on incoming circles

 For i = 1 To pts
 With thecircles(i)
 If .steplength < 0.001 Then
 .stopped = .stopped + 1
 Else
 .stopped = 0
 End If

 If .jump Then
 reset thecircles(i) 'dont bother, just keep walking

 .jump = False
 End If
 End With

 limbocircles(i) = thecircles(i) 'SET LIMBO TO CURRENT STATE
 Next i

 '''----------------------- check the circles and alter heading and/or steplength
 For i = 1 To pts

 For j = 1 To pts

 If i <> j Then 'not myself
 d = distance(thecircles(i).begin, thecircles(j).begin)

 needed = thecircles(i).diameter * 5 '================== trying ratio but from large nbhood not everywhere/ 2 +
thecircles(j).diameter / 2

 ' what is happening here is that we have widened the distance the agent is affected by a chum
 ' so it moves towards things proportionally slowly in the feild of d * 5 or whatever
 If d < needed Then ' very close
 If chums(thecircles(i).colour, thecircles(j).colour) Then
 slowdown limbocircles(i), d, thecircles(i).diameter * 5 'slowdown when distance = 5* dia
 ci = i
 cj = j
 towards = getangle(thecircles(i).begin, thecircles(j).begin)
 limbocircles(i).heading = towards 'this one move towards chum

 Else

 '-----still close but not chums --------------------
 towards = getangle(thecircles(i).begin, thecircles(j).begin)
 away = (towards + 90) Mod 360
 limbocircles(i).heading = away

 End If 'chums
 End If 'close

 If intersectwithboundary(thecircles(i)) Then 'just cheapo to speed up CHANGED TO THE CIRCLES
 limbocircles(i).heading = (limbocircles(i).heading + 180 + random(-2, 2)) Mod 360
 End If

 End If 'i<> j
 Next j
 Next i

 For i = 1 To pts
 thecircles(i) = limbocircles(i)

66

 carefullypush thecircles(i), thecircles(i).steplength, False

 If outside(thecircles(i)) Then 'double check in case carefullypush didnt work
 vv = 0
 End If

 Next i
 If counter Mod 60 = 0 Then 'Mod 50 = 0 means every 50-th to get gestalt incl. graphics out and print chum
 'HOW to show/record ABM movement is it no gestalt???? is it big number of Mod???
 gestalt counter, ci, cj

 If savestuff Then

 'ThisDrawing.SendCommand "shademode" + vbCr + "_l" + vbCr this line does not work 16 feb 2011
 ThisDrawing.SendCommand ("_vscurrent" & vbCr & "R" & vbCr) 'get coloured cells graphic output - 16 feb 2011

 Set allpolys = ThisDrawing.SelectionSets.add("allofit")
 allpolys.Select acSelectionSetAll
 ThisDrawing.Regen acActiveViewport
 ThisDrawing.SaveAs (pathname + Str$(counter))
 ThisDrawing.Export (pathname + Str$(counter)), "BMP", allpolys

 allpolys.Delete
 End If

 'unshade
 'ThisDrawing.SendCommand "shademode" + vbCr + "_2" + vbCr this line does not work 16 feb 2011

 thelay.Lock = True
 boundarylayer.Lock = True
 ThisDrawing.SendCommand "_erase" & vbCr & "all" & vbCr
 ThisDrawing.SendCommand vbCr
 thelay.Lock = False
 boundarylayer.Lock = False

 ThisDrawing.Regen acActiveViewport 'screen view not updating, can not create movie or display movement

 End If
 check_for_stationary (counter)
Loop Until counter > ticks 'saving 5 images

End Sub
Sub check_for_stationary(counter As Integer)

'if an agent has been stationary for three ticks then increase stopped counter by one
' if the stopped counter is more than zero check that any are already stopped
'if so add up counter
Dim numstat As Integer
numstat = 0
Dim i As Integer
For i = 1 To pts
If thecircles(i).stopped > 2 Then numstat = numstat + 1
Next i
End Sub

Sub gohome(a As agent)
a.begin.x = random(-universe * 0.8, universe * 0.8)
a.begin.y = random(-universe * 0.8, universe * 0.8)
'sorry

End Sub
Sub jump(myself As agent)
' get boundary poly's points
Dim sortdists() As pair
Dim howmanycoords As Variant
Dim howmanypoints As Integer

67

Dim bounder As AcadLWPolyline, apoint As Variant, dist As Double, ppt As mypoint
Dim jumppoint As mypoint
Set bounder = boundarypoly
howmanycoords = bounder.Coordinates
howmanypoints = (UBound(howmanycoords) + 1) / 2
ReDim sortdists(1 To howmanypoints) As pair

