Measuring energy footprint of software features

Book chapter


Islam, S., Noureddine, A. and Bashroush, Rabih 2016. Measuring energy footprint of software features. in: 2016 IEEE 24th International Conference on Program Comprehension (ICPC) IEEE.
AuthorsIslam, S., Noureddine, A. and Bashroush, Rabih
Abstract

Abstract—With the proliferation of Software systems and
the rise of paradigms such the Internet of Things, Cyber-
Physical Systems and Smart Cities to name a few, the energy
consumed by software applications is emerging as a major
concern. Hence, it has become vital that software engineers
have a better understanding of the energy consumed by the
code they write. At software level, work so far has focused on
measuring the energy consumption at function and application
level. In this paper, we propose a novel approach to measure
energy consumption at a feature level, cross-cutting multiple
functions, classes and systems. We argue the importance of such
measurement and the new insight it provides to non-traditional
stakeholders such as service providers. We then demonstrate,
using an experiment, how the measurement can be done with a
combination of tools, namely our program slicing tool (PORBS)
and energy measurement tool (Jolinar).

Book title2016 IEEE 24th International Conference on Program Comprehension (ICPC)
Year2016
PublisherIEEE
Publication dates
Print2016
Publication process dates
Deposited01 Aug 2016
Event2016 IEEE 24th International Conference on Program Comprehension (ICPC)
ISBN978-1-5090-1428-6
Digital Object Identifier (DOI)doi:10.1109/ICPC.2016.7503726
Additional information

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Accepted author manuscript
License
CC BY-NC-ND
Permalink -

https://repository.uel.ac.uk/item/85324

  • 8
    total views
  • 52
    total downloads
  • 3
    views this month
  • 5
    downloads this month

