A Conceptual Model for Climatic-responsive Vernacular Architectural Forms

Book chapter


Kamalifard, Solmaz and Assadi Langroudi, A. 2018. A Conceptual Model for Climatic-responsive Vernacular Architectural Forms. in: Elsharkaway, Heba, Zahiri, Sahar and Clough, Jack (ed.) International Conference for Sustainable Design of the Built Environment SDBE 2018: Proceedings SDBE. pp. 575-588
AuthorsKamalifard, Solmaz and Assadi Langroudi, A.
EditorsElsharkaway, Heba, Zahiri, Sahar and Clough, Jack
Abstract

Indoor lighting, in terms of its spatial coverage, spectral range and extent is closely associated with occupants’ behaviour, yet little is known about its links with now-abandoned 19th century vernacular architectural forms of dry-and-arid climates in central Asia. Sustainable use of energy for domestic purposes is a critical component of the resilience of urban systems to urban sprawl (and escalating energy demands), mineral resource shortage and changing climate. Domestic energy use is a function of occupants’ behaviour in adjusting themselves to space through movement, which is driven by interrelated light-space-time. A better understanding of such interactions, in the context of energy efficient Iranian vernacular architecture can allow the adoption of traditional styles in design of contemporary indoor living spaces, thereby indirectly influencing occupants’ lifestyles towards lesser use of artificial lighting and energy conservation. It is in trying to understand how vernacular style can be turned into purposeful action that each core domain of vernacular architecture, and the dynamic of light and human through them, should be determined and brought to bear. In doing so, we present a conceptual model, built through field observations - of five three historical buildings in Kashan, Central Iran - interview and archival studies. The model informs on how occupant’s perception of space and response varies with time, space configuration and lighting levels.

Book titleInternational Conference for Sustainable Design of the Built Environment SDBE 2018: Proceedings
Page range575-588
Year2018
PublisherSDBE
Publication dates
OnlineSep 2018
Publication process dates
Deposited26 Sep 2018
Accepted26 Aug 2018
Accepted26 Aug 2018
EventSecond International Conference for Sustainable Design of the Built Environment: Research in Practice
ISBN978-1-9997971-9- 5
Web address (URL)http://newton-sdbe.uk/wp-content/uploads/2018/09/SDBE2018_Conference-Proceedings-.pdf
Accepted author manuscript
Permalink -

https://repository.uel.ac.uk/item/846z7

  • 7
    total views
  • 6
    total downloads
  • 1
    views this month
  • 2
    downloads this month

