Finite Element Modelling of Car Seat with Hyperelastic and Viscoelastic Foam Material Properties to Assess Vertical Vibration in Terms of Acceleration

Article


Mondal, P. and Arunachalam, S. 2020. Finite Element Modelling of Car Seat with Hyperelastic and Viscoelastic Foam Material Properties to Assess Vertical Vibration in Terms of Acceleration. Engineering. 12 (3), pp. 177-193. https://doi.org/10.4236/eng.2020.123015
AuthorsMondal, P. and Arunachalam, S.
Abstract

Primary objective of automobile seats is to offer adequate level of safety and comfort to the seated human occupant, primarily against vibration. Ideally, any sort of automotive seat is constructed by mechanical framework, cushion, backrest and headrest. The frame structures are made of metallic alloys, while the cushion, backrest and headrest are made of polyurethane foam material. During the design phase of automotive seat, the greatest challenge is to assign realistic material properties to foam material; as it is non-linear in nature and exhibit hysteresis at low level stress. In this research paper, a car seat has been modelled in finite element environment by implementing both hyperelastic and viscoelastic material properties to polyurethane foam. The car seat has been excited with the loads due to car acceleration and human object and the effects of vibration in terms of vertical acceleration at different locations have been measured. The aims of this simulation study are to establish a car seat with the foam material properties as accurately as possible and provide a finite element set up of car seat to monitor the vertical acceleration responses in a reasonable way. The RMS acceleration values for headrest, backrest and cushion have been found to be 0.91 mm/sec², 0.54 mm/sec² and 0.47 mm/sec², respectively, which showed that the car seat foam can effectively be modelled through combined hyperelastic and viscoelastic material formulations. The simulation outputs have been validated through real life testing data, which clearly indicates that this computerized simulation technique is capable of anticipating the acceleration responses at different car seat segments in a justified way.

JournalEngineering
Journal citation12 (3), pp. 177-193
ISSN1947-3931
Year2020
PublisherScientific Research Publishing
Publisher's version
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.4236/eng.2020.123015
Web address (URL)https://doi.org/10.4236/eng.2020.123015
Publication dates
Online23 Mar 2020
Publication process dates
Accepted20 Mar 2020
Deposited31 Mar 2020
Copyright holder© 2020 The Authors and Scientific Research Publishing Inc.
Permalink -

https://repository.uel.ac.uk/item/87wqv

Download files

Publisher's version
eng_2020032014183972.pdf
License: CC BY 4.0
File access level: Anyone

  • 50
    total views
  • 36
    total downloads
  • 4
    views this month
  • 2
    downloads this month

Export as

Related outputs

Compact System for Measuring Vibration at Different locations of Car Seat and Human Driver in Dynamic Condition
Mondal, P. and Arunachalam, S. 2020. Compact System for Measuring Vibration at Different locations of Car Seat and Human Driver in Dynamic Condition. International Journal of Innovative Research in Science, Engineering and Technology. 9 (2), pp. 13669-13676. https://doi.org/10.15680/IJIRSET.2020.0902046
Modelling the Car Seated Human Body using Composite Ellipsoidal Bodies and Evaluation of Size and Shape Specific Stiffness Data for Various Human Segments
Mondal, P. and Arunachalam, S. 2020. Modelling the Car Seated Human Body using Composite Ellipsoidal Bodies and Evaluation of Size and Shape Specific Stiffness Data for Various Human Segments. International Journal of Mechanical Engineering. 7 (2), pp. 26-32. https://doi.org/10.14445/23488360/IJME-V7I2P105
Unique Finite Element Modelling of Human Body Inside Accelerating Car to Predict Accelerations and Frequencies at Different Human Segments
Mondal, P. and Arunachalam, S. 2020. Unique Finite Element Modelling of Human Body Inside Accelerating Car to Predict Accelerations and Frequencies at Different Human Segments. Applied Sciences. 10 (Art. 1861). https://doi.org/10.3390/app10051861
Vibration in Car Seat- Occupant System: Overview and Proposal of a Novel Simulation Method
Mondal, P. and Arunachalam, S. 2019. Vibration in Car Seat- Occupant System: Overview and Proposal of a Novel Simulation Method. International Conference on Emerging Trends in Mechanical Engineering eTIME-2018 . Karnataka, India 10 - 11 Aug 2018 AIP Publishing. https://doi.org/10.1063/1.5092921
Vibration Study in Human-Car Seat System: Overview and a Novel Simulation Technique
Mondal, P. and Arunachalam, S. 2018. Vibration Study in Human-Car Seat System: Overview and a Novel Simulation Technique. Journal of Material Sciences & Engineering. 7 (Art. 421). https://doi.org/10.4172/2169-0022.1000421
Cloud-based ERP for Arab Manufacturing Firms
Arunachalam, S., Alsadi, Mohammad and Edohis, Aloysius 2016. Cloud-based ERP for Arab Manufacturing Firms. i-manager’s Journal on Cloud Computing. 3 (4), pp. 1-6. https://doi.org/10.26634/jcc.3.4.13592
Investigation on the Turning Parameters for Surface Roughness using Taguchi Analysis
Rajasekaran, T., Palanikumar, K. and Arunachalam, S. 2013. Investigation on the Turning Parameters for Surface Roughness using Taguchi Analysis. Procedia Engineering. 51, pp. 781-790.
Investigation on the Turning Parameters for Surface Roughness using Taguchi Analysis
Rajasekaran, T., Palanikumar, K. and Arunachalam, S. 2013. Investigation on the Turning Parameters for Surface Roughness using Taguchi Analysis. Procedia Engineering. 51, pp. 781-790.
DMA Investigation on Polyurethane
Saidpour, Hossein, Razmara, Mohammad and Arunachalam, S. 2008. DMA Investigation on Polyurethane. International Conference on Fascinating Advancement in Mechanical Engineering (FAME 2008). Mepco Schlenk Engineering College, Sivakasi, India 11 - 13 Dec 2008
Integrating lean and six sigma for optimum manufacturing performance
Shamou, M. and Arunachalam, S. 2009. Integrating lean and six sigma for optimum manufacturing performance. Proceedings of Advances in Computing and Technology. (AC&T) The School of Computing and Technology 4th Annual Conference University of East London pp. 51-60
Developing an outsourcing questionnaire: validation study
Adnan, A., Arunachalam, S., Cazan, A., Arreymbi, Johnnes and Webb, P.A. 2008. Developing an outsourcing questionnaire: validation study. Proceedings of Advances in Computing and Technology. (AC&T) The School of Computing and Technology 3rd Annual Conference University of East London pp. 108-118
New training framework for lean manufacturing – an empirical study
Ichimura, Maki, Arunachalam, S. and Jahankhani, Hamid 2007. New training framework for lean manufacturing – an empirical study. Proceedings of Advances in Computing and Technology. (AC&T) The School of Computing and Technology 2nd Annual Conference University of East London pp. 174-183
Improving outsourcing framework by integrating with lean
Adnan, A. and Arunachalam, S. 2007. Improving outsourcing framework by integrating with lean. Proceedings of Advances in Computing and Technology. (AC&T) The School of Computing and Technology 2nd Annual Conference University of East London pp. 137-144
Training for successful lean manufacturing implementation
Ichimura, Maki, Jahankhani, Hamid and Arunachalam, S. 2006. Training for successful lean manufacturing implementation. Proceedings of Advances in Computing and Technology. (AC&T) The School of Computing and Technology 1st Annual Conference University of East London pp. 167-172