Evaluation of multi-segmental kinematic modelling in the paediatric foot using three concurrent foot models

Article


Mahaffey, R., Morrison, S., Drechsler, W. and Cramp, Mary Christine 2013. Evaluation of multi-segmental kinematic modelling in the paediatric foot using three concurrent foot models. Journal of Foot and Ankle Research. 6 (1), p. 43.
AuthorsMahaffey, R., Morrison, S., Drechsler, W. and Cramp, Mary Christine
Abstract

Background:
Various foot models are used in the analysis of foot motion during gait and selection of the
appropriate model can be difficult. The clinical utility of a model is dependent on the repeatability of the data as
well as an understanding of the expected error in the process of data collection. Kinematic assessment of the
paediatric foot is challenging and little is reported about multi-segment foot models in this population. The aim of
this study was to examine three foot models and establish their concurrent test-retest repeatability in evaluation of
paediatric foot motion during gait.
Methods:
3
DFoot, Kinfoot and the Oxford Foot Model (OFM) were applied concurrently to the right foot and lower
limb of 14 children on two testing sessions. Angular data for foot segments were extracted at gait cycle events and
peaks and compared between sessions by intraclass correlation coefficient (ICC) with 95% confidence intervals (95%
CI) and standard error of measurement (SEM).
Results:
All foot models demonstrated moderate repeatability: OFM (ICC 0.55, 95% CI 0.16 to 0.77), 3DFoot (ICC
0.47, 95% CI 0.15 to 0.64) and Kinfoot (ICC 0.43, 95% CI

0.03 to 0.59). On the basis of a cut-off of 5°, acceptable
mean error over repeated sessions was observed for OFM (SEM 4.61° ± 2.86°) and 3DFoot (SEM 3.88° ± 2.18°) but not
for Kinfoot (SEM 5.08° ± 1.53°). Reliability of segmental kinematics varied, with low repeatability (ICC < 0.4) found for
14.3% of OFM angles, 22.7% of 3DFoot angles and 37.6% of Kinfoot angles. SEM greater than 5° was found in 26.2%
of OFM, 15.2% of 3DFoot, and 43.8% of Kinfoot segmental angles.
Conclusion:
Findings from this work have demonstrated that segmental foot kinematics are repeatable in the
paediatric foot but the level of repeatability and error varies across the segments of the different models.
Information on repeatability and test-retest errors of three-dimensional foot models can better inform clinical
assessment and advance understanding of foot motion during gait

JournalJournal of Foot and Ankle Research
Journal citation6 (1), p. 43
ISSN1757-1146
Year2013
Publisher's version
License
CC BY
Web address (URL)http://dx.doi.org/10.1186/1757-1146-6-43
Publication dates
Print31 Oct 2013
Publication process dates
Deposited08 Jan 2014
Permalink -

https://repository.uel.ac.uk/item/85w0x

Download files


Publisher's version
1757-1146-6-43.pdf
License: CC BY

  • 119
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Clinical outcome measures for monitoring physical function in pediatric obesity: An integrative review
Mahaffey, R., Morrison, S., Stephensen, David and Drechsler, Wendy I. 2016. Clinical outcome measures for monitoring physical function in pediatric obesity: An integrative review. Obesity. 24 (5), pp. 993-1017. https://doi.org/10.1002/oby.21468
The impact of body fat on three dimensional motion of the paediatric foot during walking
Mahaffey, R., Morrison, S., Bassett, Paul, Drechsler, W. and Cramp, M. 2015. The impact of body fat on three dimensional motion of the paediatric foot during walking. Gait & Posture. 44, pp. 155-160.
Associations of the mechanical, anthropometric and gait contributors to the knee adduction moment during paediatric gait
Mahaffey, R., Morrison, S., Cramp, M. and Drechsler, W. 2015. Associations of the mechanical, anthropometric and gait contributors to the knee adduction moment during paediatric gait. Gait & Posture. 42, pp. S59-S60.
Evaluation of multi-segmental kinematic modelling in the paediatric foot using three concurrent foot models
Mahaffey, R., Morrison, S., Drechsler, W. and Cramp, M. 2013. Evaluation of multi-segmental kinematic modelling in the paediatric foot using three concurrent foot models. Journal of Foot and Ankle Research. 6 (43).
Biomechanics of the paediatric foot and lower limb: associations with adiposity
Mahaffey, R. 2013. Biomechanics of the paediatric foot and lower limb: associations with adiposity. PhD Thesis University of East London School of Health Sport and Bioscience https://doi.org/10.15123/PUB.3507
Foot loading patterns in normal weight, overweight and obese children aged 7 to 11 years
Cousins, Stephen D, Morrison, S. and Drechsler, W. 2013. Foot loading patterns in normal weight, overweight and obese children aged 7 to 11 years. Journal of Foot and Ankle Research. 6 (1), p. 36.
The reliability of plantar pressure assessment during barefoot level walking in children aged 7-11 years
Cousins, Stephen D, Morrison, S. and Drechsler, W. 2012. The reliability of plantar pressure assessment during barefoot level walking in children aged 7-11 years. Journal of Foot and Ankle Research. 5 (1), p. 8.
Reliability of three foot models to examine paediatric gait
Mahaffey, R., Morrison, S., Drechsler, W. and Cramp, M. 2012. Reliability of three foot models to examine paediatric gait. Journal of Foot and Ankle Research. 5 (Supp.1), p. O18.
Prediction of Anthropometric Foot Characteristics in Children
Morrison, S., Durward, Brian R, Watt, Gordon F and Donaldson, Malcolm D.C 2009. Prediction of Anthropometric Foot Characteristics in Children. Journal of the American Podiatric Medical Association. 99 (6), pp. 497-502.