Related outputs

Functional Connectivity Evaluation for Infant EEG Signals based on Artificial Neural Network
Sharif, M., Naeem, U., Islam, S. and Karami, A. 2018. Functional Connectivity Evaluation for Infant EEG Signals based on Artificial Neural Network. in: Arai, Kohei, Kapoor, Supriya and Bhatia, Rahul (ed.) Intelligent Systems and Applications: Proceedings of the 2018 Intelligent Systems Conference (IntelliSys) Volume 2 Springer, Cham.
The Application of a Semantic-Based Process Mining Framework on a Learning Process Domain
Okoye, Kingsley, Islam, S., Naeem, U., Sharif, M., Azam, Muhammad Awais and Karami, A. 2018. The Application of a Semantic-Based Process Mining Framework on a Learning Process Domain. in: Arai, Kohei, Kapoor, Supriya and Bhatia, Rahul (ed.) Intelligent Systems and Applications: Proceedings of the 2018 Intelligent Systems Conference (IntelliSys) Volume 1 Springer, Cham.
Authentication of Smartphone Users Based on Activity Recognition and Mobile Sensing
Ehatisham-ul-Haq, Muhammad, Azam, Muhammad Awais, Loo, Jonathan, Shuang, Kai, Islam, S., Naeem, U. and Amin, Yasar 2017. Authentication of Smartphone Users Based on Activity Recognition and Mobile Sensing. Sensors. 17 (9), p. 2043.
Taskification – Gamification of Tasks
Naeem, U., Islam, S., Sharif, M., Sudakov, Sergey and Azam, Awais 2017. Taskification – Gamification of Tasks. in: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers ACM. pp. 631-634
SignalSense - Towards Quality Service
Islam, S., Sharif, M., Naeem, U. and Geehan, James 2017. SignalSense - Towards Quality Service. in: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers ACM. pp. 627-630
CrimeSafe - Helping you stay safe
Islam, S., Naeem, U., Sharif, M. and Dovnarovic, Arnold 2017. CrimeSafe - Helping you stay safe. in: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers ACM. pp. 642-645
gUML: Reasoning about Energy at Design Time by Extending UML Deployment Diagrams with Data Centre Contextual Information
Jebraeil, Nigar, Noureddine, A., Doyle, J., Islam, S. and Bashroush, R. 2017. gUML: Reasoning about Energy at Design Time by Extending UML Deployment Diagrams with Data Centre Contextual Information. in: 2017 IEEE World Congress on Services (SERVICES) Institute of Electrical and Electronics Engineers (IEEE). pp. In Press
Cloud Strife: Expanding the Horizons of Cloud Gaming Services
Doyle, J., Islam, S., Bashroush, R. and O'Mahony, Donal 2017. Cloud Strife: Expanding the Horizons of Cloud Gaming Services. in: 2017 IEEE World Congress on Services (SERVICES) Institute of Electrical and Electronics Engineers (IEEE).
Using semantic-based approach to manage perspectives of process mining: Application on improving learning process domain data
Kingsley, Okoye, Tawil, Abdel-Rahman H., Naeem, U., Islam, S. and Lamine, Elyes 2017. Using semantic-based approach to manage perspectives of process mining: Application on improving learning process domain data. in: 2016 IEEE International Conference on Big Data (Big Data) IEEE. pp. 3529-3538
Dependence Cluster Visualization
Islam, S., Krinke, Jens and Binkley, David 2010. Dependence Cluster Visualization. in: Proceedings of the 5th international symposium on Software visualization New York, NY, USA ACM. pp. 93-102
Less is more: Temporal fault predictive performance over multiple Hadoop releases
Harman, Mark, Islam, S., Jia, Yue, Minku, Leandro L., Sarro, Federica and Srivisut, Komsan 2014. Less is more: Temporal fault predictive performance over multiple Hadoop releases. in: Goues, Claire Le and Yoo, Shin (ed.) Search-Based Software Engineering Springer International Publishing.
ORBS: Language-Independent Program Slicing
Binkley, David, Gold, Nicolas, Harman, Mark, Islam, S., Krinke, Jens and Yoo, Shin 2014. ORBS: Language-Independent Program Slicing. in: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering New York, NY, USA ACM. pp. 109-120
Jolinar: Analysing the Energy Footprint of Software Applications (demo)
Noureddine, A., Islam, S. and Bashroush, R. 2016. Jolinar: Analysing the Energy Footprint of Software Applications (demo). in: Proceedings of the 25th International Symposium on Software Testing and Analysis New York, NY, USA ACM. pp. 445-448
Semantic-Based Model Analysis Towards Enhancing Information Values of Process Mining: Case Study of Learning Process Domain
Okoye, Kingsley, Tawila, Abdel-Rahman H., Naeem, U., Islam, S. and Lamine, Elyes 2017. Semantic-Based Model Analysis Towards Enhancing Information Values of Process Mining: Case Study of Learning Process Domain. in: Abraham, Ajith, Cherukuri, Aswani Kumar, Madureira, Ana Maria and Muda, Azah Kamilah (ed.) Proceedings of the Eighth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2016) Springer, Cham.
Assessing the impact of global variables on program dependence and dependence clusters
Binkley, David, Harman, Mark, Hassoun, Youssef, Islam, S. and Li, Zheng 2009. Assessing the impact of global variables on program dependence and dependence clusters. Journal of Systems and Software. 83 (1), pp. 96-107.
Requirements for the formal representation of pathophysiology mechanisms by clinicians
de Bono, B., Helvensteijn, M., Kokash, N., Martorelli, I., Sarwar, D., Islam, S., Grenon, P. and Hunter, P. 2016. Requirements for the formal representation of pathophysiology mechanisms by clinicians. Interface Focus. 6 (2), p. 20150075.
An empirical study on dependence clusters for effort-aware fault-proneness prediction
Yang, Yibiao, Harman, Mark, Krinke, Jens, Islam, S., Binkley, David, Zhou, Yuming and Xu, Baowen 2016. An empirical study on dependence clusters for effort-aware fault-proneness prediction. in: Lo, David, Apel, Sven and Khurshid, Sarfraz (ed.) ASE’16 Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering IEEE/ACM. pp. 296-307
Towards Cloud Security Monitoring: A Case Study
Ismail, Umar Mukhtar, Islam, S. and Islam, S. 2016. Towards Cloud Security Monitoring: A Case Study. in: 2016 Cybersecurity and Cyberforensics Conference (CCC) IEEE.
PORBS: A parallel observation-based slicer
Islam, S. and Binkley, David 2016. PORBS: A parallel observation-based slicer. in: 2016 IEEE 24th International Conference on Program Comprehension (ICPC) IEEE.
Data Center Energy Demand: what got us here won't get us there!
Bashroush, Rabih, Woods, Eoin and Noureddine, A. 2016. Data Center Energy Demand: what got us here won't get us there! IEEE Software. 33 (2), pp. 18-21.
Efficient Identification of Linchpin Vertices in Dependence Clusters
Binkley, David, Gold, Nicolas, Harman, Mark, Islam, S., Krinke, Jens and Li, Zheng 2013. Efficient Identification of Linchpin Vertices in Dependence Clusters. ACM Transactions on Programming Languages and Systems. 35 (2), pp. 1-35.
ORBS and the limits of static slicing
Binkley, David, Gold, Nicolas, Harman, Mark, Islam, S., Krinke, Jens and Yoo, Shin 2015. ORBS and the limits of static slicing. in: 2015 IEEE 15th International Working Conference on Source Code Analysis and Manipulation (SCAM) IEEE. pp. 1-10
Coherent clusters in source code
Islam, S., Krinke, Jens, Binkley, David and Harman, Mark 2013. Coherent clusters in source code. Journal of Systems and Software. 88, pp. 1-24.
Uncovering Dependence Clusters and Linchpin Functions
Binkley, David, Beszédes, Árpád, Islam, S., Jász, Judit and Vancsics, Béla 2015. Uncovering Dependence Clusters and Linchpin Functions. in: 2015 IEEE 31st International Conference on Software Maintenance and Evolution (ICSME) IEEE. pp. 141-150