For i = 0 To howmanypoints - 1
 apoint = bounder.Coordinate(i)
 ppt.x = apoint(0): ppt.y = apoint(1)
 dist = distance(myself.begin, ppt)
 sortdists(i + 1).value = dist
 sortdists(i + 1).index = i + 1

Next i

bubblesort sortdists, howmanypoints
apoint = bounder.Coordinate(sortdists(howmanypoints).index - 1)
dist = sortdists(howmanypoints).value
myself.finish.x = apoint(0)
myself.finish.y = apoint(1)
myself.heading = getangle(myself.begin, myself.finish)
If outside(myself) Then
d = 0
End If
myself.jump = False
End Sub

Sub reset(myself As agent)
 Dim dist As Double

myself.finish.x = random(-universe * 0.8, universe * 0.8)
myself.finish.y = random(-universe * 0.8, universe * 0.8)
dist = distance(myself.begin, myself.finish)
myself.heading = getangle(myself.begin, myself.finish)
myself.diameter = startdiam 'sizs(Int(random(1, nsize)))
myself.steplength = myself.diameter
myself.spacetype = 0
If outside(myself) Then
d = 0
End If
myself.heading = random(0, 360)
End Sub
Function outsidebegin(a As agent) As Boolean
outsidebegin = a.begin.x < -198 Or a.begin.y < -198 Or a.begin.x > 198 Or a.begin.y > 198
End Function
Function outsidefinish(a As agent) As Boolean
outsidefinish = a.finish.x < -198 Or a.finish.y < -198 Or a.finish.x > 198 Or a.finish.y > 198
End Function
Function outside(a As agent) As Boolean
outside = a.begin.x < -198 Or a.begin.y < -198 Or a.begin.x > 198 Or a.begin.y > 198 Or a.finish.x < -198 Or a.finish.y < -198 Or a.finish.x >
198 Or a.finish.y > 198
End Function
Sub slowdown(myself As agent, dist As Double, maxdist As Double)
' if you are near a compatible object then reduce steplength proportionally to the distance
'between you and the other guy (only called for agents withing maxdist of each other added 11 april 06
Dim ratio As Double 'proportion of dist represented by diameter

ratio = dist / maxdist
 If ratio > 0 Then

 myself.steplength = myself.steplength * ratio
 If myself.steplength < 0.001 Then 'was veryslow
 myself.spacetype = 1
 Else
 myself.spacetype = 0
 End If
 End If

End Sub

68

Sub slowdown2(myself As agent, dist As Double)
' if you are near a compatible object then reduce steplength proportionally to the distance
'between you and the other guy
Dim ratio As Double 'proportion of dist represented by diameter
 If dist > 0 Then

 myself.steplength = myself.steplength * 0.5
 If myself.steplength < 0.1 Then 'was veryslow
 myself.spacetype = 1
 Else
 myself.spacetype = 0
 End If

 End If
End Sub

Function polar(here As mypoint, length As Double, angle As Double) As mypoint
Dim therad As Double

therad = (angle / 180 * pi) 'look left , therad = the radian
polar.x = here.x + length * Cos(therad)
polar.y = here.y + length * Sin(therad)
polar.z = 0
End Function

Function chums(i As Integer, j As Integer) As Boolean
' to see if agent i should follow agent j
chums = False

If i >= 1 And i <= groups And j >= 1 And j <= groups Then
 chums = relations(i, j)

End If
 ci = i
 cj = j
End Function

' push gets the circle id being carried by the agent and convert the objectid
' into an object. then it can move it

Sub carefullypush(myself As agent, distance As Double, jumping As Boolean)
Dim thecircle As AcadCircle
Dim start(0 To 2) As Double, finish(0 To 2) As Double
 myself.finish = polar(myself.begin, distance, myself.heading)
 myself.finish.z = 0
 If outsidebegin(myself) Then
 d% = 0
 End If
 If outsidefinish(myself) Then
 d% = 0
 End If
 Dim home As Boolean
 If outside(myself) Then ' see if this new point is outside the universe
 gohome myself 'jump agent to 0 0 0
 home = True
 myself.finish = polar(myself.begin, distance, myself.heading)

