Adaptive compressive sensing for target tracking within wireless visual sensor networks-based surveillance applications

Article


Fayed, Salema, M.Youssef, Sherin, El-Helw, Amr, Patwary, Mohammad and Moniri, M. 2015. Adaptive compressive sensing for target tracking within wireless visual sensor networks-based surveillance applications. Multimedia Tools and Applications. 75 (11), pp. 6347-6371.
AuthorsFayed, Salema, M.Youssef, Sherin, El-Helw, Amr, Patwary, Mohammad and Moniri, M.
Abstract

Wireless Visual Sensor Networks (WVSNs) have gained significant importance in the last few years and have emerged in several distinctive applications. The main aim is to design low power WVSN surveillance application using adaptive Compressive Sensing (CS) which is expected to overcome the WVSN resource constraints such as memory limitation, communication bandwidth and battery constraints. In this paper, an adaptive block CS technique is proposed and implemented to represent the high volume of captured images in a way for energy efficient wireless transmission and minimum storage. Furthermore, to achieve energy-efficient target detection and tracking with high detection reliability and robust tracking, to maximize the lifetime of sensor nodes as they can be left for months without any human interactions. Adaptive CS is expected to dynamically achieve higher compression rates depending on the sparsity nature of different datasets, while only compressing relative blocks in the image that contain the target to be tracked instead of compressing the whole image. Hence, saving power and increasing compression rates. Least mean square adaptive filter is used to predicts target’s next location to investigate the effect of CS on the tracking performance. The tracking is achieved in both indoor and outdoor environments for single/multi targets. Results have shown that with adaptive block CS up to 20 % measurements of data are required to be transmitted while preserving the required performance for target detection and tracking.

JournalMultimedia Tools and Applications
Journal citation75 (11), pp. 6347-6371
ISSN1380-7501
Year2015
PublisherSpringer
Digital Object Identifier (DOI)doi:10.1007/s11042-015-2575-8
Web address (URL)https://doi.org/10.1007/s11042-015-2575-8
Publication dates
Print07 May 2015
Publication process dates
Deposited22 Aug 2017
Permalink -

https://repository.uel.ac.uk/item/8560y

  • 6
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Related outputs

Comparative Analysis on the Competitiveness of Conventional and Compressive Sensing-based Query Processing
Fayed, Salema, Youssef, Sherin, El-Helw, Amr, Akbari, Akbar Sheikh, Patwary, Mohammad and Moniri, M. 2014. Comparative Analysis on the Competitiveness of Conventional and Compressive Sensing-based Query Processing. in: Advances in Information Science and Applications, Volume 1: Proceedings of the 18th International Conference on Computers (part of CSCC '14) Institute for Natural Sciences and Engineering (INASE).
Evaluation of Performance Enhancement for Crash Constellation Prediction via Car-to-Car Communication
Kuehbeck, Thomas, Hakobyan, Gor, Sikora, Axel, Chibelushi, Claude C. and Moniri, M. 2014. Evaluation of Performance Enhancement for Crash Constellation Prediction via Car-to-Car Communication. in: Communication Technologies for Vehicles Springer.
Compressive Sensing-based Target Tracking for Wireless Visual Sensor Networks
Fayed, Salema, Youssef, Sherin, El-Helw, Amr, Patwary, Mohammad and Moniri, M. 2014. Compressive Sensing-based Target Tracking for Wireless Visual Sensor Networks. in: Advances in Information Science and Applications, Volume I: Proceedings of the 18th International Conference on Computers (part of CSCC '14) Institute for Natural Sciences and Engineering (INASE).
Spectral-360: A Physics-Based Technique for Change Detection
Sedky, Mohamed, Moniri, M. and Chibelushi, Claude C. 2014. Spectral-360: A Physics-Based Technique for Change Detection. in: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops Institute of Electrical and Electronics Engineers (IEEE). pp. 405-408
A Hybrid Adaptive Compressive Sensing Model for Visual Tracking in Wireless Visual Sensor Networks
Fayed, Salema, Youssef, Sherin, El-Helw, Amr, Patwary, Mohammad and Moniri, M. 2015. A Hybrid Adaptive Compressive Sensing Model for Visual Tracking in Wireless Visual Sensor Networks. International Journal of Circuits, Systems, and Signal Processing. 9, pp. 134-144.
Towards a fully automated monitoring system for Manhole Cover: Smart cities and IOT applications
Aly, Hesham H., Soliman, Abdel Hamid and Moniri, M. 2015. Towards a fully automated monitoring system for Manhole Cover: Smart cities and IOT applications. in: 2015 IEEE First International Smart Cities Conference (ISC2) Institute of Electrical and Electronics Engineers (IEEE). pp. 24-30
Prediction architecture based on block matching statistics for mixed spatial-resolution multi-view video coding
Said, Hany, Moniri, M. and Chibelushi, Claude C. 2017. Prediction architecture based on block matching statistics for mixed spatial-resolution multi-view video coding. EURASIP Journal on Image and Video Processing. 2017 (1).
Analytical framework for Adaptive Compressive Sensing for Target Detection within Wireless Visual Sensor Networks
Fayed, Salema, Youssef, Sherin, El-Helw, Amr, Patwary, Mohammad and Moniri, M. 2017. Analytical framework for Adaptive Compressive Sensing for Target Detection within Wireless Visual Sensor Networks. Multimedia Tools and Applications. 77 (13), pp. 16533-16559.
Image segmentation using adaptive video analytics, Image processingUS 9047677 B2
Sedky, Mohamed Hamed Ismail, Chibelushi, Claude Chilufya and Moniri, M. 2015. Image segmentation using adaptive video analytics, Image processingUS 9047677 B2. US 13/140,378