Blockchain Empowered Federated Learning Ecosystem for Securing Consumer IoT Features Analysis
Article
Alghamdi, A., Zhu, J., Yin, G., Shorfuzzaman, M., Alsufyani, N., Alyami, S. and Biswas, S. 2022. Blockchain Empowered Federated Learning Ecosystem for Securing Consumer IoT Features Analysis. Sensors. 22 (18), p. 6786. https://doi.org/10.3390/s22186786
Authors | Alghamdi, A., Zhu, J., Yin, G., Shorfuzzaman, M., Alsufyani, N., Alyami, S. and Biswas, S. |
---|---|
Abstract | Resource constraint Consumer Internet of Things (CIoT) is controlled through gateway devices (e.g., smartphones, computers, etc.) that are connected to Mobile Edge Computing (MEC) servers or cloud regulated by a third party. Recently Machine Learning (ML) has been widely used in automation, consumer behavior analysis, device quality upgradation, etc. Typical ML predicts by analyzing customers’ raw data in a centralized system which raises the security and privacy issues such as data leakage, privacy violation, single point of failure, etc. To overcome the problems, Federated Learning (FL) developed an initial solution to ensure services without sharing personal data. In FL, a centralized aggregator collaborates and makes an average for a global model used for the next round of training. However, the centralized aggregator raised the same issues, such as a single point of control leaking the updated model and interrupting the entire process. Additionally, research claims data can be retrieved from model parameters. Beyond that, since the Gateway (GW) device has full access to the raw data, it can also threaten the entire ecosystem. This research contributes a blockchain-controlled, edge intelligence federated learning framework for a distributed learning platform for CIoT. The federated learning platform allows collaborative learning with users’ shared data, and the blockchain network replaces the centralized aggregator and ensures secure participation of gateway devices in the ecosystem. Furthermore, blockchain is trustless, immutable, and anonymous, encouraging CIoT end users to participate. We evaluated the framework and federated learning outcomes using the well-known Stanford Cars dataset. Experimental results prove the effectiveness of the proposed framework. |
Keywords | Federated Machine Learning; Deep Learning; Blockchain; Distributed Computing |
Journal | Sensors |
Journal citation | 22 (18), p. 6786 |
ISSN | 1424-8220 |
Year | 2022 |
Publisher | MDPI |
Publisher's version | License File Access Level Anyone |
Digital Object Identifier (DOI) | https://doi.org/10.3390/s22186786 |
Web address (URL) | https://www.mdpi.com/1424-8220/22/18/6786 |
Publication dates | |
Online | 08 Sep 2022 |
Publication process dates | |
Accepted | 01 Sep 2022 |
Deposited | 22 Jun 2023 |
Funder | Deanship of Scientific Research, Najran University |
Copyright holder | © 2022, The Author(s) |
https://repository.uel.ac.uk/item/8w352
Download files
52
total views30
total downloads0
views this month2
downloads this month