 End If

 convert myself.begin, myself.finish, start, finish
 Set thecircle = ThisDrawing.ObjectIdToObject(myself.circleid) ' convert to object
 thecircle.center = start
 thecircle.Move start, finish ' move it
 myself.finish.z = 0

 thecircle.color = myself.colour
 thecircle.Update

69

 myself.begin = myself.finish ' move myself

 If outside(myself) Then
 ff% = 0
 End If
End Sub

Sub convert(b As mypoint, f As mypoint, start() As Double, finish() As Double)
start(0) = b.x
start(1) = b.y
start(2) = b.z
finish(0) = f.x
finish(1) = f.y
finish(2) = f.z
End Sub

Module friends

'***********************************general sub-routines and functions**************************
'
'friendly subs and functions include: description:
'
' distance2d() distance between 2 points in 2d
' distance3d() distance between 2 points in 3d
' random() calculates random number between two limits
' askpoint() prompts user for input points on screen
' howmany() creates dialog box and prompts user to input number
' bubblesort() sorts an array hierachically according to some criteria
' findpoint() calculates point with a given angle and distance
' findpointZ() calculates z-value of point given height and distance
' getangle2d() calculates angle between two points in 2d
' copypt() copies one array into another
' wipe() erases everything in the drawing
' load_table() reads a txt file in and stores them in a table
' hexdec() converts a hexidecimal string to a decimal number
' bit_swtich() switches a bit on in a byte (translation from 'C')
' snap_off() toggles the snap mode of the current viewport
' open_dwg() opens a drawing
' sel_set_del() gathers existing selection sets and delets them
' flipcoin() 50/50 % chance to get either 1 or -1
' wipe_layer() erase objects on a specific layer
'
'***

Public Const pi = 3.14159

Public Type point
 x As Double
 y As Double
 z As Double
End Type

Public Function distance2d(here As point, there As point)

 Dim dx As Double, dy As Double

 dx = (here.x - there.x) ^ 2
 dy = (here.y - there.y) ^ 2

 distance2d = Sqr(dx + dy)

End Function

Public Function distance3d(here As point, there As point)

 Dim dx As Double, dy As Double

 dx = (here.x - there.x) ^ 2

70

 dy = (here.y - there.y) ^ 2
 dz = (here.z - there.z) ^ 2

 distance3d = Sqr(dx + dy + dz)

End Function

Public Sub askpoint(apoint() As Double)

 Dim token As Variant

 token = ThisDrawing.Utility.GetPoint(, "Enter a point: ") 'has to work with variants and no arrays
 apoint(0) = token(0): apoint(1) = token(1): apoint(2) = 0

End Sub

Public Function howmany(what As Integer) As Integer

 Dim message As Variant, title As Variant, default As Variant

 If (what = 0) Then

 message = "what gridsize"
 title = "grid"
 default = "3"

 Else

 message = "number of effectors"
 title = "effectors"
 default = "3"

 End If

 ' Display message, title, and default value.
 howmany = InputBox(message, title, default)

End Function

Public Sub findpoint(here As point, angle As Double, length As Double, there As point)

 Dim radianang As Double

 radianang = (angle / 180) * pi
 there.x = here.x + (length * Cos(radianang))
 there.y = here.y + (length * Sin(radianang))
 there.z = here.z

End Sub

Public Function findpointZ(height As Double, distance_to_xy_coor As Double) As Double

 findpointZ = Tan(height / 180 * pi) * distance_to_xy_coor 'take distance2d()

End Function

Public Function getangle2d(st As point, fin As point) As Double

 Dim q As Integer, head As Double, add As Double
 Dim xd As Double, yd As Double, r As Double

 ' calculate quadrant
 If fin.x > st.x Then
 If fin.y > st.y Then
 q = 1
 Else
 q = 2
 End If

71

 Else
 If fin.y < st.y Then
 q = 3
 Else
 q = 4
 End If
 End If

 Select Case q

 Case 1
 xd = fin.x - st.x
 yd = fin.y - st.y
 If xd = 0 Then
 r = pi / 2
 Else
 r = yd / xd
 End If
 add = 0

 Case 2
 yd = st.y - fin.y
 xd = fin.x - st.x
 add = 270
 If yd = 0 Then
 r = pi / 2
 Else
 r = xd / yd
 End If

 Case 3
 xd = st.x - fin.x
 yd = st.y - fin.y
 If xd = 0 Then
 r = pi / 2
 Else
 r = yd / xd
 End If
 add = 180

 Case 4
 xd = st.x - fin.x
 yd = fin.y - st.y
 If yd = 0 Then
 r = pi / 2
 Else
 r = xd / yd
 End If
 add = 90

