Modelling the Car Seated Human Body using Composite Ellipsoidal Bodies and Evaluation of Size and Shape Specific Stiffness Data for Various Human Segments

Article


Mondal, P. and Arunachalam, S. 2020. Modelling the Car Seated Human Body using Composite Ellipsoidal Bodies and Evaluation of Size and Shape Specific Stiffness Data for Various Human Segments. International Journal of Mechanical Engineering. 7 (2), pp. 26-32. https://doi.org/10.14445/23488360/IJME-V7I2P105
AuthorsMondal, P. and Arunachalam, S.
Abstract

Automobile is one of the primary modes of worldwide transport system, which must offer highest level of health, safety and comfort levels for the occupants inside. Health, safety and comfort of any moving vehicle and its human occupants are mainly characterized by the level of the vibration generated inside the human body. With the development of modern computer based technologies, over last few decades computerized simulations have been gaining huge importance to anticipate the level of vibration generated inside the automotive seated human body. Many simulation based research works had been conducted in past to predict the effect of vibration inside automotive-human assembly, though one of the key parameters to define the simulation set up, namely stiffness values of different human segments; had been collected from past relevant research studies or available testing data resources, which overlooked the real shapes and sizes of the human portions, hence, lacking the practical feasibility. In this research paper, a simplified car seated human made of ellipsoidal segments has been proposed. The segmental dimensions and masses have been extracted from anthropometric database and later, the formulations for composite fibre-matrix configuration have been implemented. A systematic approach has been outlined to evaluate the three-dimensional stiffness values for all the human portions. The obtained stiffness values have been validated by comparing to the data obtained from similar kind of investigations and test results.

JournalInternational Journal of Mechanical Engineering
Journal citation7 (2), pp. 26-32
ISSN2348-8360
Year2020
PublisherSeventh Sense Research Group
Accepted author manuscript
License
File Access Level
Repository staff only
Publisher's version
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.14445/23488360/IJME-V7I2P105
Web address (URL)https://doi.org/10.14445/23488360/IJME-V7I2P105
Publication dates
PrintFeb 2020
Publication process dates
Deposited12 Mar 2020
Accepted26 Feb 2020
Copyright holder© 2020 SSRG
Permalink -

https://repository.uel.ac.uk/item/87vz5

Download files


Publisher's version
IJME-V7I2P105.pdf
License: All rights reserved
File access level: Anyone

  • 192
    total views
  • 192
    total downloads
  • 1
    views this month
  • 2
    downloads this month

