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Abstract: This paper presents a review of waste disposal methods for fibre reinforced polymer (FRP)
materials. The methods range from waste minimisation, repurposing, reusing, recycling, incineration,
and co-processing in a cement plant to dumping in a landfill. Their strength, limitations, and key
points of attention are discussed. Both glass and carbon fibre reinforced polymer (GFRP and CFRP)
waste management strategies are critically reviewed. The energy demand and cost of FRP waste
disposal routes are also discussed. Landfill and co-incineration are the most common and cheapest
techniques to discard FRP scrap. Three main recycling pathways, including mechanical, thermal,
and chemical recycling, are reviewed. Chemical recycling is the most energy-intensive and costly
route. Mechanical recycling is only suitable for GFRP waste, and it has actually been used at an
industrial scale by GFRP manufacturers. Chemical and thermal recycling routes are more appropriate
for reclaiming carbon fibres from CFRP, where the value of reclaimed fibres is more than the cost of
the recycling process. Discarding FRP waste in a sustainable manner presents a major challenge in a
circular economy. With strict legislation on landfill and other environmental limits, recycling, reusing,
and repurposing FRP composites will be at the forefront of sustainable waste-management strategies
in the future.

Keywords: FRP Recycling; glass fibre; carbon fibre; FRP waste; waste management; circular
economy; sustainability

1. Introduction

The construction sector produces about a third of global carbon emissions. Sustain-
able technologies and materials are needed to support the transition to net-zero carbon
emissions through an energy-efficient and resilient building and construction sector [1].
Fibre reinforced polymer (FRPs) composites are eco-friendly materials with a lower carbon
footprint than traditional materials, such as concrete, steel, masonry, and timber. FRPs have
been used in various industries ranging from construction, aerospace, automotive, marine,
and electronics to the wind energy sector. The key reasons for the growth of FRPs include
their excellent mechanical properties, lightweight, mouldability, and corrosion resistance.
With the growing use of FRP materials in the building and construction industry, recycling
FRP waste materials is becoming a major environmental challenge. Sustainable tools and
methods should be used for the effective disposal of FRP waste.

Fibre reinforced polymer (FRP) composite materials contain fibres placed in a resin
matrix. Fibres provide strength and stiffness, and the resin acts as a binder for fibres.
Generally, synthetic or man-made fibres are used in FRP composite parts. These include
carbon, glass, and aramid fibres [2–4]. Currently, semi-natural basalt fibres made from
basalt rock are undergoing experimentation for structural applications [5–9]. Academic
research is available on natural fibres, such as hemp, sisal, flax, and bamboo fibres. How-
ever, commercial FRP products using natural fibres do not exist yet [5,9–12]. Thermoset
resins, such as polyester, vinylester, or epoxy, are commonly used. Thermoplastic resins,
though not widely used in structural engineering, also exist, primarily for use in aerospace

Sustainability 2022, 14, 16855. https://doi.org/10.3390/su142416855 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su142416855
https://doi.org/10.3390/su142416855
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-0754-6420
https://doi.org/10.3390/su142416855
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su142416855?type=check_update&version=2


Sustainability 2022, 14, 16855 2 of 22

engineering. Thermoset resins have cross-linked molecules; once set, they cannot be re-
moulded. It is hard to recycle thermoset-based FRP composites without the deterioration
of the recovered fibres or resin [13]. Thermoplastic resins can be moulded, remoulded, and
reshaped into any form due to their weak molecular bonds. They can be easily recycled and
reprocessed [2,3,14–16]. As per the European Composites Industry Association (EuCia), in
2020, more than 90% of all FRPs materials were glass FRP composites [17]. The nature of
the FRP composite industry controls the use of a particular resin. About 2/3 of all resins
are thermoset, and 1/3 are thermoplastic [18]. Both glass fibres and thermoset resin are
difficult to recycle.

By 2026, the global market for fibre reinforced polymer composites is expected to reach
USD 375 billion, from USD 228 billion in 2019, with a compound annual growth rate of
7.3% [19]. FRP composites have applications in more than 15 industries, with an estimated
production value of USD 100 billion and a volume of 12.1 million tonnes in 2021. The
major growth will be in the construction, transportation, wind energy, aerospace, electrical,
and electronics sectors [20]. The main challenges for the FRP industry in the future will
be related to the handling and recycling of FRPs while meeting environmental limits and
governmental legislation. In a circular economy, a closed-loop cradle-to-cradle approach
is needed to turn the FRP composite waste into a valuable resource [19,21]. The waste is
generated during production and end-of-life use. The estimated volume of FRP composite
waste generated by various industries is shown in Figure 1. Construction is the largest
contributor to FRP waste. To address this issue, a proper waste management hierarchy
is needed, which is presented in the next section. The global market share and the size
of FRP waste are estimated by market research organisations and should be used with
caution. Different organisations provide different values. The author found no independent
published journal papers to verify the claims made.

Sustainability 2022, 14, x FOR PEER REVIEW 2 of 23 
 

widely used in structural engineering, also exist, primarily for use in aerospace engineer-
ing. Thermoset resins have cross-linked molecules; once set, they cannot be remoulded. It 
is hard to recycle thermoset-based FRP composites without the deterioration of the recov-
ered fibres or resin [13]. Thermoplastic resins can be moulded, remoulded, and reshaped 
into any form due to their weak molecular bonds. They can be easily recycled and repro-
cessed [2,3,14–16]. As per the European Composites Industry Association (EuCia), in 2020, 
more than 90% of all FRPs materials were glass FRP composites [17]. The nature of the 
FRP composite industry controls the use of a particular resin. About 2/3 of all resins are 
thermoset, and 1/3 are thermoplastic [18]. Both glass fibres and thermoset resin are diffi-
cult to recycle. 

By 2026, the global market for fibre reinforced polymer composites is expected to 
reach USD 375 billion, from USD 228 billion in 2019, with a compound annual growth rate 
of 7.3% [19]. FRP composites have applications in more than 15 industries, with an esti-
mated production value of USD 100 billion and a volume of 12.1 million tonnes in 2021. 
The major growth will be in the construction, transportation, wind energy, aerospace, 
electrical, and electronics sectors [20]. The main challenges for the FRP industry in the 
future will be related to the handling and recycling of FRPs while meeting environmental 
limits and governmental legislation. In a circular economy, a closed-loop cradle-to-cradle 
approach is needed to turn the FRP composite waste into a valuable resource [19,21]. The 
waste is generated during production and end-of-life use. The estimated volume of FRP 
composite waste generated by various industries is shown in Figure 1. Construction is the 
largest contributor to FRP waste. To address this issue, a proper waste management hier-
archy is needed, which is presented in the next section. The global market share and the 
size of FRP waste are estimated by market research organisations and should be used with 
caution. Different organisations provide different values. The author found no independ-
ent published journal papers to verify the claims made. 

