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Evaluation of deep learning models for classification of asphalt pavement distresses
Alex Apeagyeia, Toyosi Elijah Ademolakea and Mark Adom-Asamoahb

aSchool of Architecture, Computing and Engineering, University of East London, London, UK; bCollege of Engineering, Kwame Nkrumah University of
Science and Technology, Kumasi, Ghana

ABSTRACT
Transfer learning (TL) offers a convenient methodology for exploiting the capability of deep
convolutional neural networks (DCNNs) for many image classification tasks including the classification
of pavement distresses. Seven state-of-the-art DCNNs were retrained to classify asphalt pavement
distresses grouped into eight classes using TL techniques. The aim was to evaluate the predictive
performances of the selected DCNNs in order to provide some guidelines on selection of DCNNs for
pavement application. The results show some existing DCNN’s are better than others for developing
pavement distress classification models using the specific TL approach adopted in the study. The
predictive ability of each model varied depending on distress class as some models with very low
overall accuracy showed excellent results for individual distress class(s). Based on a combination of
various performance metrics including F1-score, area under ROC curve, optimal operating threshold,
training time, and model size, the best performing network had a relative score that was found to be
significantly higher than the next two top-performing models. The best-performing networks were
characterised by lower proportions of false negative values, low ambiguity scores, and well-defined t-
SNE clusters that showed clear separation between the eight different pavement distress classes
considered.
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1. Introduction

Most state transportation agencies conduct highway distress
surveys to support their asset management systems. Accu-
rately identifying flexible pavement distresses is of enormous
importance to the management and maintenance of the high-
way systems. It serves as the basis for recommending reme-
dial action(s) likely to result in the most cost-effective
solution. Many attempts have been made to automate the
process of collecting and identifying distress data using var-
ious visual media. Currently, the most widely used and
reliable method of identifying pavement distresses involves
manual and/or semi-automated data collection and analysis
by well-trained technical personnel. In the UK, for instance,
road surface conditions are often visually assessed either
manually by a trained technician, or automatically, using
vehicles equipped with lasers and cameras to measure various
attributes of the road. While some aspects of the data collec-
tion have been automated (e.g. image or video data collec-
tion), classification of pavement distresses is still a tedious,
manual and highly subjective task. Many existing methods
for detecting and classifying pavement distress are semi-auto-
mated and limited to measuring particular aspects that must
be analysed further by experienced technicians or expensive
proprietary systems. Furthermore, as reported by Vavrik
et al. (2013), existing automated systems can be expensive
to acquire (e.g. $1.2 m/unit) and operate ($70k/year). Many
existing automatic systems also tend not to be easy to use.
As a result, even after acquiring these expensive systems,

some highway agencies still rely on manual inspection by
human experts as a more convenient solution owing to its
ease of implementation (Siriborvornratanakul 2018). The tra-
ditional methods of pavement condition assessment,
especially at the network level, rely almost exclusively on
visual surveys of existing pavement distresses and in-situ
assessments that are very subjective and often conducted
intermittently. However, cost-effective pavement mainten-
ance and rehabilitation solutions require continuous moni-
toring of distress initiation and propagation to assist in
accurate timing of repairs. The inability of existing pavement
condition assessment systems to realistically emulate the skills
of highly trained road pavement technicians is a major unmet
challenge that could be addressed by using deep learning
techniques especially transfer learning of existing DCNNs.
The main advantages of DCNNs over other machine learning
algorithms for pavement distress classification include the fol-
lowing: (a) they outperform classical image classification
methods in terms of accuracy; (b) DCNN architecture is
flexible and thus could be adapted to new problems or to
existing problems when new data become available, and (c)
DCNN models are more robust because natural variations
in data is automatically learned. Furthermore, compared to
traditional pavement distress identification methods (such
as digital image analysis), DCNN models have greater accu-
racy. Since neural networks used in DCNN are trained rather
than programmed, applications using this approach often
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require less expert analysis and fine-tuning and utilise the vast
amount of digital image data (video and still images) data
currently available (Gopalakrishnan 2018, O’Mahony 2020).
Additional advantages of DCNN is discussed in Section 2
for selected existing DCNNs. In spite of these advantages,
as described in Section 2, several technological challenges
need to be addressed before fully automated and practical
TL-based DCNN models could be developed which warrants
studies such as the current one.

DCNNs are a subset of artificial neural networks (ANNs) in
which a multi-layered model learns to perform classification
tasks directly from images, text, or sound, using neural network
architecture; the more layers they have, the deeper the network.
By comparison, traditional ANNs containing only 2 or 3 layers
are considered ‘shallower’, while deep networks can have hun-
dreds of layers (Bengio et al., 2013, 2015, Schmidhuber, 2015).

The development and application of DCNNs for general
image classification have been demonstrated in several pre-
vious studies including Zeiler and Fergus (2013), Krizhevsky
et al. (2012), Simonyan and Zisserman (2015) and Shin et al.
(2016). The DCNN approach typically involves passing on
an image through a sequence of convolutional layers and
extracting detectable features within the convolved image.
The convolved images are then classified using a fully con-
nected neural network that is defined mathematically through
a set of weights. Finally, the weights are optimised with a
labelled training set through multinomial logistic regression
using mini-batch gradient descent (Bottou 2010, Simonyan
and Zisserman 2015).

The use of DCNNs for image classification has seen expo-
nential growth since the early 2010s. Key factors that have con-
tributed to the popularity and successful application of
DCNNs for extensive image and video recognition include
the availability of big public image repositories such as Ima-
geNet (Deng et al. 2009), high-performance computing sys-
tems, such as GPUs or large-scale distributed clusters (Dean
et al. 2012) and the public release of model architectures by
individual research teams to the wider research community
which, in turn, enables models to be retrained to classify
new images using the concept of transfer learning. As a result,
many highly accurate DCNNs classifiers have surfaced includ-
ing Alexnet, Densenet201, Googlenet, Nasnetlarge, Resnet50,
Squeezenet, and Xception for classifying many common natu-
ral and man-made objects.

For the current study, the transfer learning approach was
used to retrain the above-mentioned DCNNs to classify asphalt
pavement distresses. Transfer learning removes one of the
major obstacles to the widespread application of DCNNs to
the pavement engineering field – the lack of large-scale pave-
ment distress datasets (on the order of millions of images). It
should be noted that classification as used in this paper refers
to labelling an image rather than an object in an image. The
aim was to develop performance metrics that could be used
for the selection of an automatic DCNN system that allows
extension of its application to the pavement engineering field.
A primary goal of this study was to evaluate selected, existing
DCNN architectures, using a dataset of 400 images in classify-
ing eight, common, asphalt pavement distresses using robust
performance metrics.

The contributions of this study include the provision of
comparative description of the architecture for each of the
seven judiciously chosen DCNNs and the objective compari-
son, using robust performance metrics, of the behaviour of
different DCNNs for future application to pavement distress
classification. Furthermore, by identifying which of the
selected networks best model pavement distresses and achieves
good classification and validating it through multi-class con-
fusion matrix statistical measures, the DCNN classifier can
be implemented as an automated system for identification of
common pavement distress thus contributing in no small
way to the maintenance of the ageing highway pavement infra-
structure. Finally, the approach presented focusing on size
invariant measures which is well-suited for pavement distress
datasets that are often imbalanced.

The rest of the paper is structured as follows: Section 2 pre-
sents an overview of related work. Section 3 describes the seven
selected DCNNs architectures and the methodology used to
conduct the experiments. The results and discussion are pre-
sented in Second 4. Finally, the conclusions and recommen-
dations for future work are presented in Section 5.

2. Related work

The basic concept behind transfer learning (TL) is to utilise
parts of a pre-trained DCNNs architecture for tasks in one
domain for which a large amount of labelled data is available
(such as the ImageNet dataset) in situations where only a
small amount of labelled data is available (such as a pavement
distress dataset). A key benefit of using TL is that adjusting the
model parameters of a pre-trained network is much quicker,
easier and requires a lesser number of labelled images than
constructing and training a brand-new network from scratch.
This is possible because the pre-trained network has previously
been trained to recognise many valuable features from the
large number of images (on the order of millions) on which
it was trained in the first place. Two TL methods including fea-
ture transfer and parameter transfer are commonly used. In
feature transfer, the last layer of a pre-trained network is
removed, and its previous activation value sent to a classifier.
In parameter transfer, only a few layers of the network need
to be reinitialised with the remaining layers using the weight
parameters of the pre-trained network and then using the
new data set to fine-tune the network parameters. Fine-tuning
as used here is a TL concept which involves replacing the pre-
trained output layer with another layer containing the number
of classes of the asphalt pavement distresses. Detailed descrip-
tion of the TL techniques for general machine learning appli-
cations has been provided in Pan and Yang (2010) to which
interested readers may consult. In the following, the appli-
cation of TL to pavement distress classification is presented.
Most TL-based applications in the pavement distress classifi-
cation domain are of recent origin with studies first reported
in 2016 or later.