 End Select

 If xd = 0 Then
 getangle2d = 90 + add
 Else
 getangle2d = ((Atn(r) / pi) * 180) + add
 End If

End Function

Public Sub copy(a As point, b() As Double)

 b(0) = a.x
 b(1) = a.y
 b(2) = a.z

End Sub

Public Sub wipe(token As Integer)

 ThisDrawing.SendCommand "erase" & vbCr & "all" & vbCr & vbCr

72

End Sub

Public Sub load_table(token As Integer)

 Dim table(256, 16) As Integer 'change to whatever table you want to create
 Dim name As String

 '---make sure you define the whole path to the file & !!! put '-1' at the end of the string to be read which means that the end of line is
reached
 name = "Table3D.TXT" 'exchange the name of the table with full path

 Open name For Input As 1
 f = CStr(Input$(LOF(1), #1))
 Close

 '---store the values in an array called table
 t1 = Split(f, "{") 'change the symbol of the delimiter accordingly
 For i = 0 To UBound(t1)
 t2 = Split(t1(i), ",") 'change the symbol of the delimiter accordingly
 For j = 0 To UBound(t2)
 table(i, j) = val(t2(j))
 Next
 Next

End Sub

'**
'*****************************converts a hexadecimal string to a decimal number**************************
'**

Public Function hexdec(no As String) As Long

 Dim sel As Boolean
 Dim leng As Integer
 Dim temp As Long, total As Long
 Dim l As String, r As String

 no = Trim(no) 'cuts the empty spaces from the string

 leng = Len(no)

 For i = 1 To leng

 r = Right(no, i)
 l = Left(r, 1)

 sel = False

 Select Case l
 Case "a"
 lef = 10
 sel = True
 Case "b"
 lef = 11
 sel = True
 Case "c"
 lef = 12
 sel = True
 Case "d"
 lef = 13
 sel = True
 Case "e"
 lef = 14
 sel = True
 Case "f"
 lef = 15
 sel = True
 Case " "
 lef = 0
 sel = True

73

 End Select

 If (Not sel) Then
 lef = val(l)
 End If

 temp = lef * (16 ^ (i - 1))
 total = total + temp

 Next i

 hexdec = total

End Function

Public Function bit_switch(bit As Integer) As Integer

'---in 'C' one can switch on a bit of a byte separately

 Dim bit_con As Integer

 Select Case bit

 Case 1
 bit_con = 1 '0000000I
 Case 2
 bit_con = 3 '000000II
 Case 4
 bit_con = 7 '00000III
 Case 8
 bit_con = 15 '0000IIII
 Case 16
 bit_con = 31 '000IIIII
 Case 32
 bit_con = 63 '00IIIIII
 Case 64
 bit_con = 127 '0IIIIIII
 Case 128
 bit_con = 255 'IIIIIIII
 Case 256
 bit_con = 512

 End Select

 bit_switch = bit_con

End Function

Public Sub snap_off(token As Integer)

 Dim viewportObj As AcadViewport

 ' Set the viewportObj variable to the activeviewport
 Set viewportObj = ThisDrawing.ActiveViewport

 ' Toggle the setting of SnapOn
 viewportObj.SnapOn = Not (viewportObj.SnapOn)

 ' Reset the active viewport to see the change on the AutoCAD status bar
 ThisDrawing.ActiveViewport = viewportObj

End Sub

Public Sub open_dwg(token As Integer)

 Dim path As String
 ' The following example opens "C:\AutoCAD\Sample\downtown.dwg" file.
 ' This drawing may not exist on your system. Change the drawing
 ' path and name to reflect a valid AutoCAD drawing on your system.
 path = "C:\Documents and Settings\bier\theke\MSc\studens 2002-2003\peter keenan\mesh 2"

74

 ThisDrawing.Application.Documents.Open (path)

End Sub

Public Sub sel_set_del(token As Integer)

 Dim selset As AcadSelectionSet

 If (ThisDrawing.SelectionSets.count > 0) Then
 ThisDrawing.SelectionSets.item(0).Delete
 End If

End Sub

'Public Function flipcoin() As Integer

' flipcoin = IIf((random(0, 10) > 5), 1, -1)

'End Function

Public Sub wipe_layer(name As Variant)

 Dim ss As AcadSelectionSet
 Dim ft As Variant, fd As Variant
 Dim gp(0) As Integer
 Dim dv(0) As Variant

 gp(0) = 8
 dv(0) = name
 ft = gp
 fd = dv

 Set ss = ThisDrawing.SelectionSets.add("it")

 ss.Select acSelectionSetAll, , , ft, fd
 For i = 0 To ss.count - 1
 ss.item(i).Delete
 Next i

 ss.Delete

End Sub

Sub record(name As String, no As Integer)