 
Figure 1. Estimated FRP waste in thousands of tonnes in 2025 (adapted from [22]). 

The growing demand for FRP composites in various industries has led to increased 
waste. This waste should be discarded in a manner that is considerate to the environment. 
Furthermore, governmental legislation shapes public behaviour by promoting recycling 
rates and minimising landfill use. The European Union Directive 2018/850 on the landfill 
of waste [23] limits the municipal waste to landfill to only 10% by 2035 (article 5(5) of 

195

112
88

70 66 62
41 35

14

0

50

100

150

200

250

Bu
ild

in
g 

an
d

co
ns

tr
uc

tio
n

El
ec

tr
ic

al
 a

nd
El

ec
tr

on
ic

s

Tr
an

sp
or

ta
tio

n

M
ar

in
e

W
in

d

Pr
od

uc
tio

n 
w

as
te

A
er

on
au

tic
s

C
on

su
m

er

Ta
nk

s 
an

d 
pi

pe
s

Thousands of tonnes

Figure 1. Estimated FRP waste in thousands of tonnes in 2025 (adapted from [22]).

The growing demand for FRP composites in various industries has led to increased
waste. This waste should be discarded in a manner that is considerate to the environment.
Furthermore, governmental legislation shapes public behaviour by promoting recycling
rates and minimising landfill use. The European Union Directive 2018/850 on the landfill of
waste [23] limits the municipal waste to landfill to only 10% by 2035 (article 5(5) of Landfill
Directive, LFD). In future, there will be more and more focus on recycling FRP composite
waste. Therefore, there is a need to explore different composite waste recycling/disposal
routes that are environmentally sustainable and commercially viable. The relevant research
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conducted on FRP waste disposal routes is summarised in Table 1. Most papers are based
on a single FRP recycling method, but some papers review all disposal options. The
majority of research is on generic recycling methods at a small-scale while using laboratory
experiments. FRP parts used in automotive, aerospace, and electrical/electronic industries
are typically thin and small. Buildings, bridges, and wind turbines generally use thicker
and bigger FRP components than the other FRP sectors. As per Figure 1, the building
and construction sector is the major contributor to FRP waste. Recycling these large parts
requires scalable recycling processes.

The novelty of this paper is that it critically reviews various FRP waste disposal routes
for structural engineering applications and wind turbines. Prior research mainly focussed
on the disposal of thin and small parts in other industries, such as aerospace, electrical,
sports, marine, and automotive. The scope of this paper is limited to a review of the
disposal routes for thermoset-based glass and carbon FRPs in the construction and wind
turbine industries; thermoplastic FRPs are only briefly discussed. The recycling methods
for thermoplastic FRPs are no different from thermoset FRPs. The reason for using only
glass and carbon fibre composites is that most FRP applications use these fibres. More than
90% of all FRP products use glass fibres, and 66% of all composites use thermoset resin.
The remaining FRPs mostly employ carbon fibres. This makes it worthwhile to study the
recycling of glass and carbon fibres with thermoset resin. Other synthetic fibres, such as
aramid fibres, are only used in less than 1% of FRP applications [17,18]. So, they are not
included in this review.

This paper aims to review various FRP composite waste disposal pathways. Different
FRP end-of-life disposal routes are discussed. These include waste minimisation or preven-
tion, reuse or repurpose, recycling, incineration/co-incineration, and landfill. Mechanical,
thermal, and chemical recycling routes are reviewed. Thermal recycling is again divided
into fluidised bed and pyrolysis. Chemical recycling or solvolysis is again classed into sub-
and supercritical temperature solvolysis. The paper is organised into eight sections. First,
the introduction is presented, followed by a brief section on FRP waste disposal routes.
The third section deals with waste prevention and the reuse of FRP composites. The fourth
section reviews recycling pathways. The fifth section concerns other recovery and disposal
routes. The energy demand and cost of different FRP waste disposal methods are presented
in section six. Section seven relates to the limitations and future research requirements.
Finally, conclusions are drawn, summarising the key points in section eight.

Table 1. Past research on review of recycling processes for FRP composites.

Researcher Year Content Main Points

Schinner et al. [24] 1996
• Recycling of carbon-reinforced

thermoplastic composites.

• Mechanical recycling of thermoplastic
carbon FRPs.

• Thermoplastic CFRP grinds used as a
reinforcement in injection moulds.

Kouparitsas et al. [25] 2002
• Mechanical recycling applied to glass-,

aramid-, and carbon-based
thermoset composites.

• Recyclates were found to be of
acceptable quality for use as
reinforcement in new
thermoplastic composite.

• Tensile testing on new parts shows
good response.

Halliwell [26] 2006
• Best practice guide for FRP

waste disposal.

• Reuse, recycle, and other disposal
methods discussed.

• Legislation, life cycle, and best
practice reviewed.

• 98% FRP waste landfilled or incinerated;
2% recycled.



Sustainability 2022, 14, 16855 4 of 22

Table 1. Cont.

Researcher Year Content Main Points

Conroy et al. [27,28] 2004/2006
• Composite waste-management options

in the UK.

• FRP considered unrecyclable and ends
up in landfill.

• FRP waste used in wood/FRP
composite, road asphalt, and concrete.

Various authors [29–84] 1995–2023
• Specific recycling and reusing methods

for FRP waste.

• Only mechanical recycling is scalable to
large scale.

• Mechanical recycling is suitable for
GFRP only.

• Thermal and chemical recycling suitable
for CFRP.

Pickering [85] 2006
• Recycling technologies for

thermoset composites.

• Research on various recycling
processes reviewed.

• Prospects of commercial
operation discussed.

Halliwell [86] 2010 • Challenges facing the FRP industry.
• Life-cycle assessment, embodied energy,

material choice and end-of-life disposal
options discussed.

Pimenta and Pinho [87] 2011
• Review of recycling methods for CFRP

in Structures

• Pyrolysis (thermal recycling) was found
to be at commercial scale, other methods
only at lab or pilot scale

• Recycling, re-making and
market reviewed.

Bank et al. [15,88] 2014 • Reuse of mechanically recycled GFRP.
• Various disposal methods discussed.
• Focus on use of ground recyclates

in concrete.

Vo Dong et al. [80,89] 2015, 2018
• Environmental and economic impacts of

FRP waste routes.

• Pyrolysis is attractive for CFRP recycling.
• Grinding and incineration suitable

for GFRP.

Ribeiro et al. [90] 2016
• Recycling methods and

sustainability performance.

• Various recycling methods discussed.
• Market outlook and potential for

GFRP recyclates.

