From bench to bedside: The critical need for standardized senescence detection

Article


Shah, J., Al-Hashimi, A., Benedetto, M. and Ruchaya, P. J. 2025. From bench to bedside: The critical need for standardized senescence detection. Archives of Cardiovascular Diseases. 118 (3), pp. 205-211. https://doi.org/10.1016/j.acvd.2024.12.008
AuthorsShah, J., Al-Hashimi, A., Benedetto, M. and Ruchaya, P. J.
Abstract

Cellular senescence, identified as a state of permanent cell cycle arrest, has become central to understanding aging and disease. Initially seen as a cellular aging mechanism, it is now recognized for its roles in development, tissu repair and tumour suppression. However, the accumulation of senescent cells with age contributes to chronic diseases such as diabetes, atherosclerosis and neurodegeneration. Recent efforts have focused on “senotherapeutics”, including senolytics, which aim to eliminate senescent cells to mitigate age-related decline. Despite significant advances, senescence research faces critical challenges because of inconsistent detection methods. Common markers, such as p16INK4a and senescence-associated β-galactosidase, vary across tissues and contexts, complicating cross-study comparisons and clinical applications. A standardized multifaceted approach to senescence detection is essential, and should incorporate complementary methods, clear thresholds for senescence classification and considerations for cell type-specific variations. Such standardization would enhance reproducibility, streamline research and facilitate clinical translation, advancing therapeutic applications in aging and disease management.

JournalArchives of Cardiovascular Diseases
Journal citation118 (3), pp. 205-211
ISSN1875-2128
1875-2136
Year2025
PublisherElsevier
Publisher's version
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1016/j.acvd.2024.12.008
Publication dates
Online27 Jan 2025
Publication process dates
Accepted24 Dec 2024
Deposited29 Apr 2025
Copyright holder© 2025 The Authors
Permalink -

https://repository.uel.ac.uk/item/8z6v1

Download files


Publisher's version
1-s2.0-S1875213625000324-main.pdf
License: CC BY 4.0
File access level: Anyone

  • 11
    total views
  • 6
    total downloads
  • 8
    views this month
  • 6
    downloads this month

Export as

Related outputs

Correction: Transplantation of Skeletal Muscle-Derived Sca-1⁺/PW1⁺/Pax7⁻ Interstitial Cells (PICs) Improves Cardiac Function and Attenuates Remodeling in Mice Subjected to Myocardial Infarction. Cells 2022, 11, 4050
Ruchaya, J., Lewis-McDougall, F. C., Sornkarn, N., Amin, S., Grimsdell, B., Shaalan, A., Gritti, G., Soe, K. T., Clark, J. E. and Ellison-Hughes, G. M. 2024. Correction: Transplantation of Skeletal Muscle-Derived Sca-1⁺/PW1⁺/Pax7⁻ Interstitial Cells (PICs) Improves Cardiac Function and Attenuates Remodeling in Mice Subjected to Myocardial Infarction. Cells 2022, 11, 4050. Cells. 13 (11), p. 895. https://doi.org/10.3390/cells13110895
Return of the Tbx5; lineage-tracing reveals ventricular cardiomyocyte-like precursors in the injured adult mammalian heart
Siatra, P., Vatsellas, G., Chatzianastasiou, A., Balafas, E., Manolakou, T., Papapetropoulos, A., Agapaki, A., Mouchtouri, A-T., Ruchaya, P. J., Korovesi, A. G., Mavroidis, M., Thanos, D., Beis, D. and Kokkinopoulos, I. 2023. Return of the Tbx5; lineage-tracing reveals ventricular cardiomyocyte-like precursors in the injured adult mammalian heart. NPJ Regenerative Medicine. 8 (Art. 13). https://doi.org/10.1038/s41536-023-00280-9
Receptor tyrosine kinase inhibitors negatively impact on pro-reparative characteristics of human cardiac progenitor cells
Smith, A. J., Ruchaya, P. J., Walmsley, R., Wright, K. E., Lewis-McDougall, F. C., Bond, J. and Ellison-Hughes, G. M. 2022. Receptor tyrosine kinase inhibitors negatively impact on pro-reparative characteristics of human cardiac progenitor cells. Scientific Reports. 12 (Art. 10132). https://doi.org/https://doi.org/10.1038/s41598-022-13203-3
Transplantation of Skeletal Muscle-Derived Sca-1⁺/PW1⁺/Pax7⁻ Interstitial Cells (PICs) Improves Cardiac Function and Attenuates Remodeling in Mice Subjected to Myocardial Infarction
Ruchaya, P. J., Lewis-McDougall, F. C., Sornkarn, N., Amin, S., Grimsdell, B., Shaalan, A., Gritti, G., Soe, K. T., Clark, J. E. and Ellison-Hughes, G. M. 2022. Transplantation of Skeletal Muscle-Derived Sca-1⁺/PW1⁺/Pax7⁻ Interstitial Cells (PICs) Improves Cardiac Function and Attenuates Remodeling in Mice Subjected to Myocardial Infarction. Cells. 11 (24), p. 4050. https://doi.org/https://doi.org/10.3390/cells11244050
Aged-senescent cells contribute to impaired heart regeneration
Lewis-McDougall, F. C., Ruchaya, P. J., Domenjo-Vila, E., Teoh, T. S., Prata, L., Cottle, B. J., Clark, J. E., Punjabi, P. P., Awad, W., Torella, D., Tchkonia, T., Kirkland, J. L. and Ellison-Hughes, G. M. 2019. Aged-senescent cells contribute to impaired heart regeneration. Aging Cell. 18 (3), p. Art. e12931. https://doi.org/10.1111/acel.12931