In one of the first studies using TL for pavement distress
classification, Ma et al. (2017) leveraged publicly available
geo-referenced road condition records along with Google
Street Map images to develop a three-class (poor, fair and
good) dataset comprising of 700 thousand images from 70
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thousand street segments in New York, U.S.A. They used
VGG-16D very deep convolutional neural network developed
by Oxford University as the framework for training their net-
work to classify pavement conditions. An average prediction
accuracy of 58.2% was reported. The results highlighted the
impact of class imbalance on the prediction accuracy as pave-
ment classified as ‘poor’ formed only 0.6% of the total 711,520
images in the dataset.

Gopalakrishnan et al. (2017) used transfer learning with
fine-tuning to retrain the VGG-16 DCNN model for auto-
mated pavement crack detection. A unique feature of the
approach proposed by Gopalakrishnan et al. was that the
VGG-16 model was used to vectorise the labelled pavement
images, and a machine learning classifier was then used to pre-
dict the labels as ‘crack’ or ‘no crack’. In a related study, Gopa-
lakrishnan et al. (2018) used DCNNs with transfer learning for
crack damage detection in unmanned aerial vehicle (UAV)
images of civil infrastructure. The authors reported up to
90% accuracy in finding cracks in realistic situations without
any data augmentation and pre-processing.

Maeda et al. (2018) retrained two existing DCNNs (Incep-
tion V2 and MobileNet) to classify various pavement surface
featureswith eight class labels includingfive types of cracks, rut-
ting-bump-pothole-separation, white line blur, and cross walk
blur. The two DCNNs used were chosen based on their compu-
tational efficiency, lower CPUmemory requirements, accuracy,
and their potential to be deployed as smartphone apps for road
damage detection in Japan. The predictive performances of the
trained models showed overall accuracy (averaged over the
eight data classes) was approximately 87% for the two models.
The recalls varied depending on class label and model type
and ranged from 0.03 to 0.81 for Inception V2, and 0.02 to
0.89 for MobileNet. The disparity in recall performance was
attributed to class imbalance as distress class with low represen-
tations were associated with lower recalls and precision. For
example, potholes which formed only 3% of the 15,435 images
in the dataset received a recall rate of only 0.02 when using
MobileNet. Recall, also known as sensitivity or true positive
rate, is the fraction of all positive samples that are correctly pre-
dicted as positive by the classifier; therefore, the model could
only identify 2% of all potholes used in the study.

Nie and Wang (2018) used the fine-tuned transfer learning
method consisting of limited initialisation and the Resnet50
DCNN architecture to classify pavement distresses grouped
into four classes including ‘crack’, ‘loose’, ‘deformation’ and
‘others’. The four classes comprised of multiple subclasses
including: crack (crack, block crack, longitudinal crack and
transverse crack), loose (groove, loose), deformation (subsi-
dence, rutting, wave gushing) and other categories (flooding,
repairing, frost heave and frosting). It should be noted that the
class labels used appear quite unusual in the pavement field as
it is often desirable to distinguish between the various types of
cracking like longitudinal versus transverse in order to accurate
identify the cause(s) of the distress. Furthermore, class distri-
bution of the distresses was not reported.Nie andWang reported
overall average classification accuracy of the model as 96.53%
with individual F1-scores of 97.73%, 88.59%, 88.57% and
81.1%, respectively for crack, loose, deformation and others.
Nie and Wang noted that their model was limited to single

distress images with simple background and recommended
that that for practical applications, models that can classify mul-
tiple distresses within the same images may be needed.

Majidifard et al. (2020) collected approximately 7000 Goo-
gle Street images and manually annotated them using nine
pavement distress class labels to create one of the most com-
prehensive datasets in the field. The nine distresses included
reflective crack, transverse crack, block crack, longitudinal
crack, alligator crack, sealed reflective crack, lane longitudinal
crack, sealed longitudinal crack, and pothole. A large class
imbalance was indicated (e.g. potholes formed approximately
1% of all labelled distresses). The main motivation for the
study was to demonstrate how the wide-view images obtained
from Google Street could be used along with a deep learning
approach to classify pavement distresses. Two DCNNs includ-
ing You Only Look Once version 2(YOLO v2) and Faster
Region Convolution Neural Network (Faster R-CNN) were
retrained to classify pavement distresses. Based on F1-scores
of 0.84 and 0.65 for YOLOv2 and faster F-CNN, respectively,
the authors considered the results acceptable considering the
convenience of utilising Google maps images.

Peraka et al. (2021) proposed a transfer learning approach
using the You Only Look Once version 4 (YOLO v4) architec-
ture to quantify multiple asphalt pavement distress types and
severity levels. Their model achieved average precision
87.44% after 7,900 iterations.

Chen et al. (2022) applied a ten-fold cross-validation train-
ing method using EfficientNet B4 as the DCNN architecture to
detect nine pavement features including alligator cracks, joint
or patches, longitudinal cracks, manholes, oil stains, potholes,
road markings, shadows, and transverse cracks. The unique
feature of this study is the use of thermal imaging camera
that enabled a trio of distress images (RGB, thermal and fusion
of RGB and thermal) to be used in the training of the chosen
DCNN – EfficientNet B4. Unlike most existing studies, a
balanced data set comprising of 500 RGB and 500 thermal
images for each of the nine pavement features was used. The
results showed that the best predictions were obtained when
the fused images (RGB plus 50% thermal) were used to develop
the classification models with F1-score and recall of 98.34%.
Similar to other studies, the developed models struggled to dis-
tinguish between longitudinal cracks and transverse cracks.

However, these existing studies provide limited infor-
mation on the effect that either the architecture of the models
themselves or the hyper-parameters, whose values control the
training and learning process, have on the task of pavement
distress identification. Previous studies have shown that per-
formances achieved by different architectures and hyper-par-
ameters on the same task vary and are non-universal, even
those that have shown excellent performance on the industry
standard, ImageNet (Deng et al. 2009). A review of available
literature also suggests that very few comparative studies of
DCNN architectures or methods have been performed using
commonly available pavement distress images. Thus, guidance
on the selection of DCNN architectures that are suitable for
identifying asphalt pavement distress is lacking. A summary
of various transfer learning studies including the approaches,
model complexities, methodologies and key performance par-
ameters used are summarised in Table 1.
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The review of existing studies shows that majority of trans-
fer-learning based studies on pavement distress classification
were limited to the evaluation of one or two existing models.
Furthermore, different datasets used makes generalisation of
the developed TL models difficulty. Additionally, some exist-
ing models do not transfer accurately when applied to new
learning so the use of one or two models for training is a
major limitation for the pavement distress identification
area. The number and definition of distress classes varied
widely from 2 to about 9. Finally, none of the reviewed studies
used composite performance measures such as ROC, AUC, t-
SNE, which have been shown to be more robust than more
common measures like accuracy, or F1-score or precision,
which were predominantly used in the reviewed TL models.
Based on the related works that were reviewed, it was decided
to limit the trained DCNNs to the following seven state-of-the-
art DCNNs including Alexnet, Densenet201, Googlenet, Nas-
netlarge, Resnet50, Squeezenet, and Xception. Even though
some of selected modelshave been used in previous TL appli-
cation for pavement distress identification, very few, if any,
haveused the more robust graphical performance measures
such as ROC, AUC, t-SNE and ambiguity.

3. Materials and methods

The main steps used to accomplish the study including acqui-
sition of pavement distress data, fine-tuning of selected models
with the procured data, data classification and data evaluation

are presented next with justifications. Subsequently, after
describing the rational for selecting the seven DCNN models,
the section concludes with brief descriptions of the architec-
ture and key operational parameters of each model.

3.1. Data acquisition

Approximately 400 freely available images of pavement dis-
tresses were acquired from multiple publicly available sources
including Google Street, which is a common approach in the
field. The 400 images were categorised manually into eight
class labels, namely: block cracking, distress free, fatigue crack-
ing, longitudinal cracking, patching, pothole, rutting, and
transverse cracking. For each classified image and network
type, user-defined functions were used for pre-processing
into the required input size, as shown in Table 2. The images

Table 1. Overview of TL-based DCNN models for pavement distress classification.