Naqvi et al. [21] 2018
• A review of pyrolysis (thermal recycling)

for FRP waste.
• A review of pyrolysis method and reuse

of reclaimed fibres.

Gharde and
Kandasubramanian [16] 2019 • A review of recycling routes. • Past research on mechanical, chemical,

and thermal recycling reviewed.

Karuppannan Gopalraj and
Karki [91] 2020

• A review of recycling techniques for
GFRP and CFRP.

• Various recycling methods compared
based on process outcomes, mechanical
properties, ease of reuse, environmental
impact, and cost-effectiveness.

Krauklis et al. [92] 2021
• A review of recycling methods and

market analysis.

• Review of recycling routes, composite
market, energy demand and Technology
Readiness Level (TRL).
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Table 1. Cont.

Researcher Year Content Main Points

Bank et al. [93–96]
and Leon [97] 2021–2022

• Use of wind GFRP turbine blades
in structures.

• Review, analysis, and case studies for
repurposing wind turbine blades in
bridges, electric poles etc.

Utekar et al. [13] 2021
• A review of recycling routes for

thermoset FRPs.
• Energy demand, recycling output and

strength of reclaimed fibres reviewed.

Gonçalves et al. [22] 2022 • A review of GFRP recycling pathways.
• Recycling methods for GFRP reviewed.
• Energy demand and recycling process

cost analysed.

Arif et al. [98] 2022 • A review of FRP recycling methods
• High-voltage fragmentation (HVF) is a

low-energy technique with high
recycling rates

2. FRP Waste Disposal Routes

As per the four-tiered waste management hierarchy developed by The European
Union’s 2008/98/EC directive [99], as shown in Figure 2, the waste should be minimised to
preserve valuable space in landfills. In order of preference, FRP waste disposal options are
minimisation/prevention, reuse/repurpose, recycling, incineration with or without energy
recovery, and dumping in a landfill [86,100]. The main focus is on either the minimisation
or prevention of waste, followed by reuse, recycling, recovery, and disposal. It is essential
to recycle, reuse, and repurpose FRP composite waste generated from production, usage,
or end-of-life scrap. FRP waste material negatively impacts the local environment by
contaminating the soil, air, and groundwater. It can spread infectious diseases as well [16].
Landfill and incineration are not recycling methods. The incineration route still leaves
behind 50% of the waste material as ash, which still needs to be landfilled [101].

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 23 
 

Utekar et al. [13] 2021 
• A review of recycling 

routes for thermoset 
FRPs. 

• Energy demand, recycling output and 
strength of reclaimed fibres reviewed. 

Gonçalves et al. [22] 2022 
• A review of GFRP re-

cycling pathways. 

• Recycling methods for GFRP reviewed.  
• Energy demand and recycling process cost 

analysed. 

Arif et al. [98] 2022 
• A review of FRP recy-

cling methods 
• High-voltage fragmentation (HVF) is a low-

energy technique with high recycling rates 

2. FRP Waste Disposal Routes 
As per the four-tiered waste management hierarchy developed by The European Un-

ion’s 2008/98/EC directive [99], as shown in Figure 2, the waste should be minimised to 
preserve valuable space in landfills. In order of preference, FRP waste disposal options 
are minimisation/prevention, reuse/repurpose, recycling, incineration with or without en-
ergy recovery, and dumping in a landfill [86,100]. The main focus is on either the minimi-
sation or prevention of waste, followed by reuse, recycling, recovery, and disposal. It is 
essential to recycle, reuse, and repurpose FRP composite waste generated from produc-
tion, usage, or end-of-life scrap. FRP waste material negatively impacts the local environ-
ment by contaminating the soil, air, and groundwater. It can spread infectious diseases as 
well [16]. Landfill and incineration are not recycling methods. The incineration route still 
leaves behind 50% of the waste material as ash, which still needs to be landfilled [101]. 

 
Figure 2. Waste management hierarchy as per The European Union’s 2008/98/EC directive [99]. 

3. Waste Prevention and Reuse 
FRP waste should be minimised as much as possible. The waste from production 

processes can be reduced by using automatic manufacturing methods. The end-of-life 
waste can be minimised by considering sustainable disposal routes at the conceptual de-
sign stage of the FRP composite part. Reusing and repurposing composite parts after their 
service lives should be the next preferred step in a sustainable waste management hierar-
chy. 

3.1. Waste Minimisation or Prevention 
The most eco-friendly option for waste disposal is to minimise waste. The production 

and manufacturing of FRP members and parts generate a considerable amount of waste. 
As much as 40% waste can be generated from the production of FRP parts [88]. FRP man-
ufacturing techniques must be improved to reduce production waste. Most automatic 
methods, such as pultrusion and filament winding, are efficient and have limited 

Figure 2. Waste management hierarchy as per The European Union’s 2008/98/EC directive [99].

3. Waste Prevention and Reuse

FRP waste should be minimised as much as possible. The waste from production
processes can be reduced by using automatic manufacturing methods. The end-of-life waste
can be minimised by considering sustainable disposal routes at the conceptual design stage
of the FRP composite part. Reusing and repurposing composite parts after their service
lives should be the next preferred step in a sustainable waste management hierarchy.
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3.1. Waste Minimisation or Prevention

The most eco-friendly option for waste disposal is to minimise waste. The production
and manufacturing of FRP members and parts generate a considerable amount of waste.
As much as 40% waste can be generated from the production of FRP parts [88]. FRP
manufacturing techniques must be improved to reduce production waste. Most automatic
methods, such as pultrusion and filament winding, are efficient and have limited production
waste. The FRP waste generated from various manufacturing methods includes defective
items, outdated moulds, trial runs, off-cuts, spray trimmings, trimming from vacuum
infusion, trimming dust, and off-cuts [28].

FRP production waste (scrap) produced in highly efficient automatic processes, such
as pultrusion, is in the range of 2–5%. In comparison, it can increase to 15% when using
manual methods such as a hand layup. CFRP pre-preg scrap in aerospace production can
reach as much as 40% [102]. The average FRP manufacturing waste or process waste/scrap
is estimated to be 10% of the production volume [15]. Most FRP production waste, as
seen in Figure 3, ends up in a landfill. Dumping this waste in a landfill may not be the
best sustainable waste disposal solution, as there are now strict laws in some European
countries for landfilling. Moreover, the space available in landfill sites may be limited in
some countries.
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FRP waste comes from production, usage, and end-of-life deconstruction. Production
waste can be reduced by reviewing the manufacturing process and identifying the most
efficient one. Most automatic processes result in less waste than manual methods. In
construction, automatic processes can be used for structural profiles. However, free-
form geometry may be required in bridge components, where manual methods are more
suitable. Manual methods, such as pre-pregs and resin transfer moulding, dominate
the FRP composite aerospace industry. Some automated hand-layups are also used in
aerospace, but complete process automation is not feasible. Scrap pre-pregs can also
be used as construction tiles. Trim allowances, normally 25–50 mm, can be reduced to
minimise pre-preg scrap. Nesting composite parts for efficient material use in pre-pregs
can also reduce waste.

