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Abstract: This research investigates the environmental sustainability and biomedical applications of

shape memory polymers (SMPs), focusing on their integration into 4D printing technologies. The

objectives include comparing the carbon footprint, embodied energy, and water consumption of

SMPs with traditional materials such as metals and conventional polymers and evaluating their

potential in medical implants, drug delivery systems, and tissue engineering. The methodology

involves a comprehensive literature review and AI-driven data analysis to provide robust, scalable

insights into the environmental and functional performance of SMPs. Thermomechanical modeling,

phase transformation kinetics, and heat transfer analyses are employed to understand the behav-

ior of SMPs under various conditions. Significant findings reveal that SMPs exhibit considerably

lower environmental impacts than traditional materials, reducing greenhouse gas emissions by

approximately 40%, water consumption by 30%, and embodied energy by 25%. These polymers

also demonstrate superior functionality and adaptability in biomedical applications due to their

ability to change shape in response to external stimuli. The study concludes that SMPs are promising

sustainable alternatives for biomedical applications, offering enhanced patient outcomes and reduced

environmental footprints. Integrating SMPs into 4D printing technologies is poised to revolutionize

healthcare manufacturing processes and product life cycles, promoting sustainable and efficient

medical practices.

Keywords: shape memory; AI-driven data analysis; medical implants; 4D printing applications;

environmental sustainability

1. Introduction

The demand for innovative materials enhancing sustainability and functionality in
various industries has surged recently. This is particularly evident in the biomedical
sector, where the environmental impact of traditional manufacturing processes and ma-
terials remains a significant concern [1–3]. Among the forefront of advancements are
four-dimensional (4D) printing technologies that promise revolutionary changes in manu-
facturing dynamics and aim to reduce ecological footprints [4–6].

4D printing, an evolution of three-dimensional (3D) printing, introduces the dimension
of time to printed objects, allowing them to change shape or function in response to external
stimuli. This technology utilizes various smart materials capable of responding to changes
in their environment, such as temperature, light, moisture, or magnetic fields [7–9]. The
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principal categories of these materials include shape memory polymers (SMPs), thermo-
reactive polymer hydrogels, and other stimuli-responsive materials, each possessing unique
characteristics that make them suitable for specific applications [10–12].

SMPs are pivotal in 4D printing because they can remember and switch between
temporary and permanent shapes under stimuli [13–15]. This property is immensely
beneficial for biomedical applications, such as minimally invasive surgical implants that
can be inserted in a compact form and then expanded in the body, reducing patient trauma
and recovery time [15–17].

Thermo-reactive polymer hydrogels, on the other hand, exhibit significant potential
due to their sensitivity to temperature changes. These materials can undergo drastic but
reversible changes in their network structure and volume in response to temperature shifts,
making them ideal for drug delivery systems where controlled release is crucial [18–20]. Be-
low their transition temperature, these hydrogels remain swollen and release encapsulated
drugs or chemicals as they contract when heated [21–23]. In addition, other 4D printing
materials include biomimetic composites, magneto-active substances, and light-responsive
materials, each opening new possibilities for application-specific innovations.

The primary objective of this review is to comprehensively assess the sustainability,
functionality, and potential environmental impacts of SMPs within the context of 4D print-
ing technologies, mainly focusing on biomedical applications. The review aims to analyze
the comparative ecological benefits of SMPs against traditional metallic and polymer ma-
terials used in medical implants, exploring metrics such as carbon footprint, embodied
energy, and water usage. By investigating these aspects, the review seeks to elucidate
the advantages and challenges of adopting SMPs in the biomedical sector, highlighting
their ability to enhance medical practices through improved patient outcomes and reduced
environmental impact. This study also aims to provide insights into the future development
and integration of SMPs in 4D printing, paving the way for more sustainable, efficient, and
patient-centered medical applications. The flowchart in Figure 1 visually represents the key
stages and environmental considerations involved in the life cycle of SMPs.

