The response of reworked aerosols to climate through estimation of inter-particle forces
Article
Assadi Langroudi, A. and Jefferson, I. 2016. The response of reworked aerosols to climate through estimation of inter-particle forces. International Journal of Environmental Science and Technology. 13 (4), pp. 1159-1168. https://doi.org/10.1007/s13762-016-0958-7
Authors | Assadi Langroudi, A. and Jefferson, I. |
---|---|
Abstract | This paper describes the first use of inter-particle force measurement in reworked aerosols to better understand the mechanics of dust deflation and its consequent ecological ramifications. Dust is likely to carry hydrocarbons and micro-organisms including human pathogens and cultured microbes and thereby is a threat to plants, animals and human. Present-day global aerosol emissions are substantially greater than in 1850; however, the projected influx rates are highly disputable. This uncertainty, in part, has roots in the lack of understanding of deflation mechanisms. A growing body of literature shows that whether carbon emission continues to increase, plant transpiration drops and soil water retention enhances, allowing more greenery to grow and less dust to flux. On the other hand, a small but important body of geochemistry literature shows that increasing emission and global temperature leads to extreme climates, decalcification of surface soils containing soluble carbonate polymorphs and hence a greater chance of deflation. The consistency of loosely packed reworked silt provides background data against which the resistance of dust’s bonding components (carbonates and water) can be compared. The use of macro-scale phenomenological approaches to measure dust consistency is trivial. Instead, consistency can be measured in terms of inter-particle stress state. This paper describes a semi-empirical parametrisation of the inter-particle cohesion forces in terms of the balance of contact-level forces at the instant of particle motion. We put forward the hypothesis that the loss of Ca2+-based pedogenic salts is responsible for much of the dust influx and surficial drying pays a less significant role. |
Journal | International Journal of Environmental Science and Technology |
Journal citation | 13 (4), pp. 1159-1168 |
ISSN | 1735-2630 |
1735-1472 | |
Year | 2016 |
Publisher | Springer Verlag |
Accepted author manuscript | |
Digital Object Identifier (DOI) | https://doi.org/10.1007/s13762-016-0958-7 |
Publication dates | |
24 Feb 2016 | |
Publication process dates | |
Deposited | 11 Mar 2016 |
Copyright information | The final publication is available at Springer via http://dx.doi.org/10.1007/s13762-016-0958-7 |
https://repository.uel.ac.uk/item/85243
Download files
193
total views197
total downloads2
views this month0
downloads this month