Functional Heterologous Protein Expression by Genetically Engineered Probiotic Yeast Saccharomyces boulardii

Article


Galli, Alvaro, Hudson, Lauren E., Fasken, Milo B., McDermott, Courtney D., McBride, Shonna M., Kuiper, Emily G., Guiliano, D., Corbett, Anita H. and Lamb, Tracey J. 2014. Functional Heterologous Protein Expression by Genetically Engineered Probiotic Yeast Saccharomyces boulardii. PLoS ONE. 9 (11), p. e112660.
AuthorsGalli, Alvaro, Hudson, Lauren E., Fasken, Milo B., McDermott, Courtney D., McBride, Shonna M., Kuiper, Emily G., Guiliano, D., Corbett, Anita H. and Lamb, Tracey J.
Abstract

Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

JournalPLoS ONE
Journal citation9 (11), p. e112660
ISSN1932-6203
Year2014
PublisherPublic Library of Science (PLoS)
Publisher's version
License
CC BY
Web address (URL)http://dx.doi.org/10.1371/journal.pone.0112660
Publication dates
Print12 Nov 2014
Publication process dates
Deposited13 Mar 2015
Accepted20 Oct 2014
FunderEmory University
Copyright information© 2014 Hudson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Permalink -

https://repository.uel.ac.uk/item/8585q

Download files


Publisher's version
  • 175
    total views
  • 221
    total downloads
  • 1
    views this month
  • 3
    downloads this month

Export as

Related outputs

Vaccination with novel low-molecular weight proteins secreted from Trichinella spiralis inhibits establishment of infection
Srey, M. T., Taccogna, A., Oksov, Y., Lustigman, S., Tai, P., Acord, J., Selkirk, M. E., Lamb, T. J. and Guiliano, D. 2020. Vaccination with novel low-molecular weight proteins secreted from Trichinella spiralis inhibits establishment of infection. PLoS Neglected Tropical Diseases. 14 (Art. e0008842). https://doi.org/10.1371/journal.pntd.0008842
Dual acting therapeutic proteins for intraocular use
Collins, M., Awwad, S., Ibeanu, N., Khaw, P. T., Guiliano, D., Brocchini, S. and Khalili, H. 2020. Dual acting therapeutic proteins for intraocular use. Drug Discovery Today. 26 (1), pp. 44-55. https://doi.org/10.1016/j.drudis.2020.10.025
Endoplasmic Reticulum Degradation-Enhancing α-Mannosidase-like Protein 1 Targets Misfolded HLA-B27 Dimers for Endoplasmic Reticulum-Associated Degradation
Guiliano, D., Fussell, Helen, Lenart, Izabela, Tsao, Edward, Nesbeth, Darren, Fletcher, Adam J., Campbell, Elaine C., Yousaf, Nasim, Williams, Sarah, Santos, Susana, Cameron, Amy, Towers, Greg J., Kellam, Paul, Hebert, Daniel N., Gould, Keith G., Powis, Simon J. and Antoniou, Antony N. 2014. Endoplasmic Reticulum Degradation-Enhancing α-Mannosidase-like Protein 1 Targets Misfolded HLA-B27 Dimers for Endoplasmic Reticulum-Associated Degradation. Arthritis & Rheumatology. 66 (11), pp. 2976-2988. https://doi.org/10.1002/art.38809
Polymorphisms in the F pocket of HLA-B27 subtypes strongly impact on assembly, chaperone interactions and heavy chain misfolding
Guiliano, D., North, Helen, Panayoitou, Eleni, Campbell, Elaine C., McHugh, Kirsty, Cooke, Fiona G.M., Silvestre, Marine, Bowness, Paul, Powis, Simon J. and Antoniou, Antony N. 2016. Polymorphisms in the F pocket of HLA-B27 subtypes strongly impact on assembly, chaperone interactions and heavy chain misfolding. Arthritis & Rheumatology. 69 (3), pp. 610-621. https://doi.org/10.1002/art.39948