 ThisDrawing.SendCommand "render" & vbCr & name & vbCr & vbCr
 'ThisDrawing.SendCommand "name" & vbCr

End Sub

Module voronoibits

 '--------------------------------------- changing datastructure to hold indeces into originalpoints
 '--------------------------------------- rather than points 11.6.03----------------------
 ' defining the cells of the voronoi diagram
 ' working 26 june 03

 Const pi = 3.1415926535
 Const yspace = 0
 Const xspace = 1

 Type pointedge
 pos As point 'position of intersection
 Bedge(2) As Integer 'indeces into boundary array where intersection occurs
 End Type

75

 Type intersectStuff
 outnode As point
 outnodeid As Integer 'index into vertex array for voronoi cell
 beforeinter As pointedge
 afterinter As pointedge
 End Type

 Const VERYSLOW = 0.7
 Type mypoint
 x As Double
 y As Double
 z As Double
 spacetype As Integer
 kuller As Integer
 End Type

 Type pair 'to tie the triangle nos to the sorted angles
 value As Double
 index As Integer
 End Type

 Type delaunay
 p1 As Integer
 p2 As Integer
 p3 As Integer
 circcentre As mypoint ' the coordinates of the centre of the circle by 3 pts constructed by this point
 circrad As Double ' the radius of this circle
 End Type

 Type cell
 item() As Integer
 tot As Integer
 area As Double
 id As Long
 spacetype As Integer
 jump As Boolean
 kuller As Integer
 End Type

 Public pts As Integer
 Public numtriangles As Integer
 Public originalpoints() As mypoint
 Public triangles() As delaunay
 Public cells() As cell
 Public neighbour() As cell

 Public cyclesmax As Long
 Public cycles As Long

 Sub voronoi(d As Integer)
 ReDim cells(1 To pts) As cell
 ReDim neighbour(1 To pts) As cell
 Dim i As Integer, j As Integer, k As Integer

 For i = 1 To pts
 cells(i).spacetype = originalpoints(i).spacetype
 cells(i).kuller = originalpoints(i).kuller
 Next i

 cycles = 0
 numtriangles = 0
 'cyclesmax = pts ^ 3

 For i = 1 To pts
 For j = i + 1 To pts
 For k = j + 1 To pts
 ' the triangles array is populated in the sub drawcircle - sorry !!

76

 drawcircle_ifnone_inside i, j, k, pts
 cycles = cycles + 1
 'counterform.count_Click
 Next k
 Next j
 Next i

 collectcells (0) 'define data for all voronoi cells
 neighcells (0) 'define

 End Sub
 Sub collectcells(d As Integer) ' populates array cells with lists of all the vertex incident triangles of a point
 Dim v As Integer, N As Integer, t As Integer

 For v = 1 To pts ' go through all the original points
 N = 0
 ReDim cells(v).item(1 To 1)
 ' drawpoint originalpoints(V), acGreen, 2
 ' ThisDrawing.Regen acAllViewports

 For t = 1 To numtriangles 'go through all triangles
 If triangles(t).p1 = v Or triangles(t).p2 = v Or triangles(t).p3 = v Then
 N = N + 1 '' T is index into a tri sharing a vertex with originalcells(V)
 ReDim Preserve cells(v).item(1 To N)
 cells(v).item(N) = t
 cells(v).tot = N
 End If
 Next t
 sortbyangle v, cells(v)
 Next v
 End Sub
 Function centre_gravity(this As delaunay) As mypoint
 Dim tx As Double, ty As Double, tz As Double
 tx = (originalpoints(this.p1).x + originalpoints(this.p2).x + originalpoints(this.p3).x) / 3
 ty = (originalpoints(this.p1).y + originalpoints(this.p2).y + originalpoints(this.p3).y) / 3
 tz = 0

 centre_gravity.x = tx
 centre_gravity.y = ty
 centre_gravity.z = tz

 End Function

 Sub sortbyangle(index As Integer, this As cell)
 Dim angles() As pair, i As Integer, O As mypoint, CG As mypoint
 ReDim angles(1 To this.tot) As pair
 O = originalpoints(index)
 For i = 1 To this.tot
 CG = centre_gravity(triangles(this.item(i)))
 angles(i).value = getangle(O, CG)
 angles(i).index = this.item(i)
 Next i
 bubblesort angles, this.tot
 For i = 1 To this.tot
 this.item(i) = angles(i).index
 Next i

