Dual acting therapeutic proteins for intraocular use

Article


Collins, M., Awwad, S., Ibeanu, N., Khaw, P. T., Guiliano, D., Brocchini, S. and Khalili, H. 2020. Dual acting therapeutic proteins for intraocular use. Drug Discovery Today. https://doi.org/10.1016/j.drudis.2020.10.025
AuthorsCollins, M., Awwad, S., Ibeanu, N., Khaw, P. T., Guiliano, D., Brocchini, S. and Khalili, H.
Abstract

Antibody-based medicines that target vascular endothelial growth factor (VEGF) are administered by intravitreal injection to treat chronic neovascular retinal diseases. Much ongoing effort is focused on enhancing therapeutic outcome of these medicines. One strategy is the use of dual acting drugs (e.g. bispecific antibodies) to simultaneously bind to more than one intraocular biological target. A dual acting molecule targeting components within the vitreal cavity could also potentially extend vitreous residence time. In this review, the applications of bispecific antibodies within the eye are described with consideration to potential targets, applications and suitable bispecific formats.

JournalDrug Discovery Today
ISSN1359-6446
Year2020
PublisherElsevier
Accepted author manuscript
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1016/j.drudis.2020.10.025
Publication dates
Online01 Nov 2020
Publication process dates
Accepted26 Oct 2020
Deposited28 Oct 2020
FunderNational Institute of Health Research Biomedical Research Centre
Copyright holder© 2020 Elsevier
Permalink -

https://repository.uel.ac.uk/item/88q0x

Restricted files

Accepted author manuscript

  • 23
    total views
  • 1
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Vaccination with novel low-molecular weight proteins secreted from Trichinella spiralis inhibits establishment of infection
Srey, M. T., Taccogna, A., Oksov, Y., Lustigman, S., Tai, P., Acord, J., Selkirk, M. E., Lamb, T. J. and Guiliano, D. 2020. Vaccination with novel low-molecular weight proteins secreted from Trichinella spiralis inhibits establishment of infection. PLoS Neglected Tropical Diseases. 14 (Art. e0008842). https://doi.org/10.1371/journal.pntd.0008842
Using different proteolytic enzymes to digest antibody and its impact on stability of antibody mimetics
Khalili, H. 2020. Using different proteolytic enzymes to digest antibody and its impact on stability of antibody mimetics. Journal of Immunological Methods. https://doi.org/10.1016/j.jim.2020.112933
Protein modification by bis-alkylation
Picken, C., Awwad, S., Zloh, M., Khalili, H. and Brocchini, S. 2020. Protein modification by bis-alkylation. in: Pasut, G. and Zalipsky, S. (ed.) Polymer-Protein Conjugates: From PEGylation and Beyond Elsevier. pp. 351-385
Comparative thermodynamic analysis in solution of a next generation antibody mimetic to VEGF
Khalili, H., Brocchini, Steve, Khaw, Peng Tee and Filippov, Sergey K. 2018. Comparative thermodynamic analysis in solution of a next generation antibody mimetic to VEGF. RSC Advances. 8 (62), pp. 35787-35793. https://doi.org/10.1039/C8RA07059H
Endoplasmic Reticulum Degradation-Enhancing α-Mannosidase-like Protein 1 Targets Misfolded HLA-B27 Dimers for Endoplasmic Reticulum-Associated Degradation
Guiliano, D., Fussell, Helen, Lenart, Izabela, Tsao, Edward, Nesbeth, Darren, Fletcher, Adam J., Campbell, Elaine C., Yousaf, Nasim, Williams, Sarah, Santos, Susana, Cameron, Amy, Towers, Greg J., Kellam, Paul, Hebert, Daniel N., Gould, Keith G., Powis, Simon J. and Antoniou, Antony N. 2014. Endoplasmic Reticulum Degradation-Enhancing α-Mannosidase-like Protein 1 Targets Misfolded HLA-B27 Dimers for Endoplasmic Reticulum-Associated Degradation. Arthritis & Rheumatology. 66 (11), pp. 2976-2988. https://doi.org/10.1002/art.38809
Storage Stability Studies of Anti-VEGF FpF Antibody Mimetics
Khalili, H., Brocchini, Steve, Khaw, Peng Tee and Filippov, Sergey 2016. Storage Stability Studies of Anti-VEGF FpF Antibody Mimetics. 2016 AAPS Annual Meeting and Exposition. Denver, Co, USA 13 - 17 Nov 2016 American Association of Pharmaceutical Scientists.
An anti-TNF--α antibody mimetic to treat ocular inflammation
Khalili, H., Lee, Richard W., Khaw, Peng Tee, Brocchini, Steve, Dick, Andrew D. and Copland, David A. 2016. An anti-TNF--α antibody mimetic to treat ocular inflammation. Scientific Reports. 6 (36905). https://doi.org/10.1038/srep36905
Fc-fusion mimetics
Khalili, H., Khaw, P. T. and Brocchini, S. 2016. Fc-fusion mimetics. Biomaterials Science. 4 (6), pp. 943-947. https://doi.org/10.1039/C6BM00077K
Storage stability of bevacizumab in polycarbonate and polypropylene syringes
Khalili, H., Sharma, Garima, Froome, Andrew, Khaw, Peng Tee and Brocchini, Steve 2015. Storage stability of bevacizumab in polycarbonate and polypropylene syringes. Eye. 29 (6), pp. 820-827.
Polymorphisms in the F pocket of HLA-B27 subtypes strongly impact on assembly, chaperone interactions and heavy chain misfolding
Guiliano, D., North, Helen, Panayoitou, Eleni, Campbell, Elaine C., McHugh, Kirsty, Cooke, Fiona G.M., Silvestre, Marine, Bowness, Paul, Powis, Simon J. and Antoniou, Antony N. 2016. Polymorphisms in the F pocket of HLA-B27 subtypes strongly impact on assembly, chaperone interactions and heavy chain misfolding. Arthritis & Rheumatology. 69 (3), pp. 610-621. https://doi.org/10.1002/art.39948
Functional Heterologous Protein Expression by Genetically Engineered Probiotic Yeast Saccharomyces boulardii
Galli, Alvaro, Hudson, Lauren E., Fasken, Milo B., McDermott, Courtney D., McBride, Shonna M., Kuiper, Emily G., Guiliano, D., Corbett, Anita H. and Lamb, Tracey J. 2014. Functional Heterologous Protein Expression by Genetically Engineered Probiotic Yeast Saccharomyces boulardii. PLOS ONE. 9 (11), p. e112660.