Enhancing Authenticity Verification with Transfer Learning and Ensemble Techniques in Facial Feature-Based Deepfake Detection

Conference paper


Qazi, N. and Ahmed, I. 2024. Enhancing Authenticity Verification with Transfer Learning and Ensemble Techniques in Facial Feature-Based Deepfake Detection. 14th International Conference on Pattern Recognition Systems (ICPRS). London 15 - 18 Jul 2024 IEEE. https://doi.org/10.1109/ICPRS62101.2024.10677831
AuthorsQazi, N. and Ahmed, I.
TypeConference paper
Abstract

Deepfake technology, facilitated by deep learning algorithms, has emerged as a significant concern due to its potential to deceive humans with fabricated content indistinguishable from reality. The proliferation of deepfake videos presents a formidable challenge, propagating misinformation across various sectors such as social media, politics, and healthcare. Detecting and mitigating these threats is imperative for fortifying defenses and safeguarding information integrity.This paper tackles the complexities associated with deepfake detection, emphasizing the necessity for innovative approaches given the constraints of available data and the evolving nature of forgery techniques. Our proposed solution focuses on leveraging facial features and transfer learning to discern fake videos from genuine ones, aiming to identify subtle manipulations in visual content. We systematically break down videos into frames, employ the Haar cascade algorithm for facial recognition, and utilize transfer learning to extract discriminative features. We evaluate multiple pre-trained models, including VGG16, ConvNeXtTiny, EfficientNetB0, EfficientNetB7, DenseNet201, ResNet152V2, Xception, NASNetMobile, and MobileNetV2, for feature extraction. Subsequently, we feed these features into a Deep Artificial Neural Network (DANN) for deepfake detection and employ ensemble learning to combine the strengths of the best-performing models for enhanced accuracy.We found that the ensemble model comprising ConvNextTiny, EfficientNetB0, and EfficientNetB7 showed enhanced accuracy in detecting deep fakes compared to alternative models achieving up to 98% accuracy through ensemble learning.

Year2024
Conference14th International Conference on Pattern Recognition Systems (ICPRS)
PublisherIEEE
Accepted author manuscript
License
File Access Level
Anyone
Publication dates
Online23 Sep 2024
Publication process dates
Completed18 Jul 2024
Deposited21 Jul 2025
Journal citationpp. 1-6
Book title2024 14th International Conference on Pattern Recognition Systems (ICPRS)
ISBN979-8-3503-7565-7
Digital Object Identifier (DOI)https://doi.org/10.1109/ICPRS62101.2024.10677831
Web address (URL) of conference proceedingshttps://ieeexplore.ieee.org/xpl/conhome/10677506/proceeding
Copyright holder© 2024 IEEE
Copyright informationPersonal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Permalink -

https://repository.uel.ac.uk/item/8z540

Download files


Accepted author manuscript
conference_101719_AAM.pdf
License: All rights reserved
File access level: Anyone

  • 8
    total views
  • 17
    total downloads
  • 8
    views this month
  • 16
    downloads this month

Export as

Related outputs

Vision Transformer Based Image Captioning for the Visually Impaired
Qazi, N., Dewaji, I. and Khan, N. 2025. Vision Transformer Based Image Captioning for the Visually Impaired. 14th International Conference on Human Interaction and Emerging Technologies: Artificial Intelligence & Future Applications, IHIET-FS 2025, June 10-12, 2025, University of East London, London, United Kingdom.. AHFE International. https://doi.org/10.54941/ahfe1005964
Unveiling the Power of Hybrid Balancing Techniques and Ensemble Stacked and Blended Classifiers for Enhanced Churn Prediction
Gaikwad, K., Berardinelli, N. and Qazi, N. 2024. Unveiling the Power of Hybrid Balancing Techniques and Ensemble Stacked and Blended Classifiers for Enhanced Churn Prediction. 16th Asian Conference on Intelligent Information and Database Systems. UAE 15 Apr 2024 - 18 Jun 2025 Springer. https://doi.org/10.1007/978-981-97-5937-8_20
A reinforcement learning recommender system using bi-clustering and Markov Decision Process
Iftikhar, A., Ghazanfar, M. A., Ayub, M., Alahmari, S. A., Qazi, N. and Wall, J. 2024. A reinforcement learning recommender system using bi-clustering and Markov Decision Process. Expert Systems with Applications. 237 (Art.), p. 121541. https://doi.org/10.1016/j.eswa.2023.121541
Shifting the Weight: Applications of AI in Olympic Weightlifting
Bolarinwa, D., Qazi, N. and Ghazanfar, M. 2023. Shifting the Weight: Applications of AI in Olympic Weightlifting. PRDC 2023: 28th IEEE Pacific Rim International Symposium on Dependable Computing. Singapore 24 - 27 Oct 2023 IEEE. https://doi.org/10.1109/PRDC59308.2023.00051
Global impact of COVID-19 on surgeons and team members (GlobalCOST): a cross-sectional study
Jaffry, Z., Raj, S., Sallam, A., Lyman, S., Negida, A., Yiu, C. F. A., Sobti, A., Bua, N., Field, R. E., Abdalla, H., Hammad, R., Qazi, N., Singh, B., Brennan, P. A., Hussein, A., Narvani, A., Jones, A., Imam, M. A. and The OrthoGlobe Collaborative 2022. Global impact of COVID-19 on surgeons and team members (GlobalCOST): a cross-sectional study. BMJ Open. 12 (8), p. e059873. https://doi.org/10.1136/bmjopen-2021-059873