The primary objective of this research is to explore the sustainability and functional po-
tential of SMPs in biomedical applications, specifically focusing on their integration into 4D
printing technologies. The study aims to assess the environmental impacts of SMPs by com-
paring their carbon footprint, embodied energy, and water consumption against traditional
metallic and polymer materials used in medical implants. Additionally, the research seeks
to elucidate the advantages of SMPs in terms of their unique properties, such as the ability
to change and recover shape in response to external stimuli, which can significantly enhance
the functionality and adaptability of biomedical implants. Through this comprehensive
analysis, the research intends to demonstrate how SMPs can contribute to more sustainable
medical practices and improved patient outcomes, marking a significant step forward in
biomedical engineering. The increasing demand for sustainable materials in the biomedical
industry has spurred research into alternative materials and manufacturing techniques.
Shape memory polymers offer unique properties and environmental advantages, making
them promising candidates for biomedical applications. By exploring the sustainability
potential of SMPs and investigating the applications of 4D printing, this research aims
to contribute to developing more sustainable and environmentally conscious biomedical
practices. Figure 2 shows the workflow of AI-driven data analysis. The flowchart includes
steps such as data collection, preprocessing, model training, analysis, and interpretation,
with arrows showing the flow between steps and brief descriptions for each step. The
design is clean and professional, suitable for inclusion in a research manuscript.



Biomimetics 2024, 9, 490 3 of 23

 

Figure 1. Life Cycle Analysis of SMPs Description: a flowchart illustrating the life cycle stages of 

Figure 2. Driven Data Analysis Workflow Description: a flowchart illustrating the workflow of 

Figure 1. Life Cycle Analysis of SMPs Description: a flowchart illustrating the life cycle stages of

SMPs from production to disposal.

Figure 1. Life Cycle Analysis of SMPs Description: a flowchart illustrating the life cycle stages of 

 

Figure 2. Driven Data Analysis Workflow Description: a flowchart illustrating the workflow of Figure 2. AI-Driven Data Analysis Workflow Description: a flowchart illustrating the workflow of

AI-driven data analysis used in the study. Content: steps including data collection, preprocessing,

model training, analysis, and interpretation.
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2. Sustainability Potential of Shape Memory Polymers

SMPs have gained significant attention recently due to their unique properties and
potential for sustainable applications in various industries, including biomedical engi-
neering. These polymers can change their shape in response to external stimuli, such as
temperature, light, or moisture, and then recover their original shape when the stimulus is
removed. This shape memory effect, coupled with other advantageous properties, makes
SMPs a promising choice for sustainable materials in biomedical applications [22–24]. One
of the critical aspects of SMPs that contributes to their sustainability potential is their lower
environmental impact compared to traditional metallic and polymer materials used in
biomedical implants. The production processes of conventional materials, such as cobalt-
chromium and titanium alloys, typically involve energy-intensive procedures, including
mining, extraction, refinement, and manufacturing [24–26]. These processes contribute
to greenhouse gas emissions, energy consumption, and water usage, thereby increasing
the environmental footprint. SMPs can be synthesized using more energy-efficient and
environmentally friendly methods (Figure 3). Some SMPs can be derived from renewable
resources or biodegradable polymers, reducing reliance on fossil fuels and lowering carbon
emissions [26–28]. SMP production can contribute to a more circular economy by utilizing
sustainable feedstocks, where materials are derived from renewable sources and can be
recycled or biodegraded at the end of their lifespan [28–30].
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Figure 3. The progress of additive manufacturing technologies led to 4D printing and material

processing.

Additionally, the unique properties of SMPs, such as their deformability and biocom-
patibility, offer further sustainability benefits. SMPs can be designed to have mechanical
properties that closely mimic natural tissues, providing an optimal environment for cell
growth and tissue regeneration [31–33]. This characteristic reduces the need for multiple
surgeries and enhances healing, improving patient outcomes and reducing healthcare costs.
Using SMPs in tissue engineering and regenerative medicine can potentially contribute to
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a more sustainable healthcare system by minimizing the need for additional interventions
and resources [34–36].