3.2. Reuse or Repurpose

Reusing and repurposing FRP parts at the end of their service life should be the
next priority if the waste cannot be prevented or minimised. Reusing means using the
FRP parts after their end-of-life in the same industry in which the components were once
used. Repurposing relates to reusing FRP parts at the end of their service for a different
application, generally lower in value than the original application [103]. Deconstruction
and reuse must be kept in mind when designing, constructing, and using FRP structures for
intended future reuse. For example, FRP structures using bolted joints can be demounted
at the end of their service life and can be reused. However, it might be challenging to
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re-calculate the strength and material properties of the reused pultruded FRP parts. This
also depends on the type of FRP structure. FRP profiles are challenging to reuse, whereas
FRP domes can be easily reused or repurposed. On the other hand, adhesively bonded
joints are difficult to deconstruct and reuse at the end of their lives.

Many FRP products are specifically designed and constructed for a particular applica-
tion with no intention of recovery or reuse after their usage. These applications include
façade panels, FRP swimming pools, and pipes. However, FRP domes, chimneys, and clock
towers can potentially be reused or repurposed. Structural profiles, such as I, W, channel,
angle, and tubular sections, may be difficult to reuse, as the extent of deterioration and creep
effects cannot be reliably determined. Equally, it is hard to assess the load-carrying capacity
and material properties without prior knowledge of the fibre layup of the decommissioned
composite part. Pultruded FRP profiles produced for one application are generally not
suitable for reuse in other applications [28].

Glass FRP wind turbine blades can be repurposed into structural beams or columns.
Repurposing is defined as remanufacturing and redesigning wind blades at the end
of their service life and reusing them as structural elements in new structures, such as
sound barriers, transmission poles, bridges, sea walls, and shelters [104]. A footbridge
made from decommissioned wind turbine blades was installed in 2022 in Cork, Ireland,
as shown in Figure 4. The bridge is 5 m long and 3.5 m wide and is supported on
concrete abutments. The main girders are from two GFRP wind turbine blades. The joints,
transverse beams and decks use structural steel. Wind turbine blades are designed for
a service life of 20–25 years. Regardless of their condition, they are decommissioned at
the end of life. Glass FRPs are very difficult to recycle. Repurposing these blades to new
structural applications minimises the waste in a landfill [95]. Wind turbine blades are also
proposed to be used in electric transmission towers [93,94,96], as seen in Figure 5. Wind
turbine blades have also been employed in secondary applications, such as playgrounds
and bus shelters in The Netherlands [97].
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Currently, only a small percentage of FRP composites are reused in the UK, 6% for
glass fibre and 2% for carbon fibre [105]. There are two main barriers to the wide adoption of
reusing and repurposing FRP composites. First is the difficulty in establishing the material
properties of the decommissioned FRP part, and second is the high cost associated with
reclaimed fibres, resin, and other ground FRP material. To address the first problem, non-
destructive testing and structural health monitoring techniques can be used to estimate the
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material properties of the deconstructed part. The second problem can be solved by linking
a suitable recycling route to the quality and value of the reclaimed material. For example,
glass FRPs can be ground and reused in concrete or asphalt mixes; and carbon fibres can
be recovered using more refined recycling processes—thermal or chemical recycling. The
reclaimed carbon fibres can then be reused as a reinforcement in other FRP components.
Recycling is discussed in detail in the next section.
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4. Recycling

There are three methods for FRP waste disposal: landfill, incineration and co-
incineration, and recycling. Recycling is the most desirable disposal method for FRP
waste material. The strengths, limitations, and key points of attention for these methods
are presented in Table 2. Different FRP waste disposal pathways are summarised in
Figure 6. There are three main recycling pathways: mechanical, thermal, and chemical
recycling. Thermal recycling is again divided into three categories: pyrolysis, fluidised
beds, and microwaves. Chemical recycling has two types: low-temperature solvolysis
and sub–supercritical solvolysis [28,85–87,90,102].

4.1. Mechanical Recycling

Mechanical recycling involves breaking down FRP waste by using milling, grinding,
shedding, or other similar mechanical processes into small-sized material. The resultant
recyclates can be divided into two parts: a fibrous fraction containing mainly fibres and
a fine powder fraction consisting largely of the resin matrix [25]. The recovered scrap
material can be used as a filler material or reinforcement in other composite materials.
It can also be used in the construction industry (for example, as fillers for artificial
wood or asphalt or as a mineral source for cement) [28]. Mechanical recycling produces
low-value products, and this is the reason it is mostly used for glass FRP waste. The low-
value recyclates make them hardly competitive with virgin materials, such as calcium
carbonate for cement production or virgin glass fibre. However, mechanical recycling
is the most economically viable recycling method at the industrial scale, at least for
thermoset-based glass FRPs. Glass fibres are cheaper than carbon and aramid fibres.
A few applications of mechanical recycling are also found in thermoplastic FRPs and
thermoset CFRPs. Mechanical recycling does not recover individual fibres; it just grinds
the FRP parts into smaller materials [25,87,90,106].
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Table 2. Pros and cons of various waste disposal methods for FRPs [16,22,103].

Disposal Route Strengths Setbacks Points of Attention

Landfill
• Cost-effective

and convenient.

• Dust and pollution to
local environment.

• Greenhouse gas emission,
i.e., methane.

• Toxic waste can pile up,
causing health issues.

• Governmental legislations
prevent or limit landfill use.

• Limited space in landfill.

Incineration

• With or without
energy recovery.

• Efficient use of space.
• Landfill space is reduced.

• No material recovered.
• 50% waste left as ash.
• Expensive to build, operate,

and maintain.
• Air pollution resulting

from combustion.

• Non-recovery method.
• Incineration of GFRP is not

practical, as 50–70% is left as
ash.

• Gate fee charged.

Co-incineration or
Co-processing in cement kiln

• Material and
energy recovery.

• Uses FRP waste as the main
or extra fuel.

• Highly efficient, fast,
and scalable.

• No ash left over.
• Turns GFRP waste into

energy and clinker.

• Loss of original
fibre’s shape.

• Additional energy needed
to reach high
processing temperatures.

• FRP waste needs to be
reduced to a smaller size for
use in kiln.

• Only suitable for glass FRPs.
• Pollutants and particulate

matter emissions.

Mechanical recycling or
grinding

• Efficient and high
output rates.

• Scalable at industrial scale
• No air pollution by gas

emission or water pollution
by chemicals.

