Generation of Test Vectors for Sequential Cell Verification

Conference paper


Bhowmick, S., Bhattacherjee, S., Nandakumar, G. N. and Patel, N. 2008. Generation of Test Vectors for Sequential Cell Verification. ARM Regional Engineering Conference. Bengaluru 2008 ARM.
AuthorsBhowmick, S., Bhattacherjee, S., Nandakumar, G. N. and Patel, N.
TypeConference paper
Abstract

For Application Specific Integrated Circuits (ASIC) and System-on-Chip (SOC) designs, Cell - Based Design (CBD) is the most prevalent practice as it guarantees a shorter design cycle, minimizes errors and is easier to maintain. In modern ASIC design, standard cell methodology is practiced with sizable libraries of cells, each containing multiple implementations of the same logic functionality, in order to give the designer differing options based on area, speed or power consumption. For such library cells, thorough verification of functionality and timing is crucial for the overall success of the chip, as even a small error can prove fatal due to the repeated use of the cell in the design. Both formal and simulation based methods are being used in the industry for cell verification. We propose a method using the latter approach that generates an optimized set of test vectors for verification of sequential cells, which are guaranteed to give complete Single Input Change transition coverage with minimal redundancy. Knowledge of the cell functionality by means of the State Table is the only prerequisite of this procedure.

Year2008
ConferenceARM Regional Engineering Conference
PublisherARM
Accepted author manuscript
License
File Access Level
Anyone
Publication dates
Print2008
Publication process dates
Accepted01 Nov 2008
Deposited15 Feb 2022
Copyright holder© 2008 The Author
Copyright informationAll Rights Reserved
Permalink -

https://repository.uel.ac.uk/item/86y89

Download files


Accepted author manuscript
7796.pdf
License: All rights reserved
File access level: Anyone

  • 85
    total views
  • 28
    total downloads
  • 1
    views this month
  • 1
    downloads this month

Export as

Related outputs

Reducing Communication Overhead of the Subset Difference Scheme
Bhattacherjee, S. and Sarkar, Palash 2015. Reducing Communication Overhead of the Subset Difference Scheme. IEEE Transactions on Computers. 65 (8), pp. 2575-2587. https://doi.org/10.1109/TC.2015.2485231
Tree based symmetric key broadcast encryption
Bhattacherjee, S. and Sarkar, Palash 2015. Tree based symmetric key broadcast encryption. Journal of Discrete Algorithms. 34, pp. 78-107. https://doi.org/10.1016/j.jda.2015.05.010
Concrete Analysis and Trade-Offs for the (Complete Tree) Layered Subset Difference Broadcast Encryption Scheme
Bhattacherjee, S. and Sarkar, Palash 2013. Concrete Analysis and Trade-Offs for the (Complete Tree) Layered Subset Difference Broadcast Encryption Scheme. IEEE Transactions on Computers. 63 (7), pp. 1709-1722. https://doi.org/10.1109/TC.2013.68
Complete tree subset difference broadcast encryption scheme and its analysis
Bhattacherjee, S. and Sarkar, Palash 2012. Complete tree subset difference broadcast encryption scheme and its analysis. Designs, Codes and Cryptography. 66 (1-3), pp. 335-362. https://doi.org/10.1007/s10623-012-9702-6
An Analysis of the Naor-Naor-Lotspiech Subset Difference Algorithm (For Possibly Incomplete Binary Trees)
Bhattacherjee, S. and Sarkar, P. 2011. An Analysis of the Naor-Naor-Lotspiech Subset Difference Algorithm (For Possibly Incomplete Binary Trees). The Seventh International Workshop on Coding and Cryptography 2011. Paris, France 11 - 15 Apr 2011 WCC.