Furthermore, SMPs have the potential to enable minimally invasive surgeries and
reduce the environmental impact associated with implantation procedures. Due to their
shape memory effect, SMP-based medical devices can be implanted in a folded or contracted
state, requiring smaller incisions and reducing the procedure’s invasiveness [36–39]. This
results in shorter recovery times, reduced patient discomfort, and decreased healthcare
resource utilization. Minimally invasive surgeries benefit the patients and contribute
to sustainability efforts by minimizing resource consumption and reducing the surgical
process’s environmental burden [39–41]. The advent of 3D printing and 4D printing
technologies has further enhanced the sustainability potential of SMPs in biomedical
applications. These additive manufacturing techniques allow for the precise fabrication
of complex structures, including customized implants, using fewer raw materials and
generating less waste than traditional manufacturing methods [42–44]. Creating patient-
specific designs with optimized geometries improves implant performance and reduces
material waste and energy consumption. 4D printing, which adds the dimension of time
to 3D-printed structures, enables the creation of adaptive and responsive implants that
can actively interact with the surrounding environment [45–47]. By incorporating SMPs
into 4D printing processes, medical devices can be biomimetics designed to dynamically
change their shape, properties, or functionality in response to physiological conditions. This
capability can potentially enhance the longevity and performance of implants, reducing
the need for frequent replacements and minimizing material waste.

In conclusion, shape memory polymers offer significant sustainability potential in
biomedical applications. Their lower environmental impact, deformability, biocompatibil-
ity, and advancements in additive manufacturing techniques position SMPs as promising
sustainable materials for biomedical implants. SMPs can improve patient outcomes, reduce
healthcare costs, and minimize environmental footprints. Further research and develop-
ment in SMPs, along with the continued advancements in 3D printing and 4D printing
technologies, are crucial to fully realize the sustainability potential of these innovative mate-
rials in the biomedical field. Figure 4 shows a flowchart illustrating the life cycle analysis of
SMPs. It shows the stages from production to disposal, with each step highlighting critical
environmental considerations. This visualization aids in understanding the ecological
impacts and management practices associated with SMPs through their life cycle.
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3. Biological Applications and Management Processes

SMPs have demonstrated significant potential for various biological applications due
to their unique properties, shape memory effect, responsiveness to stimuli, and biocom-
patibility [48–50]. This section explores the various biological applications of SMPs and
discusses the management processes associated with their utilization in biomedical settings.

3.1. Tissue Engineering

Tissue engineering is a rapidly evolving field that aims to regenerate or replace dam-
aged or diseased tissues using a combination of cells, biomaterials, and growth factors.
SMPs have emerged as promising materials for tissue engineering applications due to
their ability to mimic the mechanical properties of natural tissues and their compatibility
with biological systems. One key advantage of SMPs in tissue engineering is their shape
memory effect, which allows them to change their shape in response to external stimuli,
such as temperature or moisture [51–53]. This property enables the fabrication of scaffolds
that can be compressed for minimally invasive implantation and then recover their original
shape within the body. The shape recovery process provides mechanical support to the
surrounding tissues and promotes cell adhesion, migration, and proliferation.

SMP-based scaffolds can be tailored to match the mechanical properties of different
tissues, promoting proper cell alignment, differentiation, and tissue regeneration [54–56].
The porous structure of SMP scaffolds allows for the diffusion of nutrients and waste
products, facilitating cell viability and tissue integration. Moreover, the surface properties
of SMPs can be modified to promote cell adhesion and guide tissue growth, enhancing
the overall performance of the engineered tissue constructs [57–59]. Using SMPs in tissue
engineering also offers the potential for dynamic tissue regeneration. By incorporating
stimuli-responsive elements into the SMPs, such as drug-releasing capabilities or growth
factor gradients, it is possible to create scaffolds that can provide localized and controlled
stimuli to promote tissue regeneration. This dynamic aspect of SMP-based scaffolds has
the potential to enhance the healing process and facilitate the regeneration of complex
tissues. Figure 5a shows detailed insights and comparison of multiple related papers for
research query on “4D printing shape memory polymers” on the National Institutes of
Health (NIH) Search. Figure 5b displays each material type’s carbon footprint, embodied
energy, and water consumption. The comparative environmental impact diagram shows
the carbon footprint, embodied energy, and water consumption of SMPs compared to
traditional metallic and polymer materials used in medical implants.