• Inexpensive equipment and
no skilled labour.

• Health and safety concerns
for risk of ignition during
shredding process.

• Low-value recyclates that
are hardly competitive with
virgin materials.

• No recovery of
individual fibres.

• Produces low-value
products, used for
GFRP only

• Requires dedicated facilities
with closed area to limit
dust emissions.

Thermal recycling: pyrolysis

• The by-products (gas and
oil) can be used as
energy source.

• Easily Scalable.
• Already used at commercial

scale for recycling carbon
fibre composites.

• Recovered fibre may retain
oxidation residue or char.

• Low-quality
reclaimed fibres.

• Loss of strength of fibre due
to high temperature.

• Not economically viable.

• Potential leaks of gases from
waste treatment chambers.

Chemical recycling: solvolysis

• Recovery of clean fibres
with full length.

• Recovery of resin that can
be reused.

• Low-risk solvents are used,
such as alcohols, glycols,
and supercritical water.

• Low efficiency and
high cost.

• High energy consumption
due to the high temperature
and high pressure.

• Large amounts of
solvents required.

• Human heath impact from
greenhouse gases.

Mechanical recycling involves the initial cutting of the FRP composite part into smaller-
sized particles, about 50–100 mm in size, and then grinding them into fine powder. The
typical required equipment is as follows: (1) a basic granulator/hammer mill (rotary cutter
or high-speed mill); (2) a pulveriser for crushing the ground material in powdered form
and (3) a classifier (also known as cyclones and sieves or an electrostatic separator) for
separating the coarse fibrous and fine powdered products. A flowchart showing various
stages of mechanical recycling is presented in Figure 7. Generally, coarse products contain
fibrous material and can be reused in bulk moulding compounds (BMC). The fine particles
contained in the powdered fractions can be reused in sheet moulding compounds (SMC).
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The BMCs and SMCs are glass fibre reinforced thermoset polymer moulds primarily used
in the compression moulding process for automotive and electrical applications [16,25].
GFRP coarse and fine recycled aggregates have been used in polyester-based mortar and
concrete. The aim is to compare the tensile, compressive, and flexural strengths of recycled
concrete with traditional concrete using virgin materials [67–73,75–79]. The mechanical
recycling of CFRP has been studied in numerous research papers [24,25,106].
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Many researchers used mechanically ground recyclates (fine powder and resin) in
concrete and paints. Initially, Kojima and Furukawa [107] recovered fine powder from
FTP (Fortified Tooling Prepreg) mouldings and used it to improve the tensile strength of
paints. The ground material was also used as aggregates in concrete and was found to be
useful. Ribeiro et al. [69] extracted coarse and fine aggregates from pultruded FRP products
using mechanical grinding and used them in polyester-based mortar. Three sand filler
replacement percentages, 4, 8, and 12% of weight, were tried. The use of the 8% replacement
in mortar showed a 10% improvement in the flexural and compressive strengths compared
with the pure polymer-based mortar. The authors also used a silane coupling agent (1% of
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resin weight) in a separate paper [71] but found no effect on the mechanical properties. The
silane coupling agents are used to promote interfacial adhesion and improve the properties
of composites. They create a chemical bridge between the inorganic reinforcement, such
as glass fibre and organic polymer matrices. However, Meira et al. [73] found a marginal
increase in the mechanical properties with the use of a silane coupling agent.

Asokan et al. [67,68] used 5, 15, 30, and 50% GFRP waste powder as a substitute for
aggregates in concrete. They found more than a 20–60% reduction in concrete compressive
strength at 28 days with water curing. However, at 180 days, the strength of the 5% and
15% waste was almost similar to the control specimen. García et al. [72] used 5% and 10%
GFRP waste with the standard sand silica and natural limestone sand in the micro concrete
part. The compressive strength decreased by 22% and 16% at 28 days for the 5% and 10%
waste. Yazdanbakhsh et al. [75,76,78,79] used GFRP waste needles, bars, large-sized parts,
and recycled wind turbine blades in concrete. They found that the compressive strength
either decreased or remained unchanged, except with the turbine blade waste, where a
10% improvement was noted in the tensile and compressive strength. Dehghan et al. [77]
used recycled glass fibres as a 5% coarse aggregate replacement in concrete. They found
some increase in the tensile strength, but the compressive strength remained unaltered. In
addition to its use in concrete, recycled GFRP waste has also been used in Sheet and Dough
Moulding Compounds (SMC and DMC). Palmer et al. [108] used mechanical recycling
to grind glass fibre reinforced SMC (Sheet Moulding Compounds) using a hammer mill.
The recyclates obtained were used as 10% of the virgin-fibre replacement in the DMC
(Dough Moulding Compounds). The mechanical properties of the composite part using
10% recyclate were not adversely affected. The authors suggested that a high level of
recyclates can be used to reduce the cost of virgin materials.

Overall, the use of mechanically recycled ground FRP waste material in concrete
showed either a reduction or no improvement in the compressive strength of concrete.
Some marginal improvement in the tensile and flexural strengths of concrete was achieved.
Less than 10% aggregate replacement in concrete was found to be the best proportion for
keeping the compressive strength the same or slightly lower than the control concrete.
Recycled GFRP waste is suitable as a filler material in other FRP components and aggre-
gate in concrete. However, it should be used in non-load-bearing secondary structural
applications. The ease, scalability, speed, and fewer environmental impacts mean that
mechanical recycling is superior to other methods for glass-based FRP waste. However,
the quality and value of the reclaimed material are lower than what you can obtain from
other recycling routes.

4.2. Thermal Recycling

Fibres can be recovered from the resin by using thermal or chemical processes. The
aggressive process breaks down the resin, resulting in fibre recovery and the release of
energy from the resin. The resin matrix is typically a thermoset resin. Fibre reclamation
(thermal or chemical recycling) is a suitable technique for carbon fibre reinforced polymer
(CFRP) for three reasons: (1) carbon fibres have high chemical and thermal stability; (2) the
mechanical properties of the recovered fibres are not largely degraded, and (3) extracting
expensive carbon fibres justifies the high cost of thermal and chemical recycling. The
recovered fibres are used in new resin to produce recycled CFRPs. The recycled carbon
fibres have also been reused in non-structural applications. Thermal recycling uses heat
to separate the fibres from the resin matrix. There are three thermal recycling techniques:
(1) pyrolysis; (2) fluidised beds; and (3) microwave. Thermal recycling can recover both
glass and carbon fibres from their composites with an operating temperature range of
450–700 ◦C [16,85,87,88]. Thermal recycling is still far away from becoming a large-scale
industrial recycling method [90].