Reference DCNN architectures used Key features including reported performance metrics

Ma et al. (2017) VGG-16D (Size on disk – 528 MB, trainable parameters – 138 million) Three class labels (poor, fair, good); Class imbalance identified; low
recalls attributed to class imbalance; Overall accuracy of 58.2%

Gopalakrisna et al.
(2017)

VGG-16D (Size on disk – 528 MB, trainable parameters – 138 million) Two classes (crack, no crack); accuracy 90%

Gopalakrisna et al.
(2018)

VGG-16 (Size on disk – 528 MB, trainable parameters – 138 million) Accuracy (89%); precision (91%); recall (89%); F1-score (89%); Cohen’s
Kappa score (79%); AUC (0.9)

Maeda et al.
(2018)

Inception V2 (Size on disk – 92 MB, trainable parameters – 23.9
million), Mobilenet (Size on disk – 16 MB, trainable parameters – 4.3
million)

Eight class labels (D00,Do1, D10, D11, D20, D40, D43,D44); class
imbalance identified; recall varies depending on class label size; recall;
precision; speed of training; accuracy (87%); recall (71%); precision
(77%)

Mandal et al.
(2018)

YOLO v2, YOLO v3, Faster R-CNN, single shot multibox detector (SSD) Eight class labels (D00, D01, D10, D11, D20, D40, D43,D44); class
imbalance; precision (77%); recall (73%); F1-score (75%)

Nie and Wang
(2018)

Resnet50 (Size on disk – 98 MB, trainable parameters – 25.6 million) Four class labels (crack, loose, deform, others); overall accuracy 96.5%

Majidifard et al.
(2020)

YOLO v2, Faster R-CNN (size and parameters depends on backbone
networks)

Nine class labels (reflective crack, transverse crack, block crack,
longitudinal crack, fatigue crack, sealed reflective crack, lane
longitudinal crack, sealed longitudinal crack, pothole); class imbalance;
precision (93%), recall (77%), and F1-score (84)%

Peraka et al.
(2021)

YOLO v4 (size and parameters depends on backbone networks) Eighteen distress classes consisting of three levels of severity pertinent
to cracking, potholes, and patch deterioration; average precision
87.44%

Ranjbar et al.
(2021)

AlexNet, GoogleNet, SqueezNet, ResNet-18, ResNet-50, ResNet-101,
DenseNet-201, and Inception-v3 (size 92 MB, parameters 189
million)

Four distress classes:Linear-cracking, Non-cracking, Surface-cracking and
General. Similar performance (in terms accuracy, sensitivity, etc.) were
reported. For example, accuracy for all modeles ranged from 0.965 to
1.

Chen et al. (2022) Efficientnet eight versions (B0–B7). Model size and parameters varies
depending on version: Size – 31–166 MB and number of parameters
186–438 million

Nine class labels (transverse cracks, longitudinal cracks, fatigue cracks,
joint or patches, potholes, manholes, shadows, road markings and oil
stains); accuracy (97.3%), precision (97.2%), recall (96.9%), F1-score
(97.0%)

Zhu et al. (2022) Faster R-CNN with ResNet50 and VGG16 as backbones; YOLOv3 and
YOLOv4 with DarkNet53 and CSPDarkNet53 as backbone

Six pavement distress types labels (transverse crack, longitudinal crack,
alligator crack, oblique crack, pothole, and repair); average accuracy
ranged from 33% to 77%; mean average precision ranged from 38.7%
to 56.6%. YOLO-based models performed relatively better than faster
R-CNN-based models.

Notes: D00 = Longitudinal crack – wheelpath; D01 = Longitudinal crack – Construction joint; D10 = Transverse crack – Equal interval; D11 = Transverse crack – Con-
struction joint; D20 = Fatigue crack; D40 = Rutting, bump, pothole, or separation; D43 =White line blur; D44 = Cross walk blur.

Table 2. Lists of selected, deep convolutional neural networks and their
properties.

Network Depth Size
Parameters
(millions)

Image input
size

Top-1
accuracy

(%)

Alexnet 25 227 MB 61.00 227-by-227 55.9
Squeezenet 68 0.52

MB
1.24 227-by-227 57.5

Googlenet 144 27 MB 7.00 224-by-224 69.8
Densenet201 708 77 MB 20.00 224-by-224 77.3
Resnet50 177 96 MB 25.60 224-by-224 74.9
Xception 170 85 MB 22.90 299-by-299 79.0
Nasnetlarge 1243 332 MB 88.90 331-by-331 82.5
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were randomly grouped into training (85%) and validation
(15%). Also shown in Table 2 are the reported performance
metric (top-1 accuracy) which was one of the main criteria
used in the selection of the models for inclusion in the study
in the first place. Figure 1 (left) shows samples of images
used in this study, while Figure 1 (right) shows the distribution
of images in each distress class. As can be seen in Figure 1
(right), the distribution is imbalanced, with the number of
images per class ranging between 30 and 60. Such imbalanced
or skewed class distributions is common with most pavement
distress datasets. As noted previously, using single-parameter
performance measures such as precision, accuracy or recall,
as used in the reviewed studies, may lead to inaccurate evalu-
ation results.

3.2. Fine-tuning of selected DCNNs

As indicated previously, the seven existing, DCNNs selected
for evaluation included Alexnet, Densenet201, Googlenet,
Nasnetlarge, Resnet50, Squeezenet, and Xception (Table 2).
The initial selection criteria included speed of training,

accuracy, and model size. Each network shown was trained
by machine learning experts on a subset of ImageNet which
contains millions of images of common items grouped into
1000 object categories (e.g. keyboard, mouse, pencil, monkeys,
etc.). Brief descriptions of the selected networks in Table 2. For
this study, the fine-tuning tasks for each model included repla-
cing their last three layers including the fully connected layer,
the softmax layer, and the classification layer. Thus, for each
network, all layers except the last three were frozen. This is a
common approach used by previous researchers but it must
be noted this is not universal. Even though the selection of
the total number of layers to freeze or to train varies among
different investigators, the main objective in each case is
usually to achieve the best possible predictive accuracy for
their models. Some existing TL works involve replacing
more layers than the three aforementioned layers used in the
current study but it must be noted that in general replacing
more layers do not always lead to better retrained models.

The key characteristics of the seven models selected for
pavement distress classification is presented below. Interested
readers are referred to Wu et al. (2016) who have provided

Figure 1. Sample images used in the training and validation of networks (left) and the sizes of each distress class (right).
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detailed reviews of common existing DCNNs for image
recognition.

3.2.1. Alexnet
Alexnet, which was proposed by Krizhevsky et al. (2012), won
first prize in the ImageNet Large Scale Visual Recognition
Challenge image classification contest in 2012 and set a
major precedent for the field of deep learning. Several variants
of DCNNs have since been developed as improvements on the
original Alexnet architecture to enhance further the perform-
ance of DCNNs on image identification tasks. They include
Squeezenet (Iandola et al. 2016), Googlenet (Szegedy et al.
2015a), and Resnet (He et al. 2016), to name just a few.

The basic architecture of Alexnet comprises of convolu-
tional layers, normalisation layers, pooling layers, and fully
connected layers. There are five convolutional layers, three
max-pooling layers, two normalisation layers, two fully con-
nected layers, and one softmax classifier layer. Compared
with previous neural networks, two precedent setting com-
ponents introduced in Alexnet include replacing the sigmoidal
activation function (tanh units) with Rectified Linear Units
(ReLUs) to make the training process faster and introducing
dropout to reduce over-fitting. The first element of the layers
property of the network is the image input layer, which
requires image input of size 224 × 224 × 3 with ‘zero-centre’
normalisation, where 3 is the number of colour channels.
The first convolutional layer uses 11 × 11 × 3 filters with stride
[4 4] and padding [0 0 0 0]. Alexnet achieved top-1 accuracy of
55.9% to win 1st place on the ILSVRC 2012 classification task,
setting the stage for the rapid development of DCNN for image
classification.