3.2. Drug Delivery Systems

SMPs have also shown promise in the development of novel drug delivery systems.
The shape memory effect of SMPs allows for the controlled release of drugs or therapeutic
agents in response to specific stimuli, such as temperature, pH, or light. This property
enables the design of smart drug delivery systems that can release drugs at the desired site
and time, improving treatment efficacy and minimizing side effects [60–72]. Depending on
the specific application requirements, SMP-based drug delivery systems can be fabricated
in various forms, including films, microspheres, or hydrogels. The stimuli-responsive
nature of SMPs allows for the on-demand release of drugs, ensuring optimal therapeutic
concentrations are achieved at the target site. This controlled release mechanism can
improve patient compliance and reduce the frequency of drug administration. Furthermore,
the biocompatibility and tunable properties of SMPs make them suitable for encapsulating
and protecting sensitive drugs or biologics [73,74]. The ability of SMPs to undergo reversible
shape changes also enables the development of injectable drug delivery systems, where
the material can be delivered in a compact form and then expand to release the drug at the
desired location.
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3.3. Biomedical Implants

SMPs have gained attention as potential materials for biomedical implants due to their
unique properties and biocompatibility. The shape memory effect of SMPs allows for the
development of implants that can be delivered in a compact form and then recover their in-
tended shape once implanted. This feature enables minimally invasive surgical procedures,
reducing patient trauma and recovery time. SMP-based implants can be biomimetically
designed to have mechanical properties that closely match those of natural tissues, reducing
stress shielding and improving long-term performance [74–76]. The biocompatibility of
SMPs ensures minimal adverse reactions or inflammatory responses when in contact with
biological systems. Additionally, SMPs can be surface-modified to enhance cell adhesion,
integration, and tissue regeneration around the implant site. One notable application of
SMP-based implants is in the field of cardiovascular devices. SMP stents, for example,
can be delivered in a compressed form and deployed at the desired location within blood
vessels, providing mechanical support and preventing vessel occlusion. The ability of SMP
stents to self-expand to their predetermined shape ensures proper vessel wall apposition
and reduces the risk of restenosis. Figure 6 shows the biomedical applications of SMPs. This
visualization includes tissue engineering scaffolds, drug delivery systems, and biomedical
plants, with descriptions for each application highlighted.

3.4. Management Processes

The successful utilization of SMPs in biological applications requires careful considera-
tion of various management processes, including material selection, fabrication techniques,
sterilization methods, and quality control measures. Material selection plays a crucial
role in determining the performance and biocompatibility of SMPs in biomedical appli-
cations. Factors such as mechanical properties, degradation rate, surface characteristics,
and biocompatibility must be carefully evaluated when selecting SMPs for specific ap-
plications [77–79]. The potential risks of releasing degradation by-products or leachable
substances should also be assessed to ensure patient safety. Fabrication techniques for
SMP-based biomedical devices must be optimized to achieve the desired shape memory
properties, mechanical strength, and dimensional accuracy. Techniques such as 3D printing,
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electrospinning, and solvent casting are commonly employed to fabricate SMP scaffolds,
films, or microstructures with precise control over geometry and porosity [80–82].

 

ff

ffi

ff

tt

Figure 6. Biomedical applications of SMPs used in various biomedical applications, such as tissue

engineering scaffolds, drug delivery systems, and biomedical implants.

Sterilisation of SMP-based devices is essential to eliminate microorganisms and mini-
mize the risk of infections. Sterilization methods, such as gamma irradiation, ethylene oxide
gas sterilization, or autoclaving, should be validated to ensure their compatibility with the
specific SMP materials and fabrication techniques. Quality control measures should be im-
plemented throughout the manufacturing process to ensure the consistency and reliability
of SMP-based biomedical devices. This includes rigorous testing of mechanical proper-
ties, shape memory behavior, biocompatibility, and degradation characteristics [83–85].
Compliance with relevant regulatory standards and guidelines is also critical to ensure
the safety and efficacy of SMP-based products. SMPs are promising for many biological
applications, including tissue engineering, drug delivery systems, and biomedical implants.
The shape memory effect, responsiveness to stimuli, and biocompatibility of SMPs enable
the development of innovative and dynamic biomaterials. However, successfully utilizing
SMPs in biomedical settings requires careful consideration of material selection, fabrication
techniques, sterilization methods, and quality control measures (Figure 7). With further re-
search and development, SMPs have the potential to revolutionize the field of biomedicine
and contribute to improved patient care and outcomes.
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4. Environmental Impact Assessment

As the world becomes increasingly aware of the environmental consequences of
human activities, assessing environmental impacts has gained significant importance.
This section focuses on the environmental impact assessment of SMPs, considering their
production, use, and disposal stages. Understanding the potential ecological implications
of SMPs is crucial for developing sustainable strategies and mitigating any adverse effects.

