Automatic Scenario Generation for Robust Optimal Control Problems

Conference paper


Zagorowska, M., Falugi, P., O'Dwyer, E. and Kerrigan, E. C. 2023. Automatic Scenario Generation for Robust Optimal Control Problems. IFAC 2023: 22nd World Congress of the International Federation of Automatic Control. Yokohama, Japan 09 - 14 Jul 2023 Elsevier for the International Federation of Automatic Control. https://doi.org/10.1016/j.ifacol.2023.10.1743
AuthorsZagorowska, M., Falugi, P., O'Dwyer, E. and Kerrigan, E. C.
TypeConference paper
Abstract

Existing methods for nonlinear robust control often use
scenario-based approaches to formulate the control problem as nonlinear optimization problems. Increasing the number of scenarios improves robustness while increasing the size of the optimization problems. Mitigating the size of the problem by reducing the number of scenarios requires knowledge about how the uncertainty affects the system. This paper draws from local reduction methods used in semi-infinite optimization to solve robust optimal control problems with parametric uncertainty. We show that nonlinear robust optimal control problems are equivalent to semi-infinite optimization problems and can be solved by local reduction. By iteratively adding interim globally worst-case scenarios to the problem, methods based on local reduction provide a way to manage the total number of scenarios. In particular, we show that local reduction methods find worst-case scenarios that are not on the boundary of the uncertainty set. The proposed approach is illustrated with a case study with both parametric and additive time-varying uncertainty. The number of scenarios obtained from local reduction is 101, smaller than in the case when all 2 14+3×192 boundary scenarios are considered. A validation with randomly-drawn scenarios shows that our proposed approach reduces the number of scenarios and ensures robustness even if local solvers are used.

Year2023
ConferenceIFAC 2023: 22nd World Congress of the International Federation of Automatic Control
PublisherElsevier for the International Federation of Automatic Control
Publisher's version
License
File Access Level
Anyone
Publication dates
Online22 Nov 2023
Publication process dates
Accepted12 Jun 2023
Deposited04 Jul 2023
JournalIFAC-PapersOnLine
Journal citation56 (2), pp. 1229-1234
ISSN2405-8971
FunderEngineering and Physical Sciences Research Council (EPSRC)
European Research Council
Digital Object Identifier (DOI)https://doi.org/10.1016/j.ifacol.2023.10.1743
Web address (URL) of conference proceedingshttps://www.sciencedirect.com/journal/ifac-papersonline/vol/56/issue/2
Copyright holder© 2023, The Author(s)
Permalink -

https://repository.uel.ac.uk/item/8w3v9

Download files


Publisher's version
1-s2.0-S2405896323021523-main.pdf
License: CC BY-NC-ND 4.0
File access level: Anyone

  • 66
    total views
  • 32
    total downloads
  • 7
    views this month
  • 1
    downloads this month

Export as

Related outputs

Machine Learning-Enhanced Benders Decomposition Approach for the Multi-Stage Stochastic Transmission Expansion Planning Problem
Borozan, S., Giannelos, S., Falugi, P., Moreira, A. and Strbac, G. 2024. Machine Learning-Enhanced Benders Decomposition Approach for the Multi-Stage Stochastic Transmission Expansion Planning Problem. Electric Power Systems Research. 237, p. Art. 110985. https://doi.org/10.1016/j.epsr.2024.110985
An integrated planning framework for optimal power generation portfolio including frequency and reserve requirements
Ayo, O, Falugi, P. and Strbac, G 2024. An integrated planning framework for optimal power generation portfolio including frequency and reserve requirements. IET Energy Systems Integration. In Press.
Automatic scenario generation for efficient solution of robust optimal control problems
Zagorowska, M., Falugi, P., O'Dwyer, E. and Kerrigan E. C. 2024. Automatic scenario generation for efficient solution of robust optimal control problems. International Journal of Robust and Nonlinear Control. 34 (2), pp. 1370-1396. https://doi.org/10.1002/rnc.7038
Automating the data-driven predictive control design process for building thermal management
Falugi, P., O'Dwyer, E., Shah, N. and Kerrigan, E. C. 2022. Automating the data-driven predictive control design process for building thermal management. ECOS 2022 35th International Conference. Copenhagen, Denmark 03 - 07 Jul 2022 Danmarks Tekniske Universitet (DTU). https://doi.org/10.11581/dtu.00000267
A Modelling Workflow for Predictive Control in Residential Buildings
O’Dwyer, E., Atam, E., Falugi, P., Kerrigan, E. C., Zagorowska, M. A. and Shah, N. 2022. A Modelling Workflow for Predictive Control in Residential Buildings. in: Vahidinasab, V. and Mohammadi-Ivatloo, B. (ed.) Active Building Energy Systems: Operation and Control Springer, Cham. pp. 99-128
MPC and Optimal Design of Residential Buildings with Seasonal Storage: A Case Study
Falugi, P., O’Dwyer, E., Zagorowska, M. A., Atam, E., Kerrigan, E. C., Strbac, G. and Shah, N. 2022. MPC and Optimal Design of Residential Buildings with Seasonal Storage: A Case Study. in: Vahidinasab, V. and Mohammadi-Ivatloo, B. (ed.) Active Building Energy Systems: Operation and Control Springer, Cham. pp. 129-160
Fast and accurate method for computing non-smooth solutions to constrained control problems
Nita, L., Vila, E. M. G., Zagorowska, M. A., Kerrigan, E. C., Nie, Y., McInerney, I. and Falugi, P. 2022. Fast and accurate method for computing non-smooth solutions to constrained control problems. European Control Conference (ECC) 2022. London, UK 12 - 15 Jul 2022 IEEE. https://doi.org/10.23919/ECC55457.2022.9838569
Data-Driven Predictive Control With Improved Performance Using Segmented Trajectories
O’Dwyer, E., Kerrigan, E. C., Falugi, P., Zagorowska, M. and Shah, N. 2022. Data-Driven Predictive Control With Improved Performance Using Segmented Trajectories. IEEE Transactions on Control Systems Technology . 31 (3), pp. 1355 - 1365. https://doi.org/10.1109/TCST.2022.3224330
Predictive control co-design for enhancing flexibility in residential housing with battery degradation
Falugi, P., O’Dwyer, E., Kerrigan, E. C., Atam, E., Zagorowska, M. A., Strbac, G. and Shah, N. 2021. Predictive control co-design for enhancing flexibility in residential housing with battery degradation. 7th IFAC Conference on Nonlinear Model Predictive Control NMPC 2021. Bratislava, Slovakia 11 - 14 Jul 2021 Elsevier for the International Federation of Automatic Control. https://doi.org/10.1016/j.ifacol.2021.08.517
Long-Term Expansion Planning of the Transmission Network in India under Multi-Dimensional Uncertainty
Falugi, P., Giannelos S, Jain A., Borozan S., Moreira A., Bhakar R., Mathur J. and Strbac G. 2021. Long-Term Expansion Planning of the Transmission Network in India under Multi-Dimensional Uncertainty. Energies. 14 (22), p. 7813. https://doi.org/10.3390/en14227813
Robust and automatic data cleansing method for short-term load forecasting of distribution feeders
Huyghues-Beaufond, N., Tindemans, S., Falugi, P., Sun, M. and Strbac, G. 2020. Robust and automatic data cleansing method for short-term load forecasting of distribution feeders. Applied Energy. 261 (Art. 114405). https://doi.org/10.1016/j.apenergy.2019.114405