3.2.2. Densenet201
Densely connected convolutional networks (Densenets), simi-
lar to Googlenet, were introduced by Huang et al. (2018) to
address the vanishing gradient descent and other problems
associated with very deep neural networks. Densenets simplify
the connectivity pattern between layers by simply connecting
every layer directly with each other compared with a tra-
ditional convolutional neural network (CNN) like Alexnet in
which the output from a previous layer serves as the input to
the next layer. This approach ensures maximum information
(and gradient) flow, as well as requiring fewer parameters
than an equivalent, traditional CNN, as learning superfluous
feature maps becomes unnecessary. Densenets enhance the
ability of the network through feature re-use instead of draw-
ing representational power of the network to assign proper
labels and create well-defined decision boundaries from extre-
mely deep or wide architectures, as implemented in other net-
works such as Resnets. Densenets are considered to be ‘dense’
because every layer adds 32 new feature maps to the previous
volume, going from 64 to 256 after 6 layers in Densenets. Den-
senet uses 224 × 224 × 3 images with ‘z-score’ normalisation.
The first convolutional layer in Densenet201 uses 7 × 7 × 3
convolutions with stride [2 2] and padding [3 3 3 3]. Only
one convolutional layer is fully connected, as opposed to two
in Alexnet.

3.2.3. Googlenet
To address the problem of over-fitting and exploding or van-
ishing gradients commonly associated with networks with
deep layers, Szegedy and co-workers introduced the Inception
framework comprising of filters with several sizes that can
operate on the same level (Szegedy et al. 2015a, 2015b,
2017). One consequence of the vanishing gradient descent pro-
blem is that the network stops learning during training. By uti-
lising auxiliary classifiers in the course of training and removal
them during inference, Inceptions models are better posi-
tioned to prevent over-fitting.

The Inception architecture results in increases in both the
depth and the width of CNN while maintaining an affordable
computational cost. Googlenet is the name given to the most
common, Inception-based, deep learning network. Googlenet
contains of nine Inception modules, four convolutional layers,
four max-pooling layers, three average pooling layers, five fully
connected layers, and three softmax layers for the main auxili-
ary layers. Two max-pooling layers are used between some
inception modules, ReLu activation is applied in all of the con-
volutional layers and dropout regularisation is used in the fully
connected layers.

Max-pooling layers is used in a DCNN to reduce the
dimensions (i.e. height and width) of the input image as it is
moved through the model. The first convolution layer in Goo-
glenet uses a filter (patch) size of 7 × 7, which is similar to
Alexnet. The main goal of the first layer is to reduce the
input image immediately, but not lose spatial information by
using large filter sizes. Googlenet uses 224 × 224 × 3 images
with ‘zero-centre’ normalisation and one fully connected
layer. It achieved top-1 accuracy of 69.8% to win 1st place
on the ILSVRC 2014 classification task.

3.2.4. Nasnetlarge
Zoph et al. (2018) developed Nasnetlarge, a Neural Architec-
ture Search (NAS) model while working under the auspices
of Google. Its development was inspired by the concept of
reinforcement learning in which the search for a neural net-
work architecture for training is based on giving rewards for
desired behaviours and/or penalising undesired ones (Zoph
and Le 2017). The approach requires enormous computing
power and ingenuity to search for the best combination of
model parameters such as filter sizes, output channels, strides,
number of layers, etc., for automatic design of neural net-
works. Nasnetlarge is a pre-trained model that has been
trained on a subset of the ImageNet database, similar to the
six networks described previously. It uses 3 × 3 × 3 convolu-
tions with stride [2 2] and padding [0 0 0 0]. The first element
of the layers property of the network is the image input layer,
which requires image input of size 331 × 331 × 3 with ‘re-scale-
symmetric’ normalisation. The authors reported top-1 accu-
racy of 82.7%, and top-5 accuracy of 96.2% when used on Ima-
geNet dataset.

3.2.5. Resnet50
Deep neural networks can be difficult to train and can suffer
from vanishing gradient problems, as previously discussed.
Residual networks (Resnets) were introduced as improve-
ments to address some of these issues (He et al. 2016). ResNets
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achieve this improvement by adding skip connections, or
short-cuts, parallel to the layers of convolutional neural net-
works, to jump over some layers. The skip connections in
Resnets resolve the vanishing gradient problems of DCNNs
in two ways: (1) by permitting alternative short-cut routes
through which the gradient can flow, and (2) by allowing the
model to learn the identity functions which ensures that the
higher layer will perform at least as well as the lower layer,
and not worse. There are several variants of Resnets, including
Resnet18, Resnet50, Resnet101, Resnet152 and Resnet1000.
For this study, Resnet50 was selected. As the name suggests,
Resnet50 is a residual network with 50 residual blocks.
Resnet50 is a comparatively deeper network with 177 layers.
It came first in the 2015 version of the ImageNet Challenge
(He et al. 2016), where it achieved top-1 accuracy of 74.9%
in the classification task. It uses 7 × 7 × 3 convolutions with
stride [2 2] and padding [3 3 3 3] and input image size of
224 × 224 × 3.

3.2.6. Squeezenet
Squeezenet was developed by Iandola et al. (2016) as a model
with Alexnet-level accuracy but with a relatively smaller archi-
tecture. Compared with Alexnet, Squeezenet’s architecture has
a relatively smaller footprint in terms of file size and number of
parameters.

By employing model compression techniques, Iandola et al.
(2016) were able to compress Squeezenet to less than 0.5MB,
which is 510 times smaller than Alexnet. Squeezenet has accu-
racy comparable with Alexnet but with only 1.24 million par-
ameters, which is approximately 50 times less parameters than
Alexnet. Strategies used in Squeezenet to lessen the number of
required parameters include replacing the 3 × 3 max-pooling
filters with 1 × 1 filters, decreasing the number of input chan-
nels to 3 × 3 filters, and down sampling later in the network.
Squeezenet uses image input of size 227 × 227 × 3 images
with ‘zero-centre’ normalisation, similar to Alexnet. However,
unlike Alexnet, no fully connected layers are present in the
Squeezenet architecture. Compared with Alexnet, Squeezenet
has a much deeper architecture with 68 total layers instead
of Alexnet’s 25. The first convolutional layer uses 3 × 3 × 3
convolutions with stride [2 2] and padding [0 0 0 0].

3.2.7. Xception
Xception (for ‘Extreme Inception’) is a DCNN architecture
where Inception modules have been replaced with depth-
wise separable convolutions. Compared to spatial separable
convolutions, depth-wise separable convolutions work with
kernels that cannot be ‘factored’ into two smaller kernels.
Xception has been described as an Inception model with
many towers or as a linear stack of depth-wise, separable con-
volution layers with residual connections that uses 36 convolu-
tional layers as a basis for feature extraction (Chollet 2016). In
the Xception architecture, there is no ReLU non-linearity but
point-wise convolution is followed by depth-wise convolution.
Xception uses 3 × 3 × 3 convolutions with stride [2 2] and pad-
ding [0 0 0 0]. On the ImageNet validation dataset, the model
achieved a top-1 accuracy of 79% and top-5 accuracy of 94.5%.

3.2.8. DCNNs model settings and hyperparameters
At the fundamental level, the purpose of a DCNN is to trans-
form images into data from which useful features for predic-
tion can be extracted. The typical DCNN architecture
consists of an input layer andmultiple hidden layers (Figure 2).
The hidden layers typically comprise of convolutional, pooling
and flattening and fully connected layers, and an output or
classification layer; and are often activated by rectified linear
unit (ReLU). Out of this basic structure, and with some con-
verging or modification, comes the many different DCNNs
including the seven selected for the current study. Using a
combination of multiple convolutional layers and pooling
layers, a given image is processed for feature extraction. At
the end of the convolutional and pooling layers, are a set of
fully connected layers leading to the layer for SoftMax (for a
multi-class case) or sigmoid (for a binary case) function.

A DCNN can have tens or hundreds of layers, with each
layer learning to detect different features. The output of each
convolved image is used as the input to the next layer. The
filters or kernels initially detects very simple features, such as
brightness or edges. More complex features that uniquely
define the object are detected with deeper layers. Both the
ReLU and the pooling layers are used to improve compu-
tational efficiency. By maintaining positive values while map-
ping negative values to zero, the ReLU permits quicker and
more effective training. A pooling layer works by performing
non-linear down sampling and reducing the number of par-
ameters that the network needs to learn. Flattening layers con-
verts the network’s 2-dimensional spatial features into 1D
vector of image-level features for image classification purposes.
SoftMax provides probabilities for each category in the dataset
(Bengio et al. 2013, 2015, Schmidhuber 2015).