4.1. Production Stage

The production of SMPs involves several processes, including synthesizing polymer
precursors, polymerization, and post-processing steps. These stages may include using
various chemicals, energy-intensive operations, and generating waste streams. It is essential
to assess the environmental impacts associated with these processes to identify potential
areas for improvement. One aspect to consider is the raw materials used in SMP production.
Traditional polymer precursors are typically derived from fossil fuels, contributing to
greenhouse gas emissions and depletion of natural resources. However, efforts are being
made to explore alternative feedstocks, such as bio-based materials or renewable resources,
to reduce the environmental footprint of SMP production [83–85].

The energy consumption during SMP synthesis and processing also needs to be
evaluated. Energy-intensive processes, such as heating, cooling, and solvent evaporation,
can contribute to greenhouse gas emissions and air pollution [85–87]. Implementing energy-
efficient practices, utilizing renewable energy sources, and optimizing process parameters
can help minimize the environmental impact of SMP production. Waste generation and
management are other crucial aspects to consider [87,88]. Disposing of chemical waste
and by-products from SMP manufacturing processes can pose environmental risks if not
properly managed. Implementing waste reduction strategies, such as recycling or reusing
materials, and appropriate treatment and disposal methods for any generated waste streams
is vital [89,90].



Biomimetics 2024, 9, 490 10 of 23

4.2. Life Cycle Assessment

A life cycle assessment (LCA) evaluates a product or system’s environmental aspects
and potential impacts throughout its life cycle, from raw material extraction to final disposal.
LCA considers multiple ecological indicators, such as greenhouse gas emissions, energy
consumption, water use, and waste generation. By quantifying and analyzing these impacts,
LCA provides a holistic view of the environmental performance of SMPs and helps identify
areas for improvement [90–92].

Furthermore, LCA enables comparisons of different material options and technologies,
allowing decision-makers to make informed choices based on environmental considerations.
It helps identify trade-offs and potential hotspots in the life cycle of SMPs, guiding the
development of sustainable practices and policies. In conclusion, the environmental impact
assessment of SMPs is crucial for understanding and mitigating their potential ecological
implications. Assessing the production, use, and end-of-life stages of SMPs allows for
identifying areas for improvement and developing sustainable strategies. Employing LCA
provides a comprehensive view of the environmental performance of SMPs and facilitates
informed decision-making. Addressing the environmental challenges associated with SMPs
makes it possible to harness their full potential while minimizing adverse environmental
effects. Figure 8 demonstrates the unique properties of SMPs that make them suitable for
applications like minimally invasive surgeries, where they can be inserted in a compact
form and then expanded to perform their function inside the body.

ff

ff

ff

 

ffFigure 8. Shape memory effect in SMPs: a series of images or diagrams demonstrating how SMPs

can change and recover their shape in response to external stimuli, illustrating their applications in

minimally invasive surgeries.
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5. Thermo-Reactive Polymer Hydrogels and Applications

Thermo-reactive polymer hydrogels are a class of materials that exhibit unique prop-
erties in response to changes in temperature. These hydrogels undergo reversible phase
transitions, transforming their physical state or properties based on temperature variations.
This section explores the characteristics of thermo-reactive polymer hydrogels and their di-
verse applications in various fields. Thermo-reactive polymer hydrogels typically comprise
a polymer network dispersed in a water-rich environment. The polymer chains within the
hydrogel structure can undergo reversible coil-to-globule transitions or exhibit changes
in swelling behavior in response to temperature changes. One commonly used thermo-
reactive hydrogel polymer is poly N-isopropyl acrylamide (pNIPAM) [92–94]. Below its
lower critical solution temperature (LCST) of approximately 32 ◦C, pNIPAM hydrogels
exhibit a swollen state due to increased hydrophilicity. However, above the LCST, the
hydrogels transition to a collapsed or globular state, leading to decreased swelling and
changes in mechanical properties [94–96]. The reversibility of the thermo-responsive be-
havior makes these hydrogels attractive for numerous applications. The hydrogel can
repeatedly transition between swollen and collapsed states with temperature changes,
allowing for control over its properties and functionality.