 End Sub
 Sub bubblesort(s() As pair, N As Integer)
 Dim index As Integer, c As Integer, swap As Integer, temp As pair

Do
 swap = False
 For c = 1 To N - 1

 If s(c).value > s(c + 1).value Then
 temp = s(c)
 s(c) = s(c + 1)
 s(c + 1) = temp
 swap = True
 End If

77

 Next c
Loop Until (swap = False)

End Sub
Function getangle(st As mypoint, fin As mypoint) As Double

Dim q As Integer, head As Double, add As Double
Dim xd As Double, yd As Double, r As Double
' calculate quadrant
If fin.x > st.x Then
 If fin.y > st.y Then
 q = 1
 Else
 q = 2
 End If
 Else
 If fin.y < st.y Then
 q = 3
 Else
 q = 4
 End If
 End If

 Select Case q

 Case 1
 xd = fin.x - st.x
 yd = fin.y - st.y
 If xd = 0 Then
 r = pi / 2
 Else
 r = yd / xd
 End If
 add = 0
 Case 2
 yd = st.y - fin.y
 xd = fin.x - st.x
 add = 270
 If yd = 0 Then
 r = pi / 2
 Else
 r = xd / yd
 End If
 Case 3

 xd = st.x - fin.x
 yd = st.y - fin.y
 If xd = 0 Then
 r = pi / 2
 Else
 r = yd / xd
 End If
 add = 180
 Case 4
 xd = st.x - fin.x
 yd = fin.y - st.y
 If yd = 0 Then
 r = pi / 2
 Else
 r = xd / yd
 End If
 add = 90
 End Select

 If xd = 0 Then
 getangle = 90 + add
 Else
 getangle = ((Atn(r) / pi) * 180) + add
 End If

78

End Function
 Sub neighcells(d As Integer)

 Dim v As Integer, N As Integer, nbs As Integer, cp As Integer

 For v = 1 To pts
 nbs = 0 'go through the item list for this cell (based on vertex V)
 For cp = 1 To cells(v).tot - 1 'the indeces into array cells
 N = matchupcells(cells(v).item(cp), cells(v).item(cp + 1), v) 'two points on the voronoi region
 If N > 0 Then
 nbs = nbs + 1
 ReDim Preserve neighbour(v).item(1 To nbs)
 neighbour(v).item(nbs) = N
 neighbour(v).tot = nbs
 End If
 Next cp
 Next v
 End Sub

Function matchupcells(p1 As Integer, p2 As Integer, current As Integer) As Integer

' find a cell (in array cells)which shares an edge p1 - p2 with this cell (current)
Dim m As Integer, v As Integer, cp As Integer

matchupcells = 0

 For v = 1 To pts
 If v <> current Then 'dont look at you own list
 m = 0

 'a voronoi region can only share two verteces (one edge) with any other
 'but since the edges are organised anti clockwise, the neighbouring cell
 'will be going the other way. so here we just look for two matches hope thats ok?
 For cp = 1 To cells(v).tot 'run through vertex list for this cell
 If cells(v).item(cp) = p1 Then m = m + 1
 If cells(v).item(cp) = p2 Then m = m + 1
 Next cp
 If m = 2 Then
 matchupcells = v
 Exit For 'dont go on looking once found a match
 End If
 End If
 Next v
 End Function

 Sub drawcircle_ifnone_inside(i As Integer, j As Integer, k As Integer, pts As Integer)
 Dim testcircle As delaunay

 testcircle.p1 = i
 testcircle.p2 = j
 testcircle.p3 = k
 circbythreepts testcircle
 If Not inside(testcircle, pts) Then
 'drawpoint testcircle.circcentre, acYellow, testcircle.circrad
 numtriangles = numtriangles + 1
 ReDim Preserve triangles(1 To numtriangles)
 triangles(numtriangles) = testcircle
 End If

 End Sub

 Function inside(this As delaunay, pts As Integer) As Integer
 ' are there any points closer to the centre of this circle than the radius

 inside = False
 Dim i As Integer, dd As Double, cr As Double
 For i = 1 To pts
 'ignore points that are on this circle
 If i <> this.p1 And i <> this.p2 And i <> this.p3 Then

79

 dd = distance(this.circcentre, originalpoints(i))
 cr = this.circrad
 If (dd < cr) Then
 inside = True
 Exit For
 End If
 End If
 Next i
 End Function
 Sub circbythreepts(this As delaunay)

