Structural stability studies of graphene in sintered ceramic nanocomposites

Article


Inam, F., Thuc, V. and Bhat, B. R. 2014. Structural stability studies of graphene in sintered ceramic nanocomposites. Ceramics International. 40 (10), pp. 16227-16233. https://doi.org/10.1016/j.ceramint.2014.07.058
AuthorsInam, F., Thuc, V. and Bhat, B. R.
Abstract

The post-sintering structural stability of graphene in alumina nanocomposites synthesised by Spark Plasma Sintering (SPS) and Hot Pressing (HP) was compared. Raman spectroscopy, thermogravimetric analyses and electrical conductivity analyses were conducted to characterise degradation of graphene due to the utilisation of different sintering techniques and conditions. Scanning Electron Microscopy confirmed good dispersion of graphene in SPSed and HPed sample. Graphene in SPSed and HPed nanocomposite samples sintered using longer durations (60 min) were found to possess higher crystallinity, thermal stability and electrical conductivity as compared to SPSed samples sintered using shorter sintering durations (10–20 min). This was attributed to the thermally induced graphitisation caused by longer sintering durations, which was lacking in SPSed samples processed using shorter sintering durations and lower temperature. No additional effect of DC pulsed current on the structural stability of graphene for nanocomposites were observed for samples prepared by SPS.

JournalCeramics International
Journal citation40 (10), pp. 16227-16233
ISSN0272-8842
Year2014
PublisherElsevier
Accepted author manuscript
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1016/j.ceramint.2014.07.058
Web address (URL)https://doi.org/10.1016/j.ceramint.2014.07.058
Publication dates
Online18 Jul 2014
Publication process dates
Deposited28 Apr 2020
Copyright holder© 2014 Elsevier
Permalink -

https://repository.uel.ac.uk/item/87yq1

Download files


Accepted author manuscript
Ceramics International, 2014, 40 (10), p16227-16233.pdf
License: CC BY-NC-ND 4.0
File access level: Anyone

  • 143
    total views
  • 257
    total downloads
  • 0
    views this month
  • 1
    downloads this month

Export as

Related outputs

Recent advances in MXene composites research, applications and opportunities
Saharudin, M. S., Ayub, A., Hasbi, S., Muhammad-Sukki, F., Shyha, I. and Inam, F. 2023. Recent advances in MXene composites research, applications and opportunities. Materials Today: Proceedings. In Press. https://doi.org/10.1016/j.matpr.2023.02.435
Novel antibacterial polyurethane and cellulose acetate mixed matrix membrane modified with functionalized TiO₂ nanoparticles for water treatment applications
Ahmad, A., Sabir, A., Iqbal, S. S., Felemban, B. F., Riaz, T., Bahadar, A., Hossain, N., Khan, R. U. and Inam, F. 2022. Novel antibacterial polyurethane and cellulose acetate mixed matrix membrane modified with functionalized TiO₂ nanoparticles for water treatment applications. Chemosphere. 301 (Art. 134711). https://doi.org/10.1016/j.chemosphere.2022.134711
Reliability analysis of bistable composite laminates
Saberi, S., Abdollahi, A. and Inam, F. 2021. Reliability analysis of bistable composite laminates. AIMS Materials Science. 8 (1), pp. 29-41. https://doi.org/10.3934/matersci.2021003
Synthesis and Characterization of Silver-Coated Polymeric Scaffolds for Bone Tissue Engineering: Antibacterial and In Vitro Evaluation of Cytotoxicity and Biocompatibility
Khan, M. U. A., Abd Razak, S. I., Mehboob, H., Abdul Kadir, M. R., Anand, T. J. S., Inam, F., Shah, S. A., Abdel-Haliem, M. E. F. and Amin, R. 2021. Synthesis and Characterization of Silver-Coated Polymeric Scaffolds for Bone Tissue Engineering: Antibacterial and In Vitro Evaluation of Cytotoxicity and Biocompatibility. ACS Omega. 6, p. 4335–4346. https://doi.org/10.1021/acsomega.0c05596
Syntheses and Step-by-Step Morphological Analysis of Nano-Copper-Decorated Carbon Long Fibers for Aerospace Structural Applications
Daoush, W. M., Albogmy, T. S., Khamis, M. A. and Inam, F. 2020. Syntheses and Step-by-Step Morphological Analysis of Nano-Copper-Decorated Carbon Long Fibers for Aerospace Structural Applications. Crystals. 10 (Art. 1090). https://doi.org/10.3390/cryst10121090
Synthesis of Nylon 6/Modified Carbon Black Nanocomposites for Application in Uric Acid Adsorption
Andrade-Guel, M., Ávila-Orta, C. A., Cadenas-Pliego, G., Cabello-Alvarado, C. J., Pérez-Alvarez, M., Reyes-Rodríguez, P., Inam, F., Cortés-Hernández, D. A. and Quiñones-Jurado, Z. V. 2020. Synthesis of Nylon 6/Modified Carbon Black Nanocomposites for Application in Uric Acid Adsorption. Materials. 13 (Art. 5173). https://doi.org/10.3390/ma13225173
Novel Carbyne Filled Carbon Nanotube – Polymer Nanocomposites
Luhyna, N., Rafique, R., Iqbal, S. S., Khaliq, J., Saharudin, M. S., Wei, J., Qadeer, Q. and Inam, F. 2020. Novel Carbyne Filled Carbon Nanotube – Polymer Nanocomposites. NanoWorld Journal. 6 (2), pp. 29-34. https://doi.org/10.17756/nwj.2020-078
Carbon Nanotube Reinforced High Density Polyethylene Materials for Offshore Sheathing Applications
Okolo, C., Rafique, R., Iqbal, S. S., Saharudin, M. S. and Inam, F. 2020. Carbon Nanotube Reinforced High Density Polyethylene Materials for Offshore Sheathing Applications. Molecules. 25 (Art. 2960). https://doi.org/10.3390/molecules25132960
Customizable Ceramic Nanocomposites Using Carbon Nanotubes
Okolo, C., Rafique, R., Iqbal, S. S., Subhani, T., Saharudin, M. S., Ramachandra Bhat, B. and Inam, F. 2019. Customizable Ceramic Nanocomposites Using Carbon Nanotubes. Molecules. 24 (Art. 3176). https://doi.org/10.3390/molecules24173176
Static behaviour of functionally graded sandwich beams using a quasi-3D theory
Vo, T. P., Thai, H., Nguyen, T., Inam, F. and Lee, J. 2014. Static behaviour of functionally graded sandwich beams using a quasi-3D theory. Composites Part B: Engineering. 68, pp. 59-74. https://doi.org/10.1016/j.compositesb.2014.08.030
A quasi-3D theory for vibration and buckling of functionally graded sandwich beams
Vo, T. P., Thai, H., Nguyen, T., Inam, F. and Lee, J. 2014. A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Composite Structures. 119, pp. 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006
Effects of dispersion surfactants on the properties of ceramic carbon nanotube (CNT) nanocomposites
Vo, T. P., Thai, H., Nguyen, T., Inam, F. and Lee, J. 2013. Effects of dispersion surfactants on the properties of ceramic carbon nanotube (CNT) nanocomposites. Ceramics International. 40 (1), pp. 511-516. https://doi.org/10.1016/j.ceramint.2013.06.031
Structural health monitoring capabilities in ceramic – carbon nanocomposites
Inam, F., Bhat, B. R., Vo, T. and Daoush, W. M. 2013. Structural health monitoring capabilities in ceramic – carbon nanocomposites. Ceramics International. 40 (2), pp. 3793-3798. https://doi.org/10.1016/j.ceramint.2013.09.039