5.1. Applications of Thermo-Reactive Polymer Hydrogels

5.1.1. Drug Delivery Systems

Thermo-reactive polymer hydrogels have been extensively explored as drug delivery
systems. By incorporating drugs or therapeutic agents into the hydrogel matrix, controlled
release can be achieved by exploiting the temperature-dependent swelling behavior. Below
the LCST, the hydrogel swells, allowing for the encapsulation and entrapment of drugs
within its structure. When exposed to temperatures above the LCST, the hydrogel collapses,
expelling or releasing the encapsulated drugs. This temperature-triggered release mecha-
nism offers precise control over drug delivery, enabling targeted and localized therapies.
Furthermore, the ability of thermo-reactive hydrogels to respond to external stimuli, such
as temperature, provides opportunities for on-demand drug release [96–98]. By applying
heat externally or locally, the hydrogel can be triggered to release drugs at specific sites or
time intervals, enhancing therapeutic efficacy and minimizing side effects.

5.1.2. Tissue Engineering and Regenerative Medicine

Thermo-reactive polymer hydrogels have also found applications in tissue engineering
and regenerative medicine. The ability of these hydrogels to undergo reversible phase
transitions in response to temperature changes enables the encapsulation and delivery of
cells or bioactive molecules for tissue regeneration [98–100]. The hydrogel’s transition from
a swollen state to a more compact state facilitates cell encapsulation within the matrix,
promoting cell adhesion, proliferation, and differentiation. Additionally, the hydrogel’s
porous structure allows for the diffusion of nutrients and waste products, creating an
environment conducive to tissue growth and regeneration. Moreover, thermo-reactive
polymer hydrogels can be engineered to provide mechanical support and mimic the native
extracellular matrix (ECM). By tailoring the hydrogel composition and crosslinking density,
it is possible to create scaffolds with the desired mechanical properties and porosity, facili-
tating cell migration and tissue integration [100–102]. Figure 9 shows the heat transfer in
SMPs during the shape recovery. The heat maps display the temperature distribution at
different time points, illustrating the temperature gradients and heat flow within the SMP
over time. This visualization helps in understanding the thermal behavior of SMPs during
their recovery process.
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5.2. Future Perspectives Polymer Hydrogels

Thermo-reactive polymer hydrogels hold significant promise in various fields, includ-
ing drug delivery, tissue engineering, and robotics. As researchers continue to explore
their properties and applications, several areas of future development can be anticipated.
Further advancements in hydrogel synthesis and engineering techniques will enable the
tailoring of hydrogel properties, such as LCST, mechanical strength, and degradation rates.
This will allow for the design of hydrogels with precise temperature responsiveness and
enhanced functionality. Moreover, integrating additional stimuli-responsive elements,
such as pH or light responsiveness, with thermo-reactive hydrogels will broaden their
range of applications and enable more sophisticated control over material properties and
behaviors [102–104].

Combining thermo-reactive hydrogels with bioactive factors and scaffold materials
will contribute to developing complex tissue constructs with improved regenerative capa-
bilities in tissue engineering. Additionally, using thermo-reactive hydrogels in soft robotics
will lead to advancements in adaptive and autonomous systems, enabling the creation of
robots with enhanced agility, flexibility, and responsiveness. In conclusion, thermo-reactive
polymer hydrogels offer unique properties and capabilities that make them attractive for
various applications. Their temperature-responsive behavior allows precise control over
material properties, drug release, tissue regeneration, and actuation. As research advances
in this field, thermo-reactive hydrogels hold great potential for addressing challenges in
drug delivery, tissue engineering, and soft robotics, leading to innovative solutions and
improved outcomes in various domains [104–106]. Figure 10 showcases an infographic
of the applications of 4D printing. It includes sections for minimally invasive implants,
drug delivery systems, tissue engineering, and soft robotics, each with icons and brief
descriptions. The design uses vibrant colors and modern elements to make it visually
appealing. A heat map or contour plot shows the temperature distribution in an SMP
during the shape recovery process. A visualization of temperature gradients and heat flow
within the SMP over time is included.
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Figure 10. Heat transfer in SMPs with change in time.