 Dim a As Double, b As Double, c As Double, k As Double, h As Double, r As Double, d As Double, e As Double, f As Double
 Dim pos As mypoint
 Dim k1 As Double, k2 As Double, h1 As Double, h2 As Double

 a = originalpoints(this.p1).x: b = originalpoints(this.p1).y
 c = originalpoints(this.p2).x: d = originalpoints(this.p2).y
 e = originalpoints(this.p3).x: f = originalpoints(this.p3).y

 'three points (a,b), (c,d), (e,f)
 'k = ((a²+b²)(e-c) + (c²+d²)(a-e) + (e²+f²)(c-a)) / (2(b(e-c)+d(a-e)+f(c-a)))
 k1 = (((a ^ 2) + (b ^ 2)) * (e - c)) + (((c ^ 2) + (d ^ 2)) * (a - e)) + (((e ^ 2) + (f ^ 2)) * (c - a))
 k2 = (2 * ((b * (e - c)) + (d * (a - e)) + (f * (c - a))))

 k = k1 / k2

 'h = ((a²+b²)(f-d) + (c²+d²)(b-f) + (e²+f²)(d-b)) / (2(a(f-d)+c(b-f)+e(d-b)))
 h1 = (((a ^ 2) + (b ^ 2)) * (f - d)) + (((c ^ 2) + (d ^ 2)) * (b - f)) + (((e ^ 2) + (f ^ 2)) * (d - b))
 h2 = (2 * (((a * (f - d)) + (c * (b - f)) + (e * (d - b)))))
 h = h1 / h2

 'the circle center is (h,k) with radius; r² = (a-h)² + (b-k)²
 r = Sqr((a - h) ^ 2 + (b - k) ^ 2)

 pos.x = h: pos.y = k: pos.z = 0
 ''drawpoint pos, acYellow, r
 this.circcentre = pos
 this.circrad = r

 End Sub

 Sub convert(b As mypoint, f As mypoint, start() As Double, finish() As Double)

 start(0) = b.x
 start(1) = b.y
 start(2) = b.z
 finish(0) = f.x
 finish(1) = f.y
 finish(2) = f.z
 End Sub

 Function findcenter(pts As Integer) As mypoint
 Dim xt As Double, yt As Double

 xt = 0
 yt = 0

 For i = 1 To pts
 xt = xt + originalpoints(i).x
 yt = yt + originalpoints(i).y
 Next i

 findcenter.x = xt / pts
 findcenter.y = yt / pts
 findcenter.z = 0

 End Function

 Function findpluto(lots As Integer, center As mypoint) As mypoint

80

 Dim i As Integer
 Dim longestend As mypoint, maxdist As Double, thedist As Double

 maxdist = -10000
 For i = 1 To lots
 thedist = distance(center, originalpoints(i))
 If thedist > maxdist Then
 maxdist = thedist
 longestend = originalpoints(i)
 End If
 Next i
 findpluto = longestend
 End Function

Sub Draw_Line(b As mypoint, f As mypoint, c As Integer)
 Dim lineobj As AcadLine
 Dim mLineObj As AcadMLine
 Dim start(0 To 2) As Double, finish(0 To 2) As Double

 convert b, f, start, finish

 Set lineobj = ThisDrawing.ModelSpace.AddLine(start, finish)

 lineobj.color = c
 lineobj.Layer = "delaunay"
 'lineobj.Update

End Sub

Sub drawpoly(this As cell)
 Dim tri As delaunay
 Dim plineObj As AcadLWPolyline
 'changed to lw polyline so only duets of coords not trios
 Dim thepoly(0) As AcadEntity 'thing to use in addregion
 Dim boundary As Variant 'assign with addregion
 Dim boundy() As AcadRegion 'thing you redim
 Dim acell As AcadRegion
 Dim numtri As Integer, thepoints() As Double, TPC As Integer

 numtri = this.tot * 2 - 1
 ReDim thepoints(numtri + 2) As Double
 TPC = 0

 ' loop through all the items getting the coordinates of the circlcentres that are
 ' inside the elements of the thetriangles array

 For i = 1 To this.tot
 thepoints(TPC) = triangles(this.item(i)).circcentre.x
 TPC = TPC + 1
 thepoints(TPC) = triangles(this.item(i)).circcentre.y
 TPC = TPC + 1
 ' thepoints(TPC) = triangles(this.item(i)).circcentre.z
 ' TPC = TPC + 1
 Next i
 thepoints(TPC) = thepoints(0)
 TPC = TPC + 1: thepoints(TPC) = thepoints(1)
 'TPC = TPC + 1: thepoints(TPC) = thepoints(2)