Stochastic gradient descent method was used as the optim-
isation routine for TL of the selected networks because of its
accuracy and efficiency. Similar hyper-parameters were
selected for use to ensure that realistic comparisons among
different DCNN architectures. In a DCNN, hyperparameters
are used to control the learning process that determine
model parameters that a network eventually learns. For this
study, the model hyperparameters used included the following:
(1) initial learning rate of 0.001, momentum of 0.9, L2 regular-
isation of 0.0001, epochs of 12 and minibatch size of 5.

A graphical processing unit (GPU) with an NVIDIA® T1000
based on Turing architecture, and an Intel Core i-7 CPU at 2.6
GHZ operating on a Windows 10 Pro 64-bit operating system
were used. A common mini-batch size of 8 was used for all the
DCNNs except Nasnetlarge where a mini-batch size of 1 was
used because of memory limitations. Mini-batches are samples
of the training dataset that are processed on the GPU at the
same time and therefore can impact the speed of training
and the accuracy of a network. The larger the mini-batch,
the faster the training. However, larger mini-batch sizes are
associated with longer training times. The networks were com-
piled using the stochastic gradient descent (SGD) optimisation
technique. To fine-tune the selected models for the transfer
learning process for each model, the last fully connected
layer of the original network was replaced with a new fully
connected layer, which classified the features into the eight
pavement distress categories.
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Each network was retrained to identify eight categories of
flexible pavement distresses. The steps used to accomplish
the transfer training of each network included: (1) importing
the pre-trained network, (2) configuring selected layers to per-
form a new recognition task, (3) training the network on a pre-
processed pavement distress dataset and (4) testing the results
to predict and assess network accuracy. A schematic of the
process is shown in Figure 3.

3.3. Evaluation of retrained models

The prediction performance of each retrained DCNN model
was evaluated by comparing single confusion matrix statistics
and accuracy measures such as precision, overall accuracy,
recall and sensitivity which are commonly used to assess
how well TL-based DCNNs perform by most previous investi-
gators. In addition, combined measures such as F1-score and
graphical measures including ROC, AUC, t-SNE, etc., that
are more robust against class imbalance were used.

3.3.1. Confusion matrix
A confusionmatrix (CM) can be applied to visualise the predic-
tive performance of a DCNN model in a tabular fashion. Each
element in a CM represents the number of predictions made
by the network and whether it classified the classes correctly
or wrongly. The sum total of the diagonal entries of a CM is

used commonly to evaluate the success or otherwise of a
DCNN classifier. To interpret the confusion matrix correctly,
a few fundamental concepts should be considered. Interested
readers are referred to Düntsch and Gediga (2019). For the
simple case of a two-class classification problem, it is necessary
to classify only two classes (typically a positive and a negative
class). In such a problem, fourmetrics are typically used, includ-
ing true positive (tp), false positive ( fp), true negative (tn), and
false negative ( fn). A tp denotes the number of predictions
where the network correctly predicts the positive class as posi-
tive, while a tn refers to the number of predictionswhere the net-
work correctly predicts the negative class as negative. On the
other hand, an fp represents the number of predictions where
the network incorrectly predicts the negative class as positive,
while an fn denotes the number of predictions where the net-
work incorrectly predicts the positive class as negative. Even
though the four metrics were originally specified for a binary
classification problem, they are easily extended to classification
problems that involve multiple classes. For a given network, the
metrics can be used to estimate key performancemeasures such
as accuracy, F1-score, precision, recall, specificity, Matthews
correlation coefficient, receiver operating characteristic curve
(ROC) and area under the curve (AUC). In addition to the
aforementioned CM measures, the DCNN were evaluated
using ambiguity of a classification and t-distributed stochastic
neighbour embedding (t-SNE) function.

Figure 2. Basic architecture of a DCNN. In this example an image of a dog is transformed into a matrix of integers and a kernel is applied. The resulting convolved
image is max pooled to produce a feature map which is then fed through flattening layers and finally a classification layer.

Figure 3. Schematic of transfer learning technique for training of selected deep neural networks to classify flexible pavement distresses.
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Accuracy is a measure of the overall accuracy of DCNN and
is defined as the proportion of the total samples that are cor-
rectly categorised by the classifier (Equation (1) below). In
this study, accuracy refers to the overall accuracy of a model
in classifying the eight classes of pavement conditions (block
cracking, distress free, fatigue cracking, longitudinal cracking,
patching, pothole, rutting and transverse cracking). Precision
denotes what proportion of predictions assigned to a positive
class are actually positive (Equation (2) below). Recall, also
known as sensitivity or true positive rate, is the portion of all
positive samples that are correctly predicted as positive by
the classifier. Recall of a classifier can be calculated using
Equation (3). Specificity or true negative rate (Equation (4)
below) represents the proportion of all negative samples that
are correctly predicted as negative by the network.

Overall accuracy is evaluated by the F1-score defined as the
harmonic mean of the recall values and the precision
(Equation (5)). The F1-score metric represents the compro-
mise between precision and sensitivity. An F1-score is 0
when either the precision or the sensitivity is 0. For certain
classification problems (e.g. unbalanced-class problems), Mat-
thews correlation coefficient (MCC) is recommended
(Equation (6)) as it considered that MCC is least affected by
unbalanced data. It represents a correlation coefficient between
the measured and predicted classifications and has values that
range from −1 to +1, where a value of +1 represents a perfect
prediction, 0 is no better than random prediction, and −1 rep-
resents the worst possible prediction (Akosa 2017).

Accuracy = tp + tn
tp + tn + fp + fn

(1)

Precision = tp
tp + fp

(2)

Sensitivity = tp
tp + fn

(3)

Specificity = tn
tn + fp

(4)

F1-score = 2
1

Precision + 1
Recall

= 2tp
2tp + fp + fn

(5)

MCC = tp∗tn − fpfn����������������������������������������
(tp + fp)∗(tp + fn)∗(tn + fp)∗(tn + fn)

√ (6)

3.3.2. Receiver operating characteristic (ROC) curves
A receiver operating characteristic curve (ROC) is a true posi-
tive rate (TPR) versus false positive rate (FPR) plot that can
be used to display the performance of a network at all classifi-
cation thresholds. It is considered as one of the most robust
measures of the predictive performance of a DCNN classifier.
Themagnitude of the classification threshold controls the num-
ber of items classified as positive. Thus, a network operating at
lower classification thresholds will classify more items as posi-
tive than a network operating at a higher threshold. An ROC
can be used to determine other useful performance metrics
including the optimal operating classification threshold

(OPROCPT) and the areas under the ROC curve (AUC).
Both OPROCPT and AUC have values between 0 and 1, with
values closer to 1 associated with better performance.

3.3.3. Area under the ROC curve (AUC)
The area under the ROC curve or AUC is a measure of the area
with coordinates ranging from (0,0) to (1,1) and therefore has
a magnitude of 1. A model with an AUC of 0 will be expected
to make predictions that will be 100% wrong. A model with an
AUC of 1.0 will be expected to be correct 100% of the time and
will rank all positives higher than all negatives. In practice, it is
expected that reliable classification model will rank a random
positive example higher than a random negative example more
than 50% of the time and have an AUC in the range 0.5–1.0.

AUC is considered a more robust measure of performance
than some of previously reviewed measures such as accuracy,
F1-score and recall as it is not affected by class imbalance.
This because AUC is considered to be scale-invariant as it
evaluates how predictions are ranked rather than the absolute
values of prediction levels. Another reason AUC is considered
a more robust prediction performance measure is that it evalu-
ates the predictive quality of a model at all possible threshold
values, i.e. it is threshold-invariant.

3.3.4. Ambiguity of classification
A common problem of image identification and classification
based on the deep convolutional neural network (DCNN)
technique is that the rationale for the output judgement is
often considered to be unclear. The problem could be
addressed using the ambiguity parameter, where ambiguity
of a classification is defined as the ratio of the second-largest
probability to the largest probability (van der Maaten and Hin-
ton 2008). The ambiguity of a classification ranges between
zero (nearly certain classification) and 1 (likely to be classified
to the most likely class as the second class). An ambiguity of
near 1 means the network is unsure of the class in which a par-
ticular image belongs. This uncertainty might be caused by two
classes whose observations appear so similar to the network
that it cannot learn the differences between them. On the
other hand, a high ambiguity can occur because a particular
observation contains elements of more than one class, so the
network cannot decide which classification is correct. It is
noted that low ambiguity does not necessarily imply correct
classification; even if the network has a high probability for a
class, the classification can still be incorrect. For this study,
the SoftMax activations were used to calculate the image
classifications that were most likely to be incorrect. As can
be seen in Table 1, none of the existing works reviewed
reported this important performance evaluation parameter.

