Spectral-360: A Physics-Based Technique for Change Detection

Book chapter


Sedky, Mohamed, Moniri, M. and Chibelushi, Claude C. 2014. Spectral-360: A Physics-Based Technique for Change Detection. in: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops Institute of Electrical and Electronics Engineers (IEEE). pp. 405-408
AuthorsSedky, Mohamed, Moniri, M. and Chibelushi, Claude C.
Abstract

This paper presents and assesses a novel physics-based change detection technique, Spectral-360, which is based on the dichromatic color reflectance model. This approach, uses image formation models to computationally estimate, from the camera output, a consistent physics-based color descriptor of the spectral reflectance of surfaces visible in the image, and then to measure the similarity between the full-spectrum reflectance of the background and foreground pixels to segment the foreground from a static background. This method represents a new approach to change detection, using explicit hypotheses about the physics that create images. The assumptions which have been made are that diffuse-only-reflection is applicable, and the existence of a dominant illuminant. The objective evaluation performed using the 'changedetection.net 2014' dataset shows that our Spectral-360 method outperforms most state-of-the-art methods.

Book title2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops
Page range405-408
Year2014
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Publication dates
Print25 Sep 2014
Publication process dates
Deposited22 Aug 2017
Event2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2014)
ISBN978-1-4799-4308-1
Digital Object Identifier (DOI)doi:10.1109/CVPRW.2014.65
Web address (URL)https://doi.org/10.1109/CVPRW.2014.65
Permalink -

https://repository.uel.ac.uk/item/858x9

  • 5
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Related outputs

Comparative Analysis on the Competitiveness of Conventional and Compressive Sensing-based Query Processing
Fayed, Salema, Youssef, Sherin, El-Helw, Amr, Akbari, Akbar Sheikh, Patwary, Mohammad and Moniri, M. 2014. Comparative Analysis on the Competitiveness of Conventional and Compressive Sensing-based Query Processing. in: Advances in Information Science and Applications, Volume 1: Proceedings of the 18th International Conference on Computers (part of CSCC '14) Institute for Natural Sciences and Engineering (INASE).
Evaluation of Performance Enhancement for Crash Constellation Prediction via Car-to-Car Communication
Kuehbeck, Thomas, Hakobyan, Gor, Sikora, Axel, Chibelushi, Claude C. and Moniri, M. 2014. Evaluation of Performance Enhancement for Crash Constellation Prediction via Car-to-Car Communication. in: Communication Technologies for Vehicles Springer.
Compressive Sensing-based Target Tracking for Wireless Visual Sensor Networks
Fayed, Salema, Youssef, Sherin, El-Helw, Amr, Patwary, Mohammad and Moniri, M. 2014. Compressive Sensing-based Target Tracking for Wireless Visual Sensor Networks. in: Advances in Information Science and Applications, Volume I: Proceedings of the 18th International Conference on Computers (part of CSCC '14) Institute for Natural Sciences and Engineering (INASE).
A Hybrid Adaptive Compressive Sensing Model for Visual Tracking in Wireless Visual Sensor Networks
Fayed, Salema, Youssef, Sherin, El-Helw, Amr, Patwary, Mohammad and Moniri, M. 2015. A Hybrid Adaptive Compressive Sensing Model for Visual Tracking in Wireless Visual Sensor Networks. International Journal of Circuits, Systems, and Signal Processing. 9, pp. 134-144.
Adaptive compressive sensing for target tracking within wireless visual sensor networks-based surveillance applications
Fayed, Salema, M.Youssef, Sherin, El-Helw, Amr, Patwary, Mohammad and Moniri, M. 2015. Adaptive compressive sensing for target tracking within wireless visual sensor networks-based surveillance applications. Multimedia Tools and Applications. 75 (11), pp. 6347-6371.
Towards a fully automated monitoring system for Manhole Cover: Smart cities and IOT applications
Aly, Hesham H., Soliman, Abdel Hamid and Moniri, M. 2015. Towards a fully automated monitoring system for Manhole Cover: Smart cities and IOT applications. in: 2015 IEEE First International Smart Cities Conference (ISC2) Institute of Electrical and Electronics Engineers (IEEE). pp. 24-30
Prediction architecture based on block matching statistics for mixed spatial-resolution multi-view video coding
Said, Hany, Moniri, M. and Chibelushi, Claude C. 2017. Prediction architecture based on block matching statistics for mixed spatial-resolution multi-view video coding. EURASIP Journal on Image and Video Processing. 2017 (1).
Analytical framework for Adaptive Compressive Sensing for Target Detection within Wireless Visual Sensor Networks
Fayed, Salema, Youssef, Sherin, El-Helw, Amr, Patwary, Mohammad and Moniri, M. 2017. Analytical framework for Adaptive Compressive Sensing for Target Detection within Wireless Visual Sensor Networks. Multimedia Tools and Applications. 77 (13), pp. 16533-16559.
Image segmentation using adaptive video analytics, Image processingUS 9047677 B2
Sedky, Mohamed Hamed Ismail, Chibelushi, Claude Chilufya and Moniri, M. 2015. Image segmentation using adaptive video analytics, Image processingUS 9047677 B2. US 13/140,378