Related outputs

A conceptual model for loess in England: Principles and applications
Assadi Langroudi, A. 2019. A conceptual model for loess in England: Principles and applications. Proceedings of the Geologists' Association. 130 (2), pp. 115-125.
Assessment of the Suitability of the Fall Cone Method to Replace the Casagrande Cup for Liquid Limit Determination of South African Soils
Theron, E., Stott, P. R., Vosloo, P. and Assadi Langroudi, A. 2019. Assessment of the Suitability of the Fall Cone Method to Replace the Casagrande Cup for Liquid Limit Determination of South African Soils. in: Proceedings of the 17th African Regional Conference on Soil Mechanics and Geotechnical Engineering International Society for Soil Mechanics and Geotechnical Engineering.
Anisotropy in Sand–Fibre Composites and Undrained Stress–Strain Implications
Ghadr, S., Bahadori, H. and Assadi Langroudi, A. 2019. Anisotropy in Sand–Fibre Composites and Undrained Stress–Strain Implications. International Journal of Geosynthetics and Ground Engineering. 5 (Art. 23).
A Probabilistic Approach to the Spatial Variability of Ground Properties in the Design of Urban Deep Excavation
Herridge, J. B., Tsiminis, K., Winzen, J., Assadi Langroudi, A., McHugh, M., Ghadr, S. and Donyavi, S. 2019. A Probabilistic Approach to the Spatial Variability of Ground Properties in the Design of Urban Deep Excavation. Infrastructures. 4 (Art. 51).
Compacted Expansive Elastic Silt and Tyre Powder Waste
Ghadr, S., Mirsalehi, S. and Assadi Langroudi, A. 2019. Compacted Expansive Elastic Silt and Tyre Powder Waste. Geomechanics and Engineering. 18 (5), pp. 535-543.
Lime Cake as an Alternative Stabiliser for Loose Clayey Loams
Assadi Langroudi, A., Ghadr, S., Theron, E., Oderinde, S. A. and Katsipatakis, E. M. 2019. Lime Cake as an Alternative Stabiliser for Loose Clayey Loams. International Journal of Geosynthetics and Ground Engineering. 5 (Art. 22).
Effect of Grain Size and Shape on Undrained Behaviour of Sands
Ghadr, S. and Assadi Langroudi, A. 2019. Effect of Grain Size and Shape on Undrained Behaviour of Sands. International Journal of Geosynthetics and Ground Engineering. 5 (Art. 18).
Gaps in Particulate Matters: Formation, Mechanisms, Implications
Assadi Langroudi, A. and Theron, E. 2019. Gaps in Particulate Matters: Formation, Mechanisms, Implications. in: Proceedings of the 17th African Regional Conference on Soil Mechanics and Geotechnical Engineering International Society for Soil Mechanics and Geotechnical Engineering.
Structure-based hydro-mechanical properties of sand-bentonite composites
Ghadr, Soheil and Assadi Langroudi, A. 2018. Structure-based hydro-mechanical properties of sand-bentonite composites. Engineering Geology. 235, pp. 53-63.
Loess as a Collapsible Soil: Some Basic Particle Packing
Assadi Langroudi, A., Ng’ambi, Samson and Smalley, Ian 2017. Loess as a Collapsible Soil: Some Basic Particle Packing. Quaternary International. 469 (Part A), pp. 20-29.
A Study on the liquefaction risk in seismic design of foundations
Ardeshiri-Lajimi, Saeid, Yazdani, Mahmoud and Assadi Langroudi, A. 2016. A Study on the liquefaction risk in seismic design of foundations. Geomechanics and Engineering. 11 (6), pp. 805-820.
Shear Strength in Terms of Coulomb C-Intercept
Assadi Langroudi, A. 2014. Shear Strength in Terms of Coulomb C-Intercept. Journal of Geotechnical Geology. 9 (4), pp. 283-292.
Constraints in using site-won calcareous clayey silt (loam) as fill materials
Assadi Langroudi, A. and Jefferson, I. 2015. Constraints in using site-won calcareous clayey silt (loam) as fill materials. in: Winter, M. G., Smith, D. M., Eldred, P. J. L. and Toll, D. G. (ed.) Geotechnical Engineering for Infrastructure and Development ICE Publishing (Institute of Civil Engineers). pp. 1947-1952
Quantitative evaluation of microstructure characteristics of cement-consolidated soil
Assadi Langroudi, A. 2013. Quantitative evaluation of microstructure characteristics of cement-consolidated soil. Bulletin of Engineering Geology and the Environment. 73 (1), pp. 203-204.
Micromechanics of quartz sand breakage in a fractal context
Assadi Langroudi, A., Jefferson, Ian, O'hara-Dhand, Kenneth and Smalley, Ian 2013. Micromechanics of quartz sand breakage in a fractal context. Geomorphology. 211, pp. 1-10.
Control of fault lay-out on seismic design of large underground caverns
Ardeshiri-Lajimi, Saeid, Yazdani, Mahmoud and Assadi Langroudi, A. 2015. Control of fault lay-out on seismic design of large underground caverns. Tunnelling and Underground Space Technology. 50, pp. 305-316.
The response of reworked aerosols to climate through estimation of inter-particle forces
Assadi Langroudi, A. and Jefferson, I. 2016. The response of reworked aerosols to climate through estimation of inter-particle forces. International Journal of Environmental Science and Technology. 13 (4), pp. 1159-1168.