A Machine Learning-Based Anomaly Prediction Service for Software-Defined Networks
Article
Latif, Z., Umer, Q., Lee, C., Sharif, K., Li, F. and Biswas, S. 2022. A Machine Learning-Based Anomaly Prediction Service for Software-Defined Networks. Sensors. 22 (21), p. Art. 8434. https://doi.org/10.3390/s22218434
Authors | Latif, Z., Umer, Q., Lee, C., Sharif, K., Li, F. and Biswas, S. |
---|---|
Abstract | Software-defined networking (SDN) has gained tremendous growth and can be exploited in different network scenarios, from data centers to wide-area 5G networks. It shifts control logic from the devices to a centralized entity (programmable controller) for efficient traffic monitoring and flow management. A software-based controller enforces rules and policies on the requests sent by forwarding elements; however, it cannot detect anomalous patterns in the network traffic. Due to this, the controller may install the flow rules against the anomalies, reducing the overall network performance. These anomalies may indicate threats to the network and decrease its performance and security. Machine learning (ML) approaches can identify such traffic flow patterns and predict the systems’ impending threats. We propose an ML-based service to predict traffic anomalies for software-defined networks in this work. We first create a large dataset for network traffic by modeling a programmable data center with a signature-based intrusion-detection system. The feature vectors are pre-processed and are constructed against each flow request by the forwarding element. Then, we input the feature vector of each request to a machine learning classifier for training to predict anomalies. Finally, we use the holdout cross-validation technique to evaluate the proposed approach. The evaluation results specify that the proposed approach is highly accurate. In contrast to baseline approaches (random prediction and zero rule), the performance improvement of the proposed approach in average accuracy, precision, recall, and f-measure is (54.14%, 65.30%, 81.63%, and 73.70%) and (4.61%, 11.13%, 9.45%, and 10.29%), respectively. |
Keywords | software-defined networking (SDN); anomaly prediction; OpenFlow; Machine Learning |
Journal | Sensors |
Journal citation | 22 (21), p. Art. 8434 |
ISSN | 1424-8220 |
Year | 2022 |
Publisher | MDPI |
Publisher's version | License File Access Level Anyone |
Digital Object Identifier (DOI) | https://doi.org/10.3390/s22218434 |
Web address (URL) | https://www.mdpi.com/1424-8220/22/21/8434 |
Publication dates | |
Online | 02 Nov 2022 |
Publication process dates | |
Accepted | 29 Oct 2022 |
Deposited | 22 Jun 2023 |
Funder | National Research Foundation of Korea |
Copyright holder | © 2022, The Author(s) |
https://repository.uel.ac.uk/item/8w350
Download files
44
total views25
total downloads1
views this month1
downloads this month