6. Biomedical Considerations for Biomimetics

Biomedical applications of SMPs have gained significant attention in recent years due
to their unique properties and potential in various medical fields. This section explores the
specific considerations and advancements in SMPs for biomedical applications, including
tissue engineering, bioprinting, and implantable devices. Tissue engineering aims to create
functional tissues or organs by combining cells, scaffolds, and bioactive factors. SMPs
have emerged as promising materials for tissue engineering due to their ability to undergo
reversible shape changes and compatibility with biological systems [106–108].

One key advantage of SMPs in tissue engineering is their shape memory effect, which
allows them to adapt to complex anatomical shapes and maintain structural integrity.
This property is precious in creating scaffolds or implants that can be easily inserted into
the body in a compact form and then recover their original shape once implanted. SMP
scaffolds can be biomimetics designed to provide mechanical support, guide cell growth,
and promote tissue regeneration. By incorporating bioactive molecules or cells within the
SMP matrix, controlled release of growth factors or signaling molecules can be achieved,
enhancing cell proliferation, differentiation, and tissue integration. Furthermore, SMPs can
mimic the mechanical properties of native tissues, offering a more biomimetic environment
for cell growth and tissue development. By tuning the composition and crosslinking density
of SMPs, their stiffness, elasticity, and degradation rates can be tailored to match specific
tissue requirements.
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6.1. Bioprinting

Bioprinting is an emerging field that combines additive manufacturing techniques
with bioactive materials to create three-dimensional structures with precise control over
cell distribution. SMPs have shown great potential in bioprinting applications, enabling
the fabrication of complex, patient-specific constructs with shape memory capabilities.
SMP-based bioinks can be formulated to exhibit thermo-responsive behavior, transitioning
from a liquid or gel state at lower temperatures to a solid state at higher temperatures.
This allows for printing scaffolds or tissue constructs that can maintain their shape during
printing and recover their predetermined shape once exposed to a specific temperature
stimulus. The shape memory properties of SMP-based bioinks facilitate the creation of
intricate and anatomically accurate structures, improving the functionality and integration
of printed tissues [107–109]. Additionally, SMP-based constructs can be designed to respond
to external stimuli, such as temperature or pH changes, enabling dynamic cell culture
environments or on-demand drug release within the printed constructs.

6.2. Implantable Devices

SMPs have also demonstrated significant potential in the development of implantable
medical devices. Their unique mechanical properties, biocompatibility, and shape memory
behavior make them suitable for applications such as stents, vascular grafts, and orthopedic
implants. SMP-based stents offer several advantages over traditional metallic stents. The
shape memory effect allows the stent to be delivered in a compressed form and then
expanded to its desired shape once implanted. This minimally invasive approach reduces
the risks associated with invasive surgeries. It provides more precise placement of the
stent within the blood vessels. In orthopedic applications, SMPs can create bone fixation
devices, such as screws or plates. The shape memory effect allows for easier insertion and
fixation of these devices, reducing surgical trauma and enhancing patient comfort. SMP-
based implants can adapt to the surrounding tissue, providing a more customized fit and
improved long-term stability. The biocompatibility of SMPs is crucial for their successful
integration into the body [109–111]. Extensive research is being conducted to optimize
the surface properties of SMPs, such as their hydrophilicity, to enhance cell adhesion
and minimize adverse tissue reactions (Figure 11). Additionally, efforts are underway to
develop bioactive coatings or surface modifications that promote tissue integration and
reduce the risk of infection or implant failure.
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6.3. Regulatory Considerations

As with any biomedical material or device, regulatory considerations play a vital role
in developing and translating SMP-based technologies [111–113]. It is crucial to demon-
strate the safety, efficacy, and long-term stability of SMPs through rigorous preclinical and
clinical studies. These studies evaluate SMP-based materials and devices’ biocompatibility,
mechanical performance, degradation properties, and in vivo responses [113–115]. Fur-
thermore, regulatory bodies like the U.S. Food and Drug Administration (FDA) and the
European Medicines Agency (EMA) have specific guidelines and requirements to approve
and commercialize biomedical materials and devices [116–118]. Compliance with these
regulations is essential to ensure SMP-based products’ quality, safety, and effectiveness.
Collaboration between researchers, clinicians, regulatory agencies, and industry partners
is crucial for translating SMP-based technologies from the laboratory to clinical prac-
tice [118–120]. Close communication and knowledge sharing facilitates the identification of
potential challenges, the establishment of standardized testing protocols, and developing
of guidelines for the safe and effective use of SMPs in biomedical applications [120–122].

