Analytical framework for Adaptive Compressive Sensing for Target Detection within Wireless Visual Sensor Networks
Article
Fayed, Salema, Youssef, Sherin, El-Helw, Amr, Patwary, Mohammad and Moniri, M. 2017. Analytical framework for Adaptive Compressive Sensing for Target Detection within Wireless Visual Sensor Networks. Multimedia Tools and Applications. 77 (13), pp. 16533-16559. https://doi.org/10.1007/s11042-017-5227-3
Authors | Fayed, Salema, Youssef, Sherin, El-Helw, Amr, Patwary, Mohammad and Moniri, M. |
---|---|
Abstract | Wireless visual sensor networks (WVSNs) are composed of a large number of visual sensor nodes covering a specifc geographical region. This paper addresses the target detection problem within WVSNs where visual sensor nodes are left unattended for long-term deployment. As battery energy is a critical issue it is always challenging to maximize the network's lifetime. In order to reduce energy consumption, nodes undergo cycles of active-sleep periods that save their battery energy by switching sensor nodes ON and OFF, according to predefined duty cycles. Moreover, adaptive compressive sensing is expected to dynamically reduce the size of transmitted data through the wireless channel, saving communication bandwidth and consequently saving energy. This paper derives for the first time an analytical framework for selecting node's duty cycles and dynamically choosing the appropriate compression rates for the captured images and videos based on their sparsity nature. This reduces energy waste by reaching the maximum compression rate for each dataset without compromising the probability of detection. Experiments were conducted on different standard datasets resembling different scenes; indoor and outdoor, for single and multiple targets detection. Moreover, datasets were chosen with different sparsity levels to investigate the effect of sparsity on the compression rates. Results showed that by selecting duty cycles and dynamically choosing the appropriate compression rates, the desired performance |
Journal | Multimedia Tools and Applications |
Journal citation | 77 (13), pp. 16533-16559 |
ISSN | 1380-7501 |
Year | 2017 |
Publisher | Springer Verlag |
Accepted author manuscript | License |
Digital Object Identifier (DOI) | https://doi.org/10.1007/s11042-017-5227-3 |
Web address (URL) | https://doi.org/10.1007/s11042-017-5227-3 |
Publication dates | |
Online | 31 Oct 2017 |
Publication process dates | |
Deposited | 04 Oct 2017 |
Accepted | 14 Sep 2017 |
Accepted | 14 Sep 2017 |
Copyright information | This is a post-peer-review, pre-copyedit version of an article published in Multimedia Tools and Applications. The final authenticated version is available online at: https://doi.org/10.1007/s11042-017-5227-3 |
https://repository.uel.ac.uk/item/84q12
Download files
Accepted author manuscript
Moniri_Analytical framework for Adaptive Compressive Sensing for Target Detection within Wireless Visual Sensor Networks.pdf | ||
License: Springer Nature Terms of Use for accepted manuscripts of subscription articles, books and chapters |
181
total views301
total downloads4
views this month2
downloads this month