Moisture damage evaluation of aggregate–bitumen bonds with the respect of moisture absorption, tensile strength and failure surface

Article


Zhang, J., Airey, G. D., Grenfell, J. and Apeagyei, A. 2017. Moisture damage evaluation of aggregate–bitumen bonds with the respect of moisture absorption, tensile strength and failure surface. Road Materials and Pavement Design. 18 (4), pp. 833-848.
AuthorsZhang, J., Airey, G. D., Grenfell, J. and Apeagyei, A.
Abstract

The moisture-induced deterioration of asphalt mixture is because of the loss of adhesion at the aggregate–bitumen interface and/or the loss of cohesion within the bitumen film. An experimental study was undertaken in this paper to characterise the effects of moisture on the direct tensile strength of aggregate–bitumen bonds. The aim of this paper was to evaluate the moisture sensitivity of aggregate–bitumen bonds in several different aspects, which included moisture absorption, tensile strength and failure surface examination. Moisture absorption and mineralogical compositions of aggregate were measured using gravimetric techniques and a Mineral Liberation Analyser (MLA), respectively, with the results being used to explain the moisture sensitivity of aggregate–bitumen bonds. Aggregate–bitumen bond strength was determined using a self-designed pull-off system with the capability of accurately controlling the bitumen film thickness. The photographs of the failure surface were quantitatively analysed using Image-J software. The results show that the magnitude of the aggregate–bitumen bonding strength in the dry condition is mainly controlled by bitumen. However, the retained tensile strength after moisture conditioning was found to be influenced by the mineralogical composition as well as the moisture diffusion properties of the aggregates. The linear relationship between retained tensile strength and the square root of moisture uptake suggests that the water absorption process controls the degradation of the aggregate–bitumen bond. The results also suggested that the deterioration of aggregate–bitumen bonds is linked to the decrease in cohesive failure percentage.

JournalRoad Materials and Pavement Design
Journal citation18 (4), pp. 833-848
ISSN1468-0629
Year2017
PublisherTaylor & Francis
Accepted author manuscript
License
File Access Level
Anyone
Digital Object Identifier (DOI)doi:10.1080/14680629.2017.1286441
Web address (URL)https://doi.org/10.1080/14680629.2017.1286441
Publication dates
Online03 Feb 2017
Publication process dates
Accepted08 Oct 2016
Deposited11 Jul 2019
Copyright holder© 2017 Taylor & Francis
Copyright informationThis is an Accepted Manuscript of an article published by Taylor & Francis in Road Materials and Pavement Design on 03/02/2017, available online: http://www.tandfonline.com/10.1080/14680629.2017.1286441.
Permalink -

https://repository.uel.ac.uk/item/86wzx

  • 6
    total views
  • 2
    total downloads
  • 1
    views this month
  • 1
    downloads this month

Related outputs

Physical and rheological characterization of carbonated bitumen for paving applications
Apeagyei, A. and Airey, Gordon D. 2018. Physical and rheological characterization of carbonated bitumen for paving applications. Materials & Design. 140, pp. 345-356.
Development of a composite substrate peel test to assess moisture sensitivity of aggregate–bitumen bonds
Zhang, J., Airey, G. D., Grenfell, J., Apeagyei, A. and Barrett, M. 2016. Development of a composite substrate peel test to assess moisture sensitivity of aggregate–bitumen bonds. International Journal of Adhesion and Adhesives. 68, pp. 133-141.
Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders
Airey, G. D., Grenfell, J. R. A., Apeagyei, A., Subhy, A. and Lo Presti, D. 2016. Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders. Mechanics of Time-Dependent Materials. 20 (3), pp. 455-480.
Moisture sensitivity examination of asphalt mixtures using thermodynamic, direct adhesion peel and compacted mixture mechanical tests
Zhang, J., Airey, G. D., Grenfell, J. and Apeagyei, A. 2016. Moisture sensitivity examination of asphalt mixtures using thermodynamic, direct adhesion peel and compacted mixture mechanical tests. Road Materials and Pavement Design. 19 (1), pp. 120-138.
Application of Fickian and non-Fickian diffusion models to study moisture diffusion in asphalt mastics
Apeagyei, A., Grenfell, J. R. A. and Airey, G. D. 2015. Application of Fickian and non-Fickian diffusion models to study moisture diffusion in asphalt mastics. Materials and Structures. 48 (5), pp. 1461-1474.
Moisture damage assessment using surface energy, bitumen stripping and the SATS moisture conditioning procedure
Grenfell, J., Apeagyei, A. and Airey, G. 2015. Moisture damage assessment using surface energy, bitumen stripping and the SATS moisture conditioning procedure. International Journal of Pavement Engineering. 16 (5), pp. 411-431.
Influence of aggregate absorption and diffusion properties on moisture damage in asphalt mixtures
Apeagyei, A., Grenfell, J. R. A. and Airey, G. D. 2015. Influence of aggregate absorption and diffusion properties on moisture damage in asphalt mixtures. Road Materials and Pavement Design. 16 (Sup 1), pp. 404-422.
Influence of aggregate mineralogical composition on water resistance of aggregate–bitumen adhesion
Zhang, J., Apeagyei, A., Airey, G. D. and Grenfell, J. R. A. 2015. Influence of aggregate mineralogical composition on water resistance of aggregate–bitumen adhesion. International Journal of Adhesion and Adhesives. 62, pp. 45-54.
Moisture-induced strength degradation of aggregate–asphalt mastic bonds
Apeagyei, A., Grenfell, J. R. A. and Airey, G. D. 2014. Moisture-induced strength degradation of aggregate–asphalt mastic bonds. Road Materials and Pavement Design. 15 (Sup 1), pp. 239-262.
Observation of reversible moisture damage in asphalt mixtures
Apeagyei, A., Grenfell, J. R. A. and Airey, G. D. 2014. Observation of reversible moisture damage in asphalt mixtures. Construction and Building Materials. 60, pp. 73-80.
Examination of moisture sensitivity of aggregate–bitumen bonding strength using loose asphalt mixture and physico-chemical surface energy property tests
Liu, Y., Apeagyei, A., Ahmad, N., Grenfell, J. and Airey, G. 2013. Examination of moisture sensitivity of aggregate–bitumen bonding strength using loose asphalt mixture and physico-chemical surface energy property tests. International Journal of Pavement Engineering. 15 (7), pp. 657-670.
Assessing asphalt mixture moisture susceptibility through intrinsic adhesion, bitumen stripping and mechanical damage
Grenfell, J., Ahmad, N., Liu, Y., Apeagyei, A., Large, D. and Airey, G. 2013. Assessing asphalt mixture moisture susceptibility through intrinsic adhesion, bitumen stripping and mechanical damage. Road Materials and Pavement Design. 15 (1), pp. 131-152.