The response of reworked aerosols to climate through estimation of inter-particle forces

Article


Assadi Langroudi, A. and Jefferson, I. 2016. The response of reworked aerosols to climate through estimation of inter-particle forces. International Journal of Environmental Science and Technology. 13 (4), pp. 1159-1168. https://doi.org/10.1007/s13762-016-0958-7
AuthorsAssadi Langroudi, A. and Jefferson, I.
Abstract

This paper describes the first use of inter-particle force measurement in reworked aerosols to better understand the mechanics of dust deflation and its consequent ecological ramifications. Dust is likely to carry hydrocarbons and micro-organisms including human pathogens and cultured microbes and thereby is a threat to plants, animals and human. Present-day global aerosol emissions are substantially greater than in 1850; however, the projected influx rates are highly disputable. This uncertainty, in part, has roots in the lack of understanding of deflation mechanisms. A growing body of literature shows that whether carbon emission continues to increase, plant transpiration drops and soil water retention enhances, allowing more greenery to grow and less dust to flux. On the other hand, a small but important body of geochemistry literature shows that increasing emission and global temperature leads to extreme climates, decalcification of surface soils containing soluble carbonate polymorphs and hence a greater chance of deflation. The consistency of loosely packed reworked silt provides background data against which the resistance of dust’s bonding components (carbonates and water) can be compared. The use of macro-scale phenomenological approaches to measure dust consistency is trivial. Instead, consistency can be measured in terms of inter-particle stress state. This paper describes a semi-empirical parametrisation of the inter-particle cohesion forces in terms of the balance of contact-level forces at the instant of particle motion. We put forward the hypothesis that the loss of Ca2+-based pedogenic salts is responsible for much of the dust influx and surficial drying pays a less significant role.

JournalInternational Journal of Environmental Science and Technology
Journal citation13 (4), pp. 1159-1168
ISSN1735-2630
1735-1472
Year2016
PublisherSpringer Verlag
Accepted author manuscript
Digital Object Identifier (DOI)https://doi.org/10.1007/s13762-016-0958-7
Publication dates
Print24 Feb 2016
Publication process dates
Deposited11 Mar 2016
Copyright informationThe final publication is available at Springer via http://dx.doi.org/10.1007/s13762-016-0958-7
Permalink -

https://repository.uel.ac.uk/item/85243

Download files


Accepted author manuscript
  • 193
    total views
  • 197
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