Sustainability 2022, 14, 16855 12 of 22

4.2.1. Pyrolysis

Pyrolysis is one of the most commonly used thermal recycling methods. It is based on
the thermal decomposition of organic parts in the presence of nitrogen in a static pyrolysis
reactor. The FRP parts are heated to 450–700 ◦C in the absence of oxygen. The matrix
decomposition produces oily, solid (char) and gaseous products during the process. The oily
and solid parts are of lower molecular substances. The gases consist of carbon monoxide
(CO), carbon dioxide (CO2), and other hydrocarbons [16,87]. The recycling of glass FRPs
using pyrolysis was studied in papers [55–57,59]. Different temperatures were tried ranging
from 300–800 ◦C. It was found that the tensile strength of the recovered fibre was about
65% at 500 ◦C, and it decreased beyond 650–800 ◦C.

The pyrolysis technique has been used to recycle CFRP in papers [54,60,61,64]. The
researchers found that the recovered fibres had similar mechanical properties and surface
characteristics to that of the original fibres. Most studies tried temperatures of 450 ◦C and
600 ◦C. Scanning electron microscopy (SEM) and energy dispersive spectrometry were
used to study the superficial morphology and changes in the composition of the fibre. A
thermal treatment lower than 450 ◦C was found to be suitable, with minimum damage to
the fibre surfaces and reduction in mechanical properties. High temperatures, more than
600 ◦C, were found to cause severe damage to the fibres. Pyrolysis is a preferred recycling
technique for CFRP, as the tensile strength and surface morphology of the recovered fibres
are almost the same as the original fibres. The recovered fibres have 80–95% tensile strength
of the virgin fibres [16]. Pyrolysis is also suitable for CFRP due to the high economic value
of the recovered carbon fibre [90].

4.2.2. Fluidised Beds

Developed in the 1990s at the University of Nottingham, UK, oxygen in fluidised beds
is another thermal process for FRP recycling [16,48,49,85,90]. It consists of burning the resin
matrix in a hot and oxygen-rich flow. The recovered fibres are clean with no char deposits.
However, degradation in fibre length and strength may happen during this process [90].
First, the composite waste is reduced to a 25 mm size and fed into a fluidised or silica sand
bed. The bed is heated to 450–550 ◦C using a hot-air stream. Both fibres and resin are
carried in the stream. The fibres are separated from the air stream by a cyclone, and the
resin is fully oxidised in an afterburner, with energy recovery as heat.

The fluidised bed process has been used to recycle glass FRP scrap. It was a general
consensus in past research that the thermal heating temperature affects the strength of the
recovered fibre. The heating temperatures of 450 ◦C, 550 ◦C, and 650 ◦C led to a tensile
strength reduction of 50%, 65%, and 90% in the recovered fibre compared to the virgin
fibre [47,48,51,53]. Research studies [49,50] have been conducted on recycling CFRP waste
using fluidised beds. The tensile strength of the recovered carbon fibre was reported to be
about 75% of the virgin carbon fibre. Some drawbacks of the fluidised bed method include
a reduction in the recovered fibre length, an unstructured or fluffy fibre architecture, and
strength degradation between 25% and 50% [16,87].

4.2.3. Microwave

Microwave-based pyrolysis is an effective method for recovering glass and carbon
fibre and disintegrating the resin into oil and gases. The main advantages of this technique
are as follows: (1) The FRP waste material is heated to its core; (2) the fast rate of heat
transfer; and (3) minimum heat loss to surrounding areas. The research paper by Åkesson
et al. [62] uses microwave pyrolysis as a method of recycling glass fibre from the used
blades of wind turbines. The recovered glass fibres only lost 25% of their tensile strength
compared to the original fibres. The microwave was heated at 300–600 ◦C in a nitrogen
atmosphere for 90 min to recover glass fibres and oil from the wind turbine scrap.

Research by Obunai et al. [65] compared three atmospheric conditions, air, nitrogen,
and argon, to recover carbon fibres using microwave irradiation. The argon atmosphere
was found to be the most effective for extracting carbon fibres. The tensile strength of the
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recovered fibres was either the same as the virgin fibres or at least comparable to the other
recycling methods. However, the paper by Lester et al. [58] found a 25% reduction in the
tensile strength of the recovered carbon fibres compared to the virgin carbon fibres using
microwaves. The reason for this discrepancy in results in these three papers is due to the
different atmospheres used in the microwave treatments. Åkesson et al. [62] and Lester
et al. [58] used a microwave treatment under a nitrogen atmosphere; the results showed a
25% reduction in the tensile strength of the recovered carbon fibres. Conversely, Obunai
et al. [65] used microwave irradiation under an argon atmosphere, which was found to be
the most effective atmosphere in reclaiming fibres without flaws.

Recently, upcycling techniques have also been explored to extract better-quality carbon
fibres than the original fibres. Upcycling means reusing the discarded material to create
a product of higher quality or value than the original. Zhang et al. [109] proposed an
upcycling method for CFRP waste to minimise environmental pollution. Microwave
irradiation pyrolysis was used under a nitrogen atmosphere in this method. The authors
believe that microwave plasma pyrolysis using graphene porous materials is the best
solution for CFRP upcycling from abandoned aircraft, wind turbine blades, and sports
equipment. The reclaimed carbon fibre produced by the upcycling method had better
properties than the virgin carbon fibre. The new method can also save energy and reduce
carbon emissions.

4.3. Chemical Recycling

Chemical recycling dissolves the resin matrix using a chemical product and a reactive
medium (catalytic solutions and supercritical fluids) at a low temperature, usually less than
350 ◦C. The polymer resin matrix is decomposed and separated from the waste, leading
to fibre collection and energy recovery from the matrix. The fibres remain inert during
the chemical process. Chemical recycling can lead to negative environmental impacts if
hazardous chemicals are used. Chemical recycling is also known as solvolysis. Chemical
recycling is divided into two parts: low temperature (solvolysis) and supercritical fluid
(solvolysis) [16,87,88,90].

4.3.1. Low-Temperature (Solvolysis)

Low-temperature (solvolysis) is carried out at low temperatures, less than 200 ◦C,
under atmospheric pressure. It uses acid or solvents as a reactive medium, such as water,
alcohol, ammonia, nitric, or sulphuric acid, to disintegrate the resin matrix from FRP
composite scrap. Due to the low temperature, catalysts and additives need to be used.
Recycling glass FRPs using solvolysis has been researched in papers [29,30]. The authors
found that the mechanical properties and glass transition temperature of the reclaimed resin
were better than the virgin matrix. The glass fibres could also be separated and recovered.
Chemical recycling of CFRP waste using solvolysis has been studied in [30,32,33]. The
nitric acid solution was used as a reactive medium to decompose an epoxy resin matrix.
The mechanical properties of the reclaimed fibres and resin are almost the same as the
virgin materials. The reclaimed carbon fibres are sold as chopped, or milled fibres, and the
recovered resin is either used as fuel or chemical feedstock [87].