3.3.5. Data visualisation techniques
To understand better how a DCNN works to isolate pavement
distress images into clusters depending on their physical features,
the t-distributed stochastic neighbour embedding (t-SNE) func-
tion was used on the test images to view activations in a trained
network. The t-SNE approach was by proposed by van der Maa-
ten andHinton (2008) as a non-linear dimension reduction tech-
nique for mapping high-dimensional data, such as network
activations in a layer, into two dimensions. For the current
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study, the t-SNE function was used to reduce the multi-dimen-
sional activations of the SoftMax layer to a 2D representation
with a similar structure. Tight clusters in the resulting t-SNE
plot correspond to classes that the network usually classifies cor-
rectly. The visualisation thus made it possible to evaluate readily
which observation that the network misclassified.

4. Results and discussion

4.1. Confusion matrix

Sample confusion matrices summarising predictive perform-
ances for the top performing (retrained Googlenet) and least

performing (retrained NasnetLarge) networks are shown in
Figure 4. In Figure 4, the rows relate to the predicted class
(Output Class) and the columns correspond to the true class
(Target Class). The observations that were correctly classified
are depicted on the diagonal cells while the off-diagonal cells
relate to wrongly classified observations. The number of obser-
vations is shown in each cell.

The two columns on the far right of the plot shows the pro-
portions of all the distresses predicted to go to each class that are
accurately classified (precision or positive predictive value) and
wrongly classified (false discovery rate). The two rows at the
bottom of the plot shows the percentages of all the distresses
belonging to each class that are correctly classified (true positive

Figure 4. Comparison of network performance based on confusion matrix for selected networks.
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rate) and incorrectly classified (false negative rate). The ratio of
the sum of all the diagonal values (=44 in the case of Googlenet)
divided by the total number of images in the validation set (=55)
gives the overall accuracy of themodel for themulti-class image
classification at hand. Thus, for the results depicted in Figure 4,
the overall accuracy values are 80% and 42% for Googlenet and
NasnetLarge, respectively. The results from the CM for each of
seven networks were used to estimate multiple performance
measures including F1-score, precision, recall, specificity, and
Matthews correlation coefficient.

The first sub-plot in Figure 4 is the confusion matrix for the
Googlenet classifier trained to classify asphalt pavement dis-
tresses. In this figure, the first eight diagonal cells show the
number of correct classifications by the trained network. It
can be seen that seven distresses were classified correctly as
longitudinal cracks. This corresponded to 12.7% of all the 55
distresses used for validation of the trained model. Similarly,
one of transverse cracks was classified incorrectly as fatigue
cracking. This corresponded to approximately 5.5% of all dis-
tresses used during validation. Similarly, two of the transverse
cracks were classified incorrectly as patching and this corre-
sponded to approximately 3.6% of all validation data. All of
the block cracking were correctly predicted as block cracking.
Of the fatigue cracking cases, 77.8% were classified correctly,
while 22.2% were classified as block cracking and rutting. It
is noted that the performance of the trained classifier on patch-
ing was the least accurate, as only 54.5% of the patching were
classified correctly and 45.5% were classified incorrectly as fati-
gue cracking, longitudinal cracking and transverse cracking.
The overall accuracy of the Googlenet-trained classifier was
80.0% for classifying the eight distresses considered.

The Densenet201 network classified several images cor-
rectly (overall accuracy 76%) and was considered the
second-most accurate of the seven networks considered,
based on the elements of the confusion matrix. The network
appeared to have most trouble with longitudinal cracking
images, classifying most as distress free, fatigue cracking, or
patching.

The trained Squeezenet network classified several images
fairly correctly (overall accuracy 66%). The network appeared
to have serious difficulty with rutting images (29% accuracy)
and patching (43% accuracy). The network misclassified
many rutting images as fatigue cracking, longitudinal cracking
or patching.

The trained Resnet50 network classified several images of
pavement distress correctly (overall accuracy 69%). Unlike
Googlenet, the Resnet50 network appeared to have no trouble
with pothole images, classifying all of them as potholes.

However, the network had trouble classifying block cracking,
fatigue cracking, and longitudinal cracking. For instance, the
network classified many fatigue cracks as block cracking,
longitudinal cracking, patching, pothole, or rutting. The
model had a sensitivity (recall) of 71%, which is comparable
to previously reported values for TL-based pavement classifi-
cation tasks in the literature (Ma et al. 2017, Maeda et al.
2018, Chen et al. 2022).

The trained Xception network classified several images of
pavement distress correctly (overall accuracy 75.5%). Xception
predicted block cracking and distress-free pavements perfectly
(100% accuracy). However, the network had trouble classifying
all the other distresses including fatigue cracking (78%), longi-
tudinal cracking (50%), patching (43%), potholes (40%), rutting
(86%) and transverse cracking (67%). Overall, the network
classified many fatigue cracks as block cracking or pothole.

The trained Nasnetlarge network misclassified most of the
distress images (overall accuracy 42%). The network appeared
to have trouble with all but patching images, classifying many
patches as patches and only one as fatigue cracking.

Table 3 shows a summary of the performance measures
achieved by each trained classifier based on eight widely
used measures for evaluating classifier performance. The
data shows Googlenet had the highest F1 accuracy, while Nas-
netlarge was ranked the worst. The F1 performances for the
middle four networks were comparable. It can be seen from
Table 3, Googlenet, Densenet201 and Xception ranked highest
while NasnetLarge ranked consistently lower than any other
model, irrespective of network.

4.2. Matthews correlation coefficient

Matthews correlation coefficient (MCC) is considered to be a
more reliable statistical rate which produces a high score
only if the prediction obtained correct results in all of the
four confusion matrix categories (true positives, false nega-
tives, true negatives, and false positives), proportional both
to the size of positive elements and the size of negative
elements in the dataset (Chicco and Jurman 2020). The results
are summarised in Table 4.

As shown in Table 4, classifier performance varied
depending on the classifier type as well as distress type. It
was observed that, while some networks based on Googlenet,
Densenet and Xception performed comparatively well across
all distress types, others, such as Nasnetlarge, performed
poorly across the board. The latter observation was unex-
pected as Nasnetlarge performed excellently (top 1 accuracy
of 82.5%) when used to classify common objects in the

Table 3. Performance measures for seven DCNNs retrained to classify eight pavement distresses.

Measure Googlenet Densenet201 Squeezenet Alexnet Restnet50 Xception NasnetLarge

Accuracy 0.800 0.764 0.655 0.636 0.691 0.755 0.418
Precision 0.852 0.795 0.743 0.626 0.699 0.772 0.510
Sensitivity 0.794 0.770 0.653 0.634 0.701 0.757 0.408
Specificity 0.971 0.966 0.949 0.948 0.956 0.965 0.916
F1-score 0.809 0.776 0.671 0.626 0.680 0.739 0.418
MCC 0.594 0.546 0.502 0.487 0.470 0.437 0.312
AUC 0.928 0.988 0.840 0.886 0.884 0.983 0.816
OPT 0.800 0.800 0.600 0.200 0.400 0.800 0.000

Note: OPT = Optimal operating point of the ROC curve.
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ImageNet (Table 2). The results suggest that it essential to
take great care when selecting existing pre-trained networks
to classify pavement distress. Another interesting observation
from Table 4 was that Densenet201 appeared to be the most
versatile classifier as it appeared in the top-three-performing
networks for five out of the eight distress categories con-
sidered in the study.

As mentioned earlier, because MCC generates a high score
only if the classifier was able to predict most of the positive and
negative data instances correctly, the measure is often pre-
ferred to the F1 score by experts in the field (Akosa 2017).
The results of the study suggested that the classifier with the
top MCC ranking (Googlenet) performed well on both recall
(tp rate = 0.85) and specificity (tn rate = 0.97), which agreed
with the F1 score ranking. While Squeezenet was ranked
third using MCC, Alexnet was ranked third based on the F1
score. In this case, the recall value for Squeezenet was relatively
better (tp rate = 0.74 and tn rate = 0.95) compared with Alexnet
(tp rate = 0.72 and tn rate = 0.96). It was observed also that, for
the dataset and networks evaluated in this study, image size
was strongly correlated with classifier performance(R2 =
0.75); models with the lower input sizes (e.g. 224 × 224 pixels)
consistently outperformed models that required larger input
sizes (e.g. 331 × 331 pixels). While no firm conclusions could
be made based on the limited number of image sizes used in
the current study, the authors believe computer memory
could be a factor as the model that performed worse was
also the most complex in terms of file size. The findings war-
rant further investigation to establish the impact of image size
and hardware limitations on model performance. All the
models performed poorly in the prediction of patching, as
the MCC values for each distress type were all below 50%.
The fine-grained nature of patching images could have been
the reason for universally poor prediction of the distress by
the seven networks evaluated. Compared with the F1 score,
the ranking of the best performing, and worst performing clas-
sifiers appeared to be similar for the distresses and networks
used for the study, although MCC appeared to be more
sensitive.