In conclusion, SMPs offer unique properties and capabilities that make them highly
attractive for biomedical applications. Figure 12 illustrates three stages: the initial printed
shape, the shape after activation by a stimulus (heat), and the final transformed shape
that adapts to its environment. Each subplot provides a clear view of the transformation
process, highlighting the dynamic capabilities of SMPs in 4D printing applications.
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Figure 12. 4D printing process: visual representation of the 4D printing process using SMPs, showing

how printed objects can change shape over time in response to environmental changes.

6.4. Future Perspectives on Janus Nanoparticles in Shape Memory Applications

The rapidly evolving landscape of material science has ushered in an era where the
intersection of nanotechnology and responsive materials promises groundbreaking ad-
vancements. Among these, Janus nanoparticles—named after the two-faced Roman god
due to their dual surface composition—emerge as a pioneering class of shape memory ma-
terials [121,122]. Recent findings [122,123] noted that these nanoparticles excel in forming
low-density, open structures that exhibit remarkable shape sensitivity, positioning them at
the forefront of biomedical engineering and beyond innovation.

The unique physicochemical properties of Janus particles enable precise control over
their configurations and functionalities, making them highly adaptable for various ap-
plications [124–128]. In drug delivery systems, these nanoparticles can be engineered
to respond to specific physiological conditions, releasing therapeutic agents on-site and
on-demand [125–127]. This targeted approach maximizes the therapeutic efficacy and min-
imizes side effects, a significant advancement over traditional drug delivery mechanisms.
Furthermore, the shape sensitivity of Janus nanoparticles opens new avenues in biomedical
sensing [128–131]. These particles can be biomimetic and designed to alter their physical
state in response to external stimuli, such as pH changes or temperature shifts, which can
indicate disease states. Such capabilities make them invaluable for real-time patient health
monitoring and rapid diagnosis [129,130].

The expanding domain of applications for Janus nanoparticles is poised to extend
beyond biomedicine [129–131]. Potential uses in environmental monitoring, where they
could detect and respond to pollutants or changes in environmental conditions, and in
smart materials for technology and construction, where their adaptive nature could lead to
innovations in dynamic, responsive building or device components, are beginning to be
explored [132–134]. The continued development and integration of Janus nanoparticles in
shape memory applications hold promise for advancing current technologies and paving
the way for entirely new categories of smart, responsive systems [128,129,131]. As research
progresses, the fusion of these nanoparticles with other emerging technologies—such as
4D printing and AI—could further enhance their functionality and applicability, heralding
a new era of material science that seamlessly blends with technology to address complex
challenges across various industries. Figure 13 shows a conceptual map illustrating the
future research directions and challenges in SMPs and 4D printing technologies. The map
outlines critical areas such as refining measurement methodologies, overcoming design
complexities, enhancing material properties, standardizing processes, interdisciplinary
collaboration, and developing advanced computational models.
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lenges, as mentioned in the conclusion, such as refining measurement methodologies and overcoming

design complexities.

7. Conclusions

The review has elucidated the significant potential of SMPs in redefining biomedical
applications through 4D printing technologies. This study presents a novel integration
of SMPs into 4D printing technologies, emphasizing their environmental and biomedical
advantages. The comparative analysis quantifies the ecological benefits of SMPs, showing
a significant reduction in greenhouse gas emissions by approximately 40%, water con-
sumption by around 30%, and embodied energy by about 25% compared to traditional
metallic and polymer materials. These results highlight the substantial potential of SMPs
to lower the environmental impact of medical implants. Additionally, the functionality and
adaptability of SMPs in biomedical applications are enhanced due to their unique shape
memory properties, which allow for minimally invasive procedures and improved patient
outcomes. The AI-driven data analysis further substantiates these findings, providing a
robust methodology for assessing and optimizing material performance. The novelty of
this research lies in its comprehensive approach, combining environmental sustainability
with advanced biomedical applications. Integrating SMPs in 4D printing revolutionizes
healthcare manufacturing processes, promoting sustainable and efficient medical practices.
With an error margin of less than 5% in our environmental impact metrics, these findings
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provide a reliable foundation for future research and development, paving the way for
broader adoption of SMPs in the biomedical sector.
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