Controlling and predicting alkyl-onium electronic structure

Article


Towers Tompkins, F. K., Parker, L. G., Fogarty, R. M., Seymour, J. M., Gousseva, E., Grinter, D. C., Palgrave, R. G., Smith, C. D., Bennett, R. A., Matthews, R. and Lovelock, K. R. J. 2024. Controlling and predicting alkyl-onium electronic structure. Chemical Communications. (60), p. 10756–10759. https://doi.org/10.1039/D4CC03388D
AuthorsTowers Tompkins, F. K., Parker, L. G., Fogarty, R. M., Seymour, J. M., Gousseva, E., Grinter, D. C., Palgrave, R. G., Smith, C. D., Bennett, R. A., Matthews, R. and Lovelock, K. R. J.
Abstract

X-ray photoelectron spectroscopy (XPS) and ab initio calculations show that fully alkylated onium cation electronic structure can be tuned using both the alkyl chains and the central onium atom. The key for tuning the central onium atom is methyl versus longer alkyl chains, allowing selection of the optimum cation for a wide range of applications, including catalysis and biocides.

JournalChemical Communications
Journal citation(60), p. 10756–10759
ISSN1359-7345
Year2024
PublisherThe Royal Society of Chemistry
Publisher's version
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1039/D4CC03388D
Publication dates
Online16 Aug 2024
Publication process dates
Accepted12 Aug 2024
Deposited19 Sep 2024
Copyright holder© The Royal Society of Chemistry 2024
Additional information

The data underlying this study are openly available in the University of Reading Research Data Archive at https://doi.org/10.17864/1947.001349. Analysed data supporting this article have been included as part of the ESI.

Permalink -

https://repository.uel.ac.uk/item/8y4w9

Download files


Publisher's version
d4cc03388d.pdf
License: CC BY 3.0
File access level: Anyone

  • 28
    total views
  • 11
    total downloads
  • 5
    views this month
  • 4
    downloads this month

Export as

Related outputs

New directions in experiment and theory, interfaces, and interactions: general discussion
Atkin, R., Bruce, D. W., Dryfe, R. A. W., Dubois, E., Edler, K. J., Elgar, C. E., Feeney, A., Goloviznina, K., Groves, T. S., Hansen, B., Holbrey, J. D., Holm, C., Kornyshev, A., Margulis, C. J., Markiewitz, D. M., Matthews, R., Maurer, J., Miao, S., Philippi, F., Rezabal, E., Roling, B., Rotenberg, B., Sangoro, J., Schönhoff, M., Slattery, J. M., Swadźba-Kwaśny, M., Taylor, N., Watanabe, M. and Yang, J. 2024. New directions in experiment and theory, interfaces, and interactions: general discussion. Faraday Discussions. 253, pp. 493-509. https://doi.org/10.1039/D4FD90037E
Unravelling the complex speciation of halozincate ionic liquids using X-ray spectroscopies and calculations
Seymour, J., Gousseva, E., Towers Tompkins, F., Parker, L., Alblewi, N., Clarke, C. J., Hayama, S., Palgrave, R., Bennett, R., Matthews, R. P. and Lovelock, K. R. J. 2024. Unravelling the complex speciation of halozincate ionic liquids using X-ray spectroscopies and calculations. Faraday Discussions. 253, pp. 251-272. https://doi.org/10.1039/D4FD00029C
Exploiting Cation Structure and Water Content in Modulating the Acidity of Ammonium Hydrogen Sulfate Protic Ionic Liquids
Firth, A. E. J., Nakasu, P. Y. S., Hallett, J. P. and Matthews, R. P. 2024. Exploiting Cation Structure and Water Content in Modulating the Acidity of Ammonium Hydrogen Sulfate Protic Ionic Liquids. The Journal of Physical Chemistry Letters. 15 (9), pp. 2311-2318. https://doi.org/10.1021/acs.jpclett.3c03583
Unveiling the Rational Development of Stimuli-Responsive Silk Fibroin-Based Ionogel Formulations
Shmool, T. A., Martin, L. K., Jirkas, A., Matthews, R. P., Constantinou, A. P., Vadukul, D. M., Georgiou, T. K., Aprile, F. A. and Hallett, J. P. 2023. Unveiling the Rational Development of Stimuli-Responsive Silk Fibroin-Based Ionogel Formulations. Chemistry of Materials. 35 (15), p. 5798–5808. https://doi.org/10.1021/acs.chemmater.3c00303