4.3.2. Sub or Supercritical Fluid (Solvolysis)

Chemical recycling using supercritical fluids enables a desirable reactive medium for
the decomposition of the polymer resin. The method can recover high-quality fibres from
both GFRP and CFRP. Supercritical fluids (SCF) are substances that are above their critical
temperatures and pressure point. At this point, the distinct liquid and gas states do not exist.
SCFs can pass through solids, similar to gases, and dissolve materials, similar to liquids.
The SCFs are very useful in digesting the resin matrix in FRP waste. Sub- or supercritical
fluid (solvolysis) is again divided into two categories: sub–supercritical water (solvolysis)
and sub–supercritical alcohol (solvolysis). The alcohol can be methanol, ethanol, propanol,
acetone, or glycols [16].
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Research on chemical recycling solvolysis using sub- or supercritical water has been
conducted by various researchers [31,34–37,42,46,74]. Using water as a solvent has gen-
erally led to the tensile strength of the recovered fibre to be 85–98% of the virgin fibre. A
temperature lower than 350 ◦C resulted in the highest decomposition of the matrix and
quality of recovered fibres. Several researchers [38–40,43–45,52,63,84] using sub-critical or
supercritical alcohol techniques found almost no loss in the tensile strength and surface
properties of the recovered fibre compared to the virgin fibre. Scanning electron microscope
(SEM) has been used to confirm the surface morphology of the recovered fibre. Sub-critical
or supercritical fluid solvolysis is more effective than low-temperature solvolysis and ther-
mal techniques, such as fluidised bed and pyrolysis, in recovering high-quality fibres and
extracting energy from the matrix. Sub-supercritical solvolysis does not use harmful and
toxic chemicals compared to low-temperature solvolysis [16].

5. Recovery and Disposal

When FRP waste cannot be minimised, reused, or recycled, energy recovery through
incineration can be considered. Co-incineration in a cement kiln to produce clinker (raw
material for cement production) and partial energy recovery as fuel may also be a suitable
disposal pathway. If none of the above methods is workable, dumping FRP scrap in a
landfill should be the last resort.

5.1. Incineration and Co-Incineration

Incineration is a common FRP composite waste disposal method. It is based on burning
the organic content in composite waste with or without energy recovery. Incineration with
energy recovery could be a suitable disposal option due to the high calorific value of
FRP waste. However, 50% of the combusted waste remains as ash after incineration,
which ends up in a landfill [28,92,101]. The residual ash can contain hazardous materials.
Moreover, the air pollution resulting from combustion is a setback of this method. As
per European Union’s Directive 2010/75/EU [110], the amount and harmfulness of the
residues from incineration and co-incineration should be minimized and, where possible,
recycled appropriately. Furthermore, the heat generated should be recovered, if practical,
as energy to generate heat, steam, or power [90].

The incinerator operators usually charge more for accepting FRP waste, as it overloads
the system due to toxic emissions and high calorific content. This means their capacity
to process domestic waste is reduced. By accepting a small quantity of FRP waste for
incineration, a large amount of domestic refuse must then be landfilled. The main business
of the incinerator is to discard domestic refuse, not FRP waste [28]. Presently, incineration
with energy recovery is considered a less cost-effective disposal method. The incineration
of GFRP is not practical, as 50–70% of the material is mineral, which turns into ash after
combustion and requires landfilling [111]. GFRP products usually contain 40% glass,
30% inorganic filler, and 30% resin. The glass and filler are mineral materials that do not
burn. Together, glass and filler make up 70% of the composite part, which remains after
incineration [26]. Incineration is also not suitable for large parts and glass fibre residue, as
both can cause blockages in the process plant [101].

Co-incineration in a cement kiln is another disposal option for GFRP waste. It is
also known as cement co-processing. It is slightly more cost-effective than incineration,
as it offers both material and energy recovery. Co-incineration is used when the value of
recovered material is higher than the cost of the disposal method. Co-incineration is not
feasible for CFRP waste, as the cost of the carbon fibre is at least 10 times more than the
glass fibre. As per “The Waste Incineration Directive in England and Wales” [112], the main
purpose of a co-incineration plant is to generate energy and/or produce materials. The
plant uses the FRP waste as the main or additional fuel. In a cement kiln, co-incineration
turns GFRP waste into energy and clinker. The mineral part of the GFRP waste is converted
into clinker, and the organic part, resin, is used as an alternative fuel for the kiln. No ash
or residue is left behind in co-incineration, but the waste needs to be reduced to a smaller
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size for use in the kiln [90,101]. Co-incineration in cement kilns has been commercially
successful in Germany [101]. While co-incineration is useful for recovering material and
energy, it has some setbacks too. One major drawback is that co-incineration relies on GFRP
waste meeting certain requirements as under [90]:

1. The waste should be smaller than 20 mm.
2. The toxic and heavy metals should be low in the waste.
3. It should not contain foreign material, including any metal fasteners.
4. It must not contain dust from pulverised fibreglass.
5. It should have a specific calorific value, usually higher than 5000 kcal/kg.

In addition, the total amount of fuel replacement by GFRP waste in a cement kiln
is limited by the presence of the boron found in E-glass fibre reinforcement used in the
composite product. More than 0.2% boron oxide increases the setting time of the cement and
reduces the early strength of the cement. In practical terms, this means that not more than
10% of the fuel input can be replaced by combusting GFRP waste in the cement kiln [85,90].

5.2. Landfill

Dumping in a landfill site is the most common and cost-effective disposal option for
thermoset-based FRP waste. Today, an estimated 90% of the UK’s FRP composite waste
goes to landfills [113]. Legislation, such as the EU landfill directive and the UK landfill
tax, aims to discourage the use of landfill and encourage more eco-friendly disposal routes.
Landfill tax in the UK currently stands at GBP 98.60 per tonne as of 1 April 2022. When
gate fees and transport are included, the total cost of landfilling increases to about GBP
150 per tonne [114]. Germany and many other European countries have already banned
landfill for FRP waste [115]. The cost of waste disposal in a landfill is set to increase, and
the pre-treatment of waste will become mandatory in future. This will drive the need
for alternative disposal routes for FRP composite waste [26]. These factors, including
the increase in the price of landfilling, limited space in landfills, and waste management
directives, will encourage recycling and reuse routes instead of simply discarding the FRP
scrap in a landfill [90].