As shown in Table 5, average false negative rates for the var-
ious classifiers varied from approximately 14.8% for Googlenet
to 49.0% for Nasnetlarge. The ranking of classifier perform-
ance using the false negative (fn) measure was similar to that
based on MCC. For asphalt pavements, a high false negative
rate is undesirable, as high percentages of distresses that
might require urgent attention could be missed. The results
suggested that multiple performance measures including F1
score, MCC and fn, could all be used when evaluating individ-
ual networks to classify asphalt pavement distresses. On this
basis, the results suggested that, for the networks considered
in this study, models based on Googlenet and Densenet201
appeared to perform best, while models based on Nasnetlarge
performed worst. The results were unexpected because it is
commonly assumed that the best performing CNN models
in the ILSVRC challenge would also be the top performing
models in other visual tasks when using features obtained
for the relevant purpose (Kornblith et al. 2018). Similar, unex-
pected results have been reported when models trained on the
Imagenet dataset are used in transfer learning to classify
images from entirely different domains such as those that
were the focus of this study (pavement distress images)

4.3. Multi-metric evaluation

One of the main gaps identified in existing TL-based classifi-
cation studies on pavement distresses is the lack of infor-
mation on the use of multiple performance metrics for
robustly evaluating network performance, especially metrics
that are not sensitive to class imbalance. Class imbalance
(e.g. low proportions of potholes in existing datasets in devel-
oped countries such as U.S.A. and Japan) has been identified as
a major problem, majority of the studies reviewed used indi-
vidual metrics such as accuracy, precision, recall and F1-
score, often in isolation, which might not be reliable when sig-
nificant class imbalance exist in the dataset. To address this
gap, model performance in this study was assessed using a
combination F1-score, AUC, model size, and speed of training
in a form that will permit easier comparison with existing TL-

Table 4. Comparison of performance of various networks ranked by distress type using MCC.

Distress type Googlenet Densenet201 Squeezenet Alexnet Xception Resnet50 NasnetLarge

Block cracking 72.3 72.4 71.0 50.0 49.5 30.9 30.0
Distress free 72.0 57.6 57.6 71.6 46.5 42.1 11.1
Fatigue cracking 52.6 45.9 25.9 63.0 46.0 70.1 6.9
Longitudinal cracking 53.4 44.2 56.3 35.0 40.2 40.1 35.0
Patching 36.1 28.9 30.0 37.2 37.2 41.0 24.8
Pothole 69.6 54.8 71.7 39.0 32.1 49.2 42.9
Rutting 59.6 59.8 41.3 37.2 43.2 41.0 30.0
Transverse cracking 59.2 73.4 47.7 56.3 54.4 61.5 69.2

Table 5. Comparison of performance of various networks using false negatives. Well-performing networks are characterised by lower false negative rates.

Distress type Googlenet Densenet201 Squeezenet Alexnet Xception Resnet50 NasnetLarge

B.cracking 0.0 0.0 0.0 25.0 28.6 50.0 50.0
Distress free 0.0 16.7 16.7 0.0 33.3 37.5 75.0
F.cracking 22.2 30.0 58.8 11.1 28.6 0.0 76.9
L. cracking 22.2 33.3 16.7 44.4 37.5 37.5 44.4
Patching 45.5 50.0 50.0 40.0 40.0 37.5 62.5
Pothole 0.0 20.0 0.0 40.0 50.0 28.6 33.3
Rutting 14.3 14.3 33.3 46.2 33.3 37.5 50.0
T. cracking 14.3 0.0 30.0 16.7 20.0 12.5 0.0
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based models as well as new TL models that will be developed
in the future. The results are depicted in Figures 5 and 6, for
F1-score and AUC, respectively. From plots and Table 3, the
performance levels of the seven models can be clearly ident-
ified. The top performing models were characterised by high
F1-scores, high AUC, low training times and low model size.
For example, Googlenet with F1-score of 80%, also had one
of the smallest model sizes as well as training speed that is
orders of magnitude smaller than the Nasnetlarge, the lowest
ranked model in this study. The top three performing models
had similar OPT of 0.80, AUC that ranges between 0.928 and
0.983, and F1-score that lies between 74% and 81%. On the
other hand, the lowest performing model has an OPT of 0.0,
AUC of 0.816, F1-score of 42%. On the basis of size, the lowest
performing model (Nasnetlarge) was almost 14 times as big as
the one of the top performing models (Googlenet). The trained
network based on Googlenet was almost six times as fast, and
three times smaller, than the Densenet201 model. Compared

to Table 3, the utility of plots such as those depicted in Figures
5 and 6 is apparent. For example, using the four performance
metrics (accuracy, precision, recall and F1-score) commonly
used in previous studies, the difficulty of discriminating the
best performing model is easy to see. In this case, when consid-
ering recall (sensitivity), all the models with the exception of
worst performing model, lies in the narrow range of 0.63–
0.79, which makes choosing the best performing models
difficult. The approach used in this study that is based on mul-
tiple performance metrics appears to be more discriminately
than commonly used single parameter metrics and could be
recommended for future studies.

4.4. Ambiguity of classification

Ambiguity of a classification is defined as the ratio of the
second-largest probability to the largest probability, and
ranges between zero (nearly certain classification) and 1 (likely

Figure 5. Evaluation of TL-based models using multiple performance metrics. Comparison of the training speeds versus F1-score for seven DCNNs trained to classify
asphalt pavement distress.

Figure 6. Evaluation of TL-based models using multiple performance metrics. Comparison of the training speeds versus AUC for seven DCNNs trained to classify asphalt
pavement distress.
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to be classified to the most likely class as the second class).
Table 6 shows comparison of likeliest prediction with true
class for Googlenet. As shown in Table 6, ambiguity ranged
from a minimum of 0.00036 to a maximum value of 0.490.
In 18 out of 20 observations, the network predicted the true
class (shaded green). The misclassification of block cracking
as longitudinal cracking or of longitudinal cracking as fatigue
cracking is a recognised problem in the field, even for trained
technicians. The results demonstrated high precision of the
trained Googlenet and agreed with the other performance
measures discussed already in this paper. Table 7 shows the
corresponding ambiguity of classification results for Nasne-
tlarge. Ambiguity varied from 0.580 to 0.999, indicating a gen-
erally poor predictive performance of the network. Comparing
the network prediction of the likeliest class with the true class,
as shown in Table 7, the Nasnetlarge trained in this study was
able to predict 5 out of 20 images correctly (20%). The results
presented in Tables 6 and 7 demonstrated the potential utility
of the ambiguity parameter in robustly evaluating the perform-
ance of existing deep convolutional neural networks retrained

to classify asphalt pavement distresses. For example, results
could be used to provide guidance on which models are the
best suited for which distresses and also which distresses
could cause confusion for which model(s).

4.5. Network evaluation using t-SNE plots

Figure 7 shows a t-SNE plot of the SoftMax activations for
Googlenet and Nasnetlarge, the best-performing and worst-
performing networks used in this study. The plot shows details
of the structure of the posterior probability distribution used
by each network for distress classification. The plot shows
eight distinct clusters for the Googlenet observations, whereas
the Nasnetlarge clusters are not resolved very well. Similar to
the confusion matrix-based measures, the ambiguity par-
ameter, and the Matthews correlation coefficient scores, the
t-SNE plot suggested that the trained Googlenet network was
more accurate at classifying asphalt pavement distresses into
eight different classes than Nasnetlarge.

Table 6. Ambiguity parameters for best-performing Googlenet model.

