Influence of aggregate mineralogical composition on water resistance of aggregate–bitumen adhesion

Article


Zhang, J., Apeagyei, A., Airey, G. D. and Grenfell, J. R. A. 2015. Influence of aggregate mineralogical composition on water resistance of aggregate–bitumen adhesion. International Journal of Adhesion and Adhesives. 62, pp. 45-54. https://doi.org/10.1016/j.ijadhadh.2015.06.012
AuthorsZhang, J., Apeagyei, A., Airey, G. D. and Grenfell, J. R. A.
Abstract

The effects of aggregate mineralogical composition on moisture sensitivity of aggregate–bitumen bonds were investigated using four aggregate types (two limestone and two granite) and two bitumen grades (40/60 pen and 70/100 pen). Moisture sensitivity (or water resistance) of the aggregate–bitumen bonds were characterized using retained strength obtained from three different tensile tests (peel, PATTI and pull-off). The results showed significant differences in the amount of moisture absorbed by a given aggregate which suggested strong correlations between aggregate mineral composition and moisture absorption. For most of the aggregate–bitumen bonds, failure surfaces transformed from cohesive to adhesive with conditioning time thereby confirming the strong influence of moisture on aggregate bonds. The three tensile tests used in this study showed similar rankings in terms of moisture sensitivity but the pull-off test was found to be the most sensitive. The effect of bitumen on moisture sensitivity was found to be lower than the effect of aggregates, with the moisture absorption properties of the aggregates depending strongly on certain key minerals including clay, anorthite and calcite. Strong correlations were also found between mineral compositions and moisture sensitivity with clay and anorthite having strong negative influence while calcite showed positive effect on moisture sensitivity. Previous studies have identified various mineral phases like albite, quartz, and k-feldspar, as detrimental in terms of moisture sensitivity. The results appear to support the extension of the existing list of detrimental aggregate minerals to include anorthite and clay while supporting the case of calcite as a moisture resistant mineral.

JournalInternational Journal of Adhesion and Adhesives
Journal citation62, pp. 45-54
ISSN0143-7496
Year2015
PublisherElsevier
Publisher's version
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1016/j.ijadhadh.2015.06.012
Web address (URL)https://doi.org/10.1016/j.ijadhadh.2015.06.012
Publication dates
Online29 Jun 2015
Publication process dates
Accepted22 Jun 2015
Deposited11 Jul 2019
Copyright holder© 2015 The Authors.
Permalink -

https://repository.uel.ac.uk/item/86wz6

Download files


Publisher's version
1-s2.0-S0143749615000913-main.pdf
License: CC BY 4.0
File access level: Anyone

  • 187
    total views
  • 146
    total downloads
  • 1
    views this month
  • 1
    downloads this month

