Efficient Prediction of the Local Electronic Structure of Ionic Liquids from Low-Cost Calculations

Article


Tompkins, F. T., Parker, L., Fogarty, R., Seymour, J., Rowe, R., Palgrave, R., Matthews, R. P., Bennett, R., Hunt, P. A. and Lovelock, K. R. J. 2025. Efficient Prediction of the Local Electronic Structure of Ionic Liquids from Low-Cost Calculations. Physical Chemistry Chemical Physics. p. In press. https://doi.org/10.1039/D5CP00892A
AuthorsTompkins, F. T., Parker, L., Fogarty, R., Seymour, J., Rowe, R., Palgrave, R., Matthews, R. P., Bennett, R., Hunt, P. A. and Lovelock, K. R. J.
Abstract

Understanding and predicting ionic liquid (IL) electronic structure is crucial for their development, as local, atomic-scale electrostatic interactions control both the ion-ion and ion-dipole interactions that underpin all applications of ILs. Core-level binding energies, EB(core), from X-ray photoelectron spectroscopy (XPS) experiments capture the electrostatic potentials at nuclei, thus offering significant insight into IL local electronic structure. However, our ability to measure XPS for the many thousands of possible ILs is limited. Here we use an extensive experimental XPS dataset comprised of 44 ILs to comprehensively validate the ability of a very low-cost and technically accessible calculation method, lone-ion-SMD (Solvation Model based on Density) density functional theory (DFT), to produce high quality core-level binding energies, EB(core) for 14 cations and 30 anions. Our method removes the need for expensive and technically challenging calculation methods to obtain EB(core), thus giving the possibility to predict local electronic structure and understand electrostatic interactions at the atomic scale. We demonstrate the ability of the lone-ion SMD method to predict the speciation of halometallate anions in ILs.

JournalPhysical Chemistry Chemical Physics
Journal citationp. In press
ISSN1463-9084
Year2025
PublisherRoyal Society of Chemistry
Accepted author manuscript
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1039/D5CP00892A
Publication dates
Online18 Mar 2025
Publication process dates
Accepted17 Mar 2025
Deposited04 Apr 2025
Copyright holder© 2025 The Authors
Permalink -

https://repository.uel.ac.uk/item/8z4w4

Download files


Accepted author manuscript
d5cp00892a.pdf
License: CC BY 4.0
File access level: Anyone

  • 49
    total views
  • 14
    total downloads
  • 10
    views this month
  • 1
    downloads this month

Export as

Related outputs

Accurate Prediction of Ionic Liquid Density-of-States from Low-Cost Calculations
Fogarty, R., Matthews, R. P., Hunt, P. A. and Lovelock, K. R. J. 2025. Accurate Prediction of Ionic Liquid Density-of-States from Low-Cost Calculations. Physical Chemistry Chemical Physics. p. In press. https://doi.org/10.1039/D5CP00214A
New directions in experiment and theory, interfaces, and interactions: general discussion
Atkin, R., Bruce, D. W., Dryfe, R. A. W., Dubois, E., Edler, K. J., Elgar, C. E., Feeney, A., Goloviznina, K., Groves, T. S., Hansen, B., Holbrey, J. D., Holm, C., Kornyshev, A., Margulis, C. J., Markiewitz, D. M., Matthews, R., Maurer, J., Miao, S., Philippi, F., Rezabal, E., Roling, B., Rotenberg, B., Sangoro, J., Schönhoff, M., Slattery, J. M., Swadźba-Kwaśny, M., Taylor, N., Watanabe, M. and Yang, J. 2024. New directions in experiment and theory, interfaces, and interactions: general discussion. Faraday Discussions. 253, pp. 493-509. https://doi.org/10.1039/D4FD90037E
Controlling and predicting alkyl-onium electronic structure
Towers Tompkins, F. K., Parker, L. G., Fogarty, R. M., Seymour, J. M., Gousseva, E., Grinter, D. C., Palgrave, R. G., Smith, C. D., Bennett, R. A., Matthews, R. and Lovelock, K. R. J. 2024. Controlling and predicting alkyl-onium electronic structure. Chemical Communications. (60), p. 10756–10759. https://doi.org/10.1039/D4CC03388D
Unravelling the complex speciation of halozincate ionic liquids using X-ray spectroscopies and calculations
Seymour, J., Gousseva, E., Towers Tompkins, F., Parker, L., Alblewi, N., Clarke, C. J., Hayama, S., Palgrave, R., Bennett, R., Matthews, R. P. and Lovelock, K. R. J. 2024. Unravelling the complex speciation of halozincate ionic liquids using X-ray spectroscopies and calculations. Faraday Discussions. 253, pp. 251-272. https://doi.org/10.1039/D4FD00029C
Exploiting Cation Structure and Water Content in Modulating the Acidity of Ammonium Hydrogen Sulfate Protic Ionic Liquids
Firth, A. E. J., Nakasu, P. Y. S., Hallett, J. P. and Matthews, R. P. 2024. Exploiting Cation Structure and Water Content in Modulating the Acidity of Ammonium Hydrogen Sulfate Protic Ionic Liquids. The Journal of Physical Chemistry Letters. 15 (9), pp. 2311-2318. https://doi.org/10.1021/acs.jpclett.3c03583
Unveiling the Rational Development of Stimuli-Responsive Silk Fibroin-Based Ionogel Formulations
Shmool, T. A., Martin, L. K., Jirkas, A., Matthews, R. P., Constantinou, A. P., Vadukul, D. M., Georgiou, T. K., Aprile, F. A. and Hallett, J. P. 2023. Unveiling the Rational Development of Stimuli-Responsive Silk Fibroin-Based Ionogel Formulations. Chemistry of Materials. 35 (15), p. 5798–5808. https://doi.org/10.1021/acs.chemmater.3c00303