Image # Ambiguity Likeliest Second True Class

2 0.4899200 Longitudinal Cracking Fatigue Cracking Block Cracking
29 0.4265500 Patching Rutting Patching
19 0.0161550 Fatigue Cracking Block Cracking Fatigue Cracking
14 0.0147900 Fatigue Cracking Block Cracking Fatigue Cracking
34 0.0082732 Patching Longitudinal Cracking Patching
3 0.0082692 Block Cracking Longitudinal Cracking Block Cracking
33 0.0025295 Patching Rutting Patching
22 0.0022393 Longitudinal Cracking Block Cracking Longitudinal Cracking
6 0.0021190 Distress-free Longitudinal Cracking Distress-free
25 0.0018898 Fatigue Cracking Patching Longitudinal Cracking
31 0.0017293 Patching Rutting Patching
53 0.0015011 Transverse Cracking Pothole Transverse Cracking
52 0.0009553 Transverse Cracking Pothole Transverse Cracking
27 0.0009103 Longitudinal Cracking Distress-free Longitudinal Cracking
51 0.0008291 Transverse Cracking Rutting Transverse Cracking
47 0.0007131 Rutting Distress-free Rutting
46 0.0005390 Rutting Fatigue Cracking Rutting
28 0.0005176 Longitudinal Cracking Patching Longitudinal Cracking
10 0.0004625 Distress-free Longitudinal Cracking Distress-free
43 0.0003619 Rutting Longitudinal Cracking Rutting

Table 7. Ambiguity parameters for worst-performing model.

Image # Ambiguity Likeliest Second True Class

50 0.9993900 Transvers Cracking Longitudinal Cracking Transverse Cracking
53 0.9627900 Transvers Cracking Fatigue cracking Transverse Cracking
48 0.9443100 Transvers Cracking Longitudinal Cracking Transverse Cracking
25 0.9179300 Fatigue Cracking Pothole Longitudinal Cracking
54 0.9154100 Block Cracking Fatigue cracking Transverse Cracking
41 0.8931600 Pothole Rutting Rutting
8 0.8560900 Fatigue Cracking Rutting Distress-free
32 0.8371800 Fatigue Cracking Rutting Patching
36 0.8300100 Longitudinal Cracking Fatigue cracking Pothole
28 0.8286500 Longitudinal Cracking Patching Longitudinal Cracking
22 0.8152900 Fatigue Cracking Patching Longitudinal Cracking
24 0.7909900 Longitudinal Cracking Block Cracking Longitudinal Cracking
49 0.7849100 Longitudinal Cracking Transverse Cracking Transverse Cracking
51 0.7283200 Fatigue Cracking Rutting Transverse Cracking
44 0.6627600 Fatigue Cracking Rutting Rutting
30 0.6305300 Rutting Fatigue cracking Patching
55 0.6278900 Fatigue Cracking Pothole Transverse Cracking
15 0.6172100 Patching Fatigue cracking Fatigue Cracking
52 0.5875700 Fatigue Cracking Pothole Transverse Cracking
34 0.5796300 Patching Fatigue cracking Patching
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4.6. Discussion

The preliminary results in this study suggest that the specific TL
techniques adopted in this study can be applied to Googlenet,
Densenet201 or Xception networks to develop fairly accurate
and robust pavement distress classificationmodels and warrant
further studies. The approach adopted in this study, including
the multiple performance measures used, will be of great inter-
est to other pavement engineers considering the adoption of
machine learning techniques, such as TL-based DCNNs. The
results are by no means universal and it is conceivable that a
different combination of TL techniques including hyperpara-
meter optimisations could results in better performance even
for pretrained models that performed poorly in this study.

One of the goals of evaluating pavement condition is to
understand the mechanisms responsible for causing a given
distress in order to recommend remedial action(s) that are
likely to result in the most cost-effective solution. Therefore,
pavement engineers try to identify the most likely types of dis-
tress and their extent, as well as to avoid missing a particular
distress that is actually present. The basic ability of a deep
neural network to separate pavement distresses into eight
classes, as demonstrated in this study, does not facilitate sol-
ving such a complex engineering problem directly. Once
robust models have been developed or identified, the more
complex problem of automatically establishing the condition
of the pavement by quantifying the extent of the distress,
cause(s) of the distress and suggestion for remedial action
need to be developed before a truly automatic system can be
achieved. Moreover, the accuracy of the eight-class classifi-
cation should be regarded with caution since it is affected
also by the capability of the annotating technicians to correctly
categorise asphalt pavement distresses consistently using
photographic images, which has been observed to be not per-
fect always. However, the evaluations documented in this
study are useful in providing insights into the workings of
state-of-the-art, deep neural network learning that are necess-
ary to modify these networks to suit pavement applications in
the field. The best performing network (Googlenet), when

considering a linear combination of F1-score, AUC, OPT,
training time, and model size, had a relative score approxi-
mately 6 and 8 times better than the next two top-performing
modes Densenet201 and Xception, respectively. The results
demonstrate the sensitive nature of the multi-metric approach
introduced in this study. It should be noted that all the metrics
were equally weighted. However, to obtain the linear combi-
nation for each network, we mapped each performance metric
to a common index range and added then them together.

The work presented in this paper provides an example that
shows how TL-based DCNNs techniques can be used in pave-
ment engineering, especially to classify asphalt pavement dis-
tress. The pavement engineering field can benefit
considerably from the advances made in machine learning,
especially in transfer learning. Future work undertaken by the
researchers will be focused on many valuable applications and
goals, such as predicting distress initiation and propagation
and, ultimately, better understanding of the mechanisms that
causing a given distress in the first place. The results presented
show the potential of using DCNNs to assess pavement distress
accurately and eventually, to automate currently tedious and
user-dependent tasks to evaluate pavement conditions.

5. Conclusions

In this study, TL techniques were used to retrain seven existing
DCNNs to classify approximately 400 images into eight pave-
ment distress class labels. The following conclusions are based
on the results obtained using the specific TL techniques
implemented in the study:

(1) The results show some existing DCNN’s are better than
others for developing pavement distress classification
models using the specific TL approach adopted in the
study. For example, Googlenet, based on the Inception
architecture, was found to be the most successful network,
with overall accuracy of approximately 80%, while Nasne-
tlarge, based on the reinforcement learning concept, had

Figure 7. Plot of the SoftMax activations, showing the structure of the posterior probability distribution for Googlenet (a) and Nasnetlarge (b). The legend shows details
of the labels for each class
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the least accuracy of all the networks considered. The
results were unexpected but not surprising, as previous
studies have shown that network that are successful in
the ImageNet Challenge do not always perform well
using transfer-training. The selection of models based
only on performance in the classification of ImageNet
data (a benchmark in the field) is not recommended. Nas-
netlarge has the highest accuracy in ImageNet classifi-
cation but performed worst when transfer-trained to
classify pavement distress in the current study using the
specified TL-techniques

(2) Based on a linear combination of F1-score, AUC, OPT,
training time, and model size, the best performing net-
work (Googlenet), had a relative score approximately 6
and 8 times better than the next two top-performing
modes Densenet201 and Xception, respectively. The
results demonstrate the high sensitivity of the multiple
metrics approach adopted in this study.

(3) The best-performing networks were characterised by
lower proportions of false negative values, very low ambi-
guity scores, and well-defined t-SNE clusters that showed
clear separation between the eight classes of distress
considered.

(4) Poor-performing networks were characterised by high
proportions of false negatives (i.e. models failed to
identify distresses where they actually existed). For pave-
ments, this is undesirable because high percentages of dis-
tresses that might require urgent attention could be
missed.

(5) Differences were observed in terms of the ability of each
model to classify each of the eight pavement distresses
considered. It was observed that, while the performance
of Nasnetlarge was worst overall in terms of accuracy
when all eight distresses were considered, the model per-
formed fairly well in classifying patching.

(6) Even though the predictions of the two top-performing
models (Googlenet and Densenet201) were similar both
in validation and verification tests, there were some key
differences in terms of speed of prediction and model
size on file. The trained network based on Googlenet
was six times as fast as, and three times smaller than,
the Densenet201 model.

(7) It is recommended that future studies are focused on
image quality and quantity as a means of improving on
the performance of the developed models in terms of pre-
diction speed, accuracy, and model size. Furthermore, the
impact of variability in the selection of hyper-parameters
on model performance requires further studies. Finally,
the results showed that while some TL-networks devel-
oped in this study were weak learners overall, they were
nonetheless very good as classifier for some individual dis-
tresses. Thus, future studies aimed at combining multiple
DCNNs to work synergistically to achieve better predic-
tive performance is warranted.
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