 If TPC > 3 Then
 On Error Resume Next 'got crash on huge poly
 Set plineObj = ThisDrawing.ModelSpace.AddLightWeightPolyline(thepoints)
 If plineObj.area > 0 Then

 Set acell = makeregion(plineObj)

 On Error Resume Next
 acell.Boolean acIntersection, bound
 this.area = acell.area

81

 this.id = acell.ObjectID 'changed to acell
 If this.spacetype = 1 Then
 acell.color = this.kuller
 Else
 acell.color = acWhite
 End If

 ' acell.Update
 ' ThisDrawing.Regen acActiveViewport
 makeboundaryregion 0

 End If

 End If

 End Sub

 Sub drawcircle(x As Variant, y As Variant, kuller As Integer, size As Integer)
 Dim p(2) As Double, circ As AcadCircle
 p(0) = x: p(1) = y: p(2) = 0
 Set circ = ThisDrawing.ModelSpace.AddCircle(p, size)
 circ.color = kuller
 ' circ.Update

 End Sub
 Function random(bn As Double, tn As Double) As Double

 random = ((tn - bn + 1) * Rnd + bn)

 End Function

 Function distance(startp As mypoint, endp As mypoint) As Double
 Dim xd As Double, yd As Double
 xd = startp.x - endp.x
 yd = startp.y - endp.y
 distance = Sqr(xd * xd + yd * yd)
 End Function

 Sub drawpoint(pos As mypoint, c As Integer, r As Double)
 ' This example creates a point in model space.
 Dim circleObj As AcadCircle
 Dim location(0 To 2) As Double
 location(0) = pos.x
 location(1) = pos.y
 location(2) = pos.z
 ' Create the point
 Set circleObj = ThisDrawing.ModelSpace.AddCircle(location, r)
 circleObj.color = c
 'ZoomAll
 End Sub

 Sub bigtri(mid As mypoint, longestend As mypoint, pts As Integer)

 Dim i As Integer
 Dim x(2) As Double, y(2) As Double
 Dim startangle As Double
 Dim vert As mypoint
 r = distance(mid, longestend)
 startangle = Atn((longestend.y - mid.y) / (longestend.x - mid.x)) 'define randomly generated start angle
 'get biggest triangle vertices
 For i = 0 To 2
 x(i) = mid.x + (2 * r * Cos(i * pi * 120 / 180) + startangle)
 y(i) = mid.y + (2 * r * Sin(i * pi * 120 / 180) + startangle)

 vert.x = x(i)
 vert.y = y(i)

82

 vert.z = 0
 'drawpoint vert, acYellow, 1 'these three vertices are the bounding triangle for the delaunay triangulation
 pts = pts + 1
 ReDim Preserve originalpoints(1 To pts)
 originalpoints(pts) = vert
 Next i
 'ZoomAll

 End Sub

Function askpoint(apoint As mypoint) As Integer
Dim token As Variant
On Error Resume Next

token = ThisDrawing.Utility.GetPoint(, "Enter a point: ") 'has to work with variants and no arrays

If err Then
err.Clear
askpoint = False
Else
apoint.x = token(0): apoint.y = token(1): apoint.z = 0
askpoint = True
End If

End Function

Public Sub load_table(d As Integer)

 'Dim table(256, 16) As Integer 'change to whatever table you want to create
 Dim name As String, t1 As Variant, t2 As Variant

 '---make sure you define the whole path to the file & !!! put '-1' at the end of the string to be read which means that the end of line is
reached
 name = "c:\voronoi textfiles\experiment.TXT" 'exchange the name of the table with full path

 Open name For Input As 1
 f = CStr(Input$(LOF(1), #1))
 Close
 t1 = Split(f, Chr$(13))
 pts = UBound(t1)
 ReDim originalpoints(1 To pts) As mypoint
 '---store the values in an array called table
 'change the symbol of the delimiter accordingly
 For i = 1 To pts - 1
 t2 = Split(t1(i), ",") 'change the symbol of the delimiter accordingly

 originalpoints(i).x = val(t2(0))
 originalpoints(i).y = val(t2(1))
 originalpoints(i).z = 0
 Next

End Sub

83

Appendix 5 CD contents

Thesis2011_Choesnah_Idarti.docx
Thesis2011_Choesnah_Idarti.pdf

Program Folder which contains
Data.txt
Relationships.txt
Readme_program.txt
Base poly.dwg
Spatial_languaging.dvb