6. Energy Demand and Cost

The environmental impact of manufacturing synthetic virgin fibres and various re-
cycling methods depends on the energy demand. Figure 8 shows the energy demand
of various recycling processes and virgin carbon and glass fibres. Mechanical recycling
is more suitable for recycling glass-based FRP products because the energy demand of
the process is about 5 MJ/kg compared with virgin glass fibre (36 MJ/kg). Chemical and
pyrolysis recycling methods are more useful for extracting carbon fibres, where the value of
recycled carbon fibres is more than the cost of the recycling method. Chemical recycling has
an energy demand in the range of 21–91 MJ/kg, and pyrolysis is more energy efficient, with
an energy demand of 23–30 MJ/kg. Apart from mechanical recycling, the processing scale
of the other recycling methods is not reported in the literature. Upscaling to commercial
and industrial levels will reduce the energy demands of these recycling methods. Figure 8
shows that the recycling energy demand is about 10–20 times lower than the energy re-
quired to produce virgin fibres (glass: 13–32 MJ/kg and carbon: 183–286 MJ/kg) [115].
A specific recycling method should provide a suitable compromise between the energy
consumed and the value and quality of the extracted fibres.

Figure 9 shows the cost comparison of different recycling methods in Euros per kg in
2018. Recycling routes are not cost-effective compared to incineration and landfill. In fibre
recovery methods, chemical recycling is the most expensive and mechanical recycling and
grinding is the least expensive. This makes chemical recycling the most suitable method for
reclaiming carbon fibres, where the cost of the recovered fibres is higher than the processing
cost. Chemical recycling and thermal recycling (pyrolysis) routes are used to reclaim high-
quality carbon fibres from CFRP composites. In contrast, mechanical recycling can be useful
for the recovery of glass fibres in GFRP composites. In non-recovery methods, landfill
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and incineration are the cheapest methods to dispose of FRP waste, with 0.1 Euro per
kg. Despite no material recovery, landfill and incineration will continue to dominate FRP
composite waste management due to economic reasons. With a cost of one Euro per kg, co-
incineration instantly loses its economic viability when compared to incineration/landfill
or even mechanical recycling. Co-incineration in a cement kiln produces clinker for cement
production and partial energy to run the cement plant [89].
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7. Limitations and Future Research Requirements

Government policies shape waste-management strategies in the composite industry.
The European Union has strict laws regarding landfill. Composite industry and academic
research are focussed on reclaiming fibres fully. Partial fibre recovery can also be useful
for secondary applications. Composite waste can be a valuable raw material. The major
challenge is the scalability of recycling processes to an industrial-scale level. This is needed
to reclaim a high proportion of fibres. The energy consumption of recycling routes is less
than the manufacturing of virgin fibres.

With a slight compromise on the quality of fibres, recycled fibres can compete with
virgin fibres. However, the cost of recycling will be a major factor in persuading the industry
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to recycle more. Levelling up recycling routes to an industrial scale will help reduce the
cost. Alternative recycling approaches, such as high-voltage fragmentation, can be used to
reduce environmental impact. Thermal recycling using microwaves, which saves half the
recycling time, can also be employed. Electrochemical recycling approaches are still in their
infancy at the laboratory-scale level. These three methods can be efficient and eco-friendly
recycling routes when developed on an industrial scale. More research is also needed on
upcycling techniques to reclaim fibres of higher quality and value than virgin fibres.

8. Conclusions

The paper provides a comprehensive review of existing recycling technologies and
other disposal pathways for FRP composite waste. Despite being used for more than three
decades, waste disposal and recycling routes for FRP composites are not fully developed
yet. FRP waste consists of the production and end-of-life usage or decommissioning waste.
Landfill is the cheapest and the most common method for discarding non-biodegradable
FRP composite waste. Incineration recovers energy, but it still leaves behind 50% of the
combusted waste as ash residue that ends up in a landfill. Co-processing or co-incineration
in a cement kiln produces energy as a partial or full fuel for running the kiln and clinker
for cement production. Co-processing is slightly more cost-effective than incineration as
it recovers both energy and material. However, individual fibres are not reclaimed in co-
incineration. Low-value glass FRPs are the most suitable waste material for co-processing.
Co-incineration may not be cost-competitive as raw materials for clinker production, such
as clay and limestone, might be cheaper than the clinker produced by the co-processing of
FRP composite waste in a cement kiln.

The mechanical, thermal, and chemical recycling methods have been reviewed. Me-
chanical recycling simply grinds the FRP parts into powdered form. It produces low-value
products, and this is the reason it is mostly used for glass FRP waste. The limited use of
mechanical recycling for CFRP waste also exists. Mechanical recycling does not reclaim
individual fibres. The quality of the recovered material is highly degraded. Industrial-scale
mechanical recycling is only available for GFRPs. Mechanical recycling has not been utilised
yet commercially for CFRP other than reducing the size of the CFRP parts before thermal
recycling. Fibres can only be recovered from the resin by thermal or chemical recycling
process. Thermal recycling is based on the decomposition of the organic part—resin via
heat to recover fibres. Pyrolysis is the most common thermal recycling variant. Chemical
recycling or solvolysis dissolves the resin using a chemical process leading to fibre and
energy recovery. Thermal and chemical recycling are more suitable for CFRP than GFRP
because the mechanical properties of the recovered carbon fibres are not degraded. The
high cost of chemical and thermal recycling also justifies their use in reclaiming carbon
fibres. The industry-scale application of both chemical and thermal recycling is yet to be
realised. These processes should be scaled up from the laboratory scale to a commercially
viable industrial level.

FRP composite structures using CFRP have a very long service life. Therefore, end-of-
life FRP waste may not be available for long periods of time. The growth in the manufacture
of CFRP outweighs the growth in the research on composite waste recycling. This creates a
huge knowledge gap as the research in composite waste always lags behind the develop-
ment of new FRP components. With potential limits on landfill and incineration, the future
waste management agenda will highly encourage the repurposing, reusing, and recycling
of FRP composite waste. The recovery of material and energy from FRP composite waste
using circular economy approaches presents a major challenge in a sustainable society.

The United Nations adopted 17 Sustainable Development Goals (SDGs) in 2015 to
balance social, economic, and environmental sustainability. It is a universal call to ensure
that all people enjoy peace and prosperity by 2030. Goal No. 11 relates to sustainable
cities and communities. Cities are responsible for more than 70% of global greenhouse gas
emissions [116]. Minimising waste, reusing, and recycling FRPs will help reduce carbon
emissions. These measures will assist in achieving the targets of the SDGs and ensuring
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sustainable cities. The key focus in future will be on handling and recycling FRP composite
waste while meeting governmental legislation and addressing negative environmental
impacts. In a circular economy, a closed-loop cradle-to-cradle approach is needed to turn
the FRP composite waste into a valuable resource. This approach will help meet the UN’s
Sustainable Development Goal (SDG) related to sustainable cities and communities.
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