Export as

Related outputs

Road Deterioration detection A Machine Learning-Based System for Automated Pavement Crack Identification and Analysis
Ganeshan, D., Sharif, S., Apeagyei, A. and Elmedany, W. 2023. Road Deterioration detection A Machine Learning-Based System for Automated Pavement Crack Identification and Analysis. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE. https://doi.org/10.1109/3ICT60104.2023.10391802
Artificial Intelligence Applications in Road Traffic Forecasting: A Review of Current Research
Khairi, S., Sharif, S., Apeagyei, A. and Abbas, A. 2023. Artificial Intelligence Applications in Road Traffic Forecasting: A Review of Current Research. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE. https://doi.org/10.1109/3ICT60104.2023.10391677
Utilising Convolutional Neural Networks for Pavement Distress Classification and Detection
Sharif, S., Emiola, D. I., Zoto, A., Apeagyei, A. and Elmedany, W. 2023. Utilising Convolutional Neural Networks for Pavement Distress Classification and Detection. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE. https://doi.org/10.1109/3ICT60104.2023.10391401
Evaluation of deep learning models for classification of asphalt pavement distresses
Apeagyei, A., Ademolake, T. E. and Adom-Asamoah, M. 2023. Evaluation of deep learning models for classification of asphalt pavement distresses. International Journal of Pavement Engineering. 24 (Art. 2180641). https://doi.org/10.1080/10298436.2023.2180641
Cold Recycling of Reclaimed Asphalt Pavements
Tebaldi, G., Dave, E., Hugener, M., Falchetto, A. C., Perraton, D., Grilli, A., Lo Presti, D., Pasetto, M., Loizos, A., Jenkins, K., Apeagyei, A., Grenfell, J. and Bocci, M. 2018. Cold Recycling of Reclaimed Asphalt Pavements. in: Partl, M. N., Porot, L., Di Benedetto, H., Canestrari, F., Marsac, P. and Tebaldi, G. (ed.) Testing and Characterization of Sustainable Innovative Bituminous Materials and Systems: State-of-the-Art Report of the RILEM Technical Committee 237-SIB Springer. pp. 239-296
Recommendation of RILEM TC237-SIB on cohesion test of recycled asphalt
Tebaldi, G., Dave, E., Cannone Falchetto, A., Hugener, M., Perraton, D., Grilli, A., Lo Presti, D., Pasetto, M., Loizos, A., Jenkins, K., Apeagyei, A., Grenfell, J. and Bocci, M. 2018. Recommendation of RILEM TC237-SIB on cohesion test of recycled asphalt. Materials and Structures. 51 (Art. 117). https://doi.org/10.1617/s11527-018-1238-4
Physical and rheological characterization of carbonated bitumen for paving applications
Apeagyei, A. and Airey, Gordon D. 2018. Physical and rheological characterization of carbonated bitumen for paving applications. Materials & Design. 140, pp. 345-356. https://doi.org/10.1016/j.matdes.2017.11.069
Moisture damage evaluation of aggregate–bitumen bonds with the respect of moisture absorption, tensile strength and failure surface
Zhang, J., Airey, G. D., Grenfell, J. and Apeagyei, A. 2017. Moisture damage evaluation of aggregate–bitumen bonds with the respect of moisture absorption, tensile strength and failure surface. Road Materials and Pavement Design. 18 (4), pp. 833-848. https://doi.org/10.1080/14680629.2017.1286441
Development of a composite substrate peel test to assess moisture sensitivity of aggregate–bitumen bonds
Zhang, J., Airey, G. D., Grenfell, J., Apeagyei, A. and Barrett, M. 2016. Development of a composite substrate peel test to assess moisture sensitivity of aggregate–bitumen bonds. International Journal of Adhesion and Adhesives. 68, pp. 133-141. https://doi.org/10.1016/j.ijadhadh.2016.02.013
Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders
Airey, G. D., Grenfell, J. R. A., Apeagyei, A., Subhy, A. and Lo Presti, D. 2016. Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders. Mechanics of Time-Dependent Materials. 20 (3), pp. 455-480. https://doi.org/10.1007/s11043-016-9295-y
Moisture sensitivity examination of asphalt mixtures using thermodynamic, direct adhesion peel and compacted mixture mechanical tests
Zhang, J., Airey, G. D., Grenfell, J. and Apeagyei, A. 2016. Moisture sensitivity examination of asphalt mixtures using thermodynamic, direct adhesion peel and compacted mixture mechanical tests. Road Materials and Pavement Design. 19 (1), pp. 120-138. https://doi.org/10.1080/14680629.2016.1249510
Application of Fickian and non-Fickian diffusion models to study moisture diffusion in asphalt mastics
Apeagyei, A., Grenfell, J. R. A. and Airey, G. D. 2015. Application of Fickian and non-Fickian diffusion models to study moisture diffusion in asphalt mastics. Materials and Structures. 48 (5), pp. 1461-1474. https://doi.org/10.1617/s11527-014-0246-2
Moisture damage assessment using surface energy, bitumen stripping and the SATS moisture conditioning procedure
Grenfell, J., Apeagyei, A. and Airey, G. 2015. Moisture damage assessment using surface energy, bitumen stripping and the SATS moisture conditioning procedure. International Journal of Pavement Engineering. 16 (5), pp. 411-431. https://doi.org/10.1080/10298436.2015.1007235
Influence of aggregate absorption and diffusion properties on moisture damage in asphalt mixtures
Apeagyei, A., Grenfell, J. R. A. and Airey, G. D. 2015. Influence of aggregate absorption and diffusion properties on moisture damage in asphalt mixtures. Road Materials and Pavement Design. 16 (Sup 1), pp. 404-422. https://doi.org/10.1080/14680629.2015.1030827
Moisture-induced strength degradation of aggregate–asphalt mastic bonds
Apeagyei, A., Grenfell, J. R. A. and Airey, G. D. 2014. Moisture-induced strength degradation of aggregate–asphalt mastic bonds. Road Materials and Pavement Design. 15 (Sup 1), pp. 239-262. https://doi.org/10.1080/14680629.2014.927951
Observation of reversible moisture damage in asphalt mixtures
Apeagyei, A., Grenfell, J. R. A. and Airey, G. D. 2014. Observation of reversible moisture damage in asphalt mixtures. Construction and Building Materials. 60, pp. 73-80. https://doi.org/10.1016/j.conbuildmat.2014.02.033
Examination of moisture sensitivity of aggregate–bitumen bonding strength using loose asphalt mixture and physico-chemical surface energy property tests
Liu, Y., Apeagyei, A., Ahmad, N., Grenfell, J. and Airey, G. 2013. Examination of moisture sensitivity of aggregate–bitumen bonding strength using loose asphalt mixture and physico-chemical surface energy property tests. International Journal of Pavement Engineering. 15 (7), pp. 657-670. https://doi.org/10.1080/10298436.2013.855312
Assessing asphalt mixture moisture susceptibility through intrinsic adhesion, bitumen stripping and mechanical damage
Grenfell, J., Ahmad, N., Liu, Y., Apeagyei, A., Large, D. and Airey, G. 2013. Assessing asphalt mixture moisture susceptibility through intrinsic adhesion, bitumen stripping and mechanical damage. Road Materials and Pavement Design. 15 (1), pp. 131-152. https://doi.org/10.1080/14680629.2013.863162