Export as

Related outputs

Investigation of the Dynamic Interaction between the Human Body and Car Seat Using a Unique Simulation Technique
Mondal, P. 2020. Investigation of the Dynamic Interaction between the Human Body and Car Seat Using a Unique Simulation Technique. PhD Thesis University Of East London School of Architecture, Computing and Engineering https://doi.org/10.15123/uel.88q36
Finite Element Modelling of Car Seat with Hyperelastic and Viscoelastic Foam Material Properties to Assess Vertical Vibration in Terms of Acceleration
Mondal, P. and Arunachalam, S. 2020. Finite Element Modelling of Car Seat with Hyperelastic and Viscoelastic Foam Material Properties to Assess Vertical Vibration in Terms of Acceleration. Engineering. 12 (3), pp. 177-193. https://doi.org/10.4236/eng.2020.123015
Compact System for Measuring Vibration at Different locations of Car Seat and Human Driver in Dynamic Condition
Mondal, P. and Arunachalam, S. 2020. Compact System for Measuring Vibration at Different locations of Car Seat and Human Driver in Dynamic Condition. International Journal of Innovative Research in Science, Engineering and Technology. 9 (2), pp. 13669-13676. https://doi.org/10.15680/IJIRSET.2020.0902046
Unique Finite Element Modelling of Human Body Inside Accelerating Car to Predict Accelerations and Frequencies at Different Human Segments
Mondal, P. and Arunachalam, S. 2020. Unique Finite Element Modelling of Human Body Inside Accelerating Car to Predict Accelerations and Frequencies at Different Human Segments. Applied Sciences. 10 (Art. 1861). https://doi.org/10.3390/app10051861
Vibration in Car Seat- Occupant System: Overview and Proposal of a Novel Simulation Method
Mondal, P. and Arunachalam, S. 2019. Vibration in Car Seat- Occupant System: Overview and Proposal of a Novel Simulation Method. International Conference on Emerging Trends in Mechanical Engineering eTIME-2018 . Karnataka, India 10 - 11 Aug 2018 AIP Publishing. https://doi.org/10.1063/1.5092921
Vibration Study in Human-Car Seat System: Overview and a Novel Simulation Technique
Mondal, P. and Arunachalam, S. 2018. Vibration Study in Human-Car Seat System: Overview and a Novel Simulation Technique. Journal of Material Sciences & Engineering. 7 (Art. 421). https://doi.org/10.4172/2169-0022.1000421
Cloud-based ERP for Arab Manufacturing Firms
Arunachalam, S., Alsadi, Mohammad and Edohis, Aloysius 2016. Cloud-based ERP for Arab Manufacturing Firms. i-manager’s Journal on Cloud Computing. 3 (4), pp. 1-6. https://doi.org/10.26634/jcc.3.4.13592
Investigation on the Turning Parameters for Surface Roughness using Taguchi Analysis
Rajasekaran, T., Palanikumar, K. and Arunachalam, S. 2013. Investigation on the Turning Parameters for Surface Roughness using Taguchi Analysis. Procedia Engineering. 51, pp. 781-790.
Investigation on the Turning Parameters for Surface Roughness using Taguchi Analysis
Rajasekaran, T., Palanikumar, K. and Arunachalam, S. 2013. Investigation on the Turning Parameters for Surface Roughness using Taguchi Analysis. Procedia Engineering. 51, pp. 781-790.
DMA Investigation on Polyurethane
Saidpour, Hossein, Razmara, Mohammad and Arunachalam, S. 2008. DMA Investigation on Polyurethane. International Conference on Fascinating Advancement in Mechanical Engineering (FAME 2008). Mepco Schlenk Engineering College, Sivakasi, India 11 - 13 Dec 2008
Integrating lean and six sigma for optimum manufacturing performance
Shamou, M. and Arunachalam, S. 2009. Integrating lean and six sigma for optimum manufacturing performance. Proceedings of Advances in Computing and Technology. (AC&T) The School of Computing and Technology 4th Annual Conference University of East London pp. 51-60
Developing an outsourcing questionnaire: validation study
Adnan, A., Arunachalam, S., Cazan, A., Arreymbi, Johnnes and Webb, P.A. 2008. Developing an outsourcing questionnaire: validation study. Proceedings of Advances in Computing and Technology. (AC&T) The School of Computing and Technology 3rd Annual Conference University of East London pp. 108-118
New training framework for lean manufacturing – an empirical study
Ichimura, Maki, Arunachalam, S. and Jahankhani, Hamid 2007. New training framework for lean manufacturing – an empirical study. Proceedings of Advances in Computing and Technology. (AC&T) The School of Computing and Technology 2nd Annual Conference University of East London pp. 174-183
Improving outsourcing framework by integrating with lean
Adnan, A. and Arunachalam, S. 2007. Improving outsourcing framework by integrating with lean. Proceedings of Advances in Computing and Technology. (AC&T) The School of Computing and Technology 2nd Annual Conference University of East London pp. 137-144
Training for successful lean manufacturing implementation
Ichimura, Maki, Jahankhani, Hamid and Arunachalam, S. 2006. Training for successful lean manufacturing implementation. Proceedings of Advances in Computing and Technology. (AC&T) The School of Computing and Technology 1st Annual Conference University of East London pp. 167-172