Pore-pressure-dependent performance of rocking foundations
Irani, A. E., Hajialilue-Bonab, M., Assadi Langroudi, A. and Maleki Tabrizi, E. 2024. Pore-pressure-dependent performance of rocking foundations. Soil Dynamics and Earthquake Engineering. 183 (Art. 108772). https://doi.org/10.1016/j.soildyn.2024.108772
Understanding the complexity of materials procurement in construction projects to build a conceptual framework influencing supply chain management of MSMEs
Donyavi, S., Flanagan, R., Assadi-Langroudi, A. and Parisi, L. 2024. Understanding the complexity of materials procurement in construction projects to build a conceptual framework influencing supply chain management of MSMEs. International Journal of Construction Management. 24 (2), pp. 177-186. https://doi.org/10.1080/15623599.2023.2267862
Replacing C₃S Cement with PP Fibre and Nanobiosilica in Stabilisation of Organic Clays
Ghadr, S., Assadi Langroudi, A. and Bahadori, H. 2023. Replacing C₃S Cement with PP Fibre and Nanobiosilica in Stabilisation of Organic Clays. Geomechanics and Engineering. 34 (4), pp. 401-414. https://doi.org/10.12989/gae.2023.33.4.401
Optimising the use of Materials for Construction MSMEs: Building a Comprehensive Framework for Decision-Making and Resource Allocation through an Analytic Hierarchy Process
Donyavi, S., Flanagan, R., Assadi-Langroudi, A. and Parisi, L. 2023. Optimising the use of Materials for Construction MSMEs: Building a Comprehensive Framework for Decision-Making and Resource Allocation through an Analytic Hierarchy Process. International Journal of Construction Supply Chain Management (IJCSCM). 13 (1), pp. 50-74.
Loess in Britain and Ireland: Formation, modification and environmental significance, a review in memory of John Catt (1937–2017)
Bunce, C., Smalley, I., Stevens, T. and Assadi Langroudi, A. 2022. Loess in Britain and Ireland: Formation, modification and environmental significance, a review in memory of John Catt (1937–2017). Proceedings of the Geologists' Association. 133 (6), pp. 501-517. https://doi.org/10.1016/j.pgeola.2022.06.005
Fractals for the Sustainable Design of Engineered Particulate Systems
Assadi Langroudi, A., Abdalla, H. and Ghadr, S. 2022. Fractals for the Sustainable Design of Engineered Particulate Systems. Sustainability. 14 (Art. 7287). https://doi.org/10.3390/su14127287
Recent advances in nature-inspired solutions for ground engineering (NiSE)
Assadi Langroudi, A., O’Kelly, B. C., Barreto, D., Cotecchia, F., Dicks, H., Ekinci, A., Garcia, F. E. T., Harbottle, M., Tagarelli, V., Jefferson, I., Maghoul, P., Masoero, E., Mountassir, G. E., Muhunthan, B., Geng, X., Ghadr, S., Mirzababaei, M., Mitrani, H. and van Paassen, L. 2022. Recent advances in nature-inspired solutions for ground engineering (NiSE). International Journal of Geosynthetics and Ground Engineering. 8 (Art. 3). https://doi.org/10.1007/s40891-021-00349-9
Stabilisation of peat with colloidal nano and micro silica
Ghadr, S. and Assadi Langroudi, A. 2022. Stabilisation of peat with colloidal nano and micro silica. Mires and Peat. 28 (Art. 14). https://doi.org/10.19189/MaP.2021.OMB.StA.2183
Liquefaction resistance of fibre-reinforced silty sands under cyclic loading
Ghadr, S., Samadzadeh, A., Bahadori, H. and Assadi Langroudi, A. 2020. Liquefaction resistance of fibre-reinforced silty sands under cyclic loading. Geotextiles and Geomembranes. 48 (6), pp. 812-827. https://doi.org/10.1016/j.geotexmem.2020.07.002
Stabilization of Sand with Colloidal Nano-Silica Hydrosols
Ghadr, S., Assadi Langroudi, A., Hung, C., O’Kelly, B. C., Bahadori, H. and Ghodsi, T. 2020. Stabilization of Sand with Colloidal Nano-Silica Hydrosols. Applied Sciences. 10 (Art. 5192). https://doi.org/10.3390/app10155192
Chapter 6 Collapsible Soils in the UK
Culshaw, M. G., Northmore, K. J., Jefferson, I., Assadi Langroudi, A. and Bell, F. G. 2020. Chapter 6 Collapsible Soils in the UK. Engineering Geology Special Publications. 29 (1), pp. 187--203. https://doi.org/10.1144/EGSP29.6
Stabilisation of peat with colloidal nanosilica
Ghadr, S., Assadi Langroudi, A. and Hung, C. 2020. Stabilisation of peat with colloidal nanosilica. Mires and Peat. 26 (Art. 9). https://doi.org/10.19189/MaP.2019.OMB.StA.1896
A conceptual model for loess in England: Principles and applications
Assadi Langroudi, A. 2019. A conceptual model for loess in England: Principles and applications. Proceedings of the Geologists' Association. 130 (2), pp. 115-125. https://doi.org/10.1016/j.pgeola.2018.12.003
Small strain stiffness of loessic soils across South East England
Nobee-Fox, H. and Assadi Langroudi, A. 2019. Small strain stiffness of loessic soils across South East England. International Journal of Research in Engineering and Science. 7 (3), pp. 1-16.
Assessment of the Suitability of the Fall Cone Method to Replace the Casagrande Cup for Liquid Limit Determination of South African Soils
Theron, E., Stott, P. R., Vosloo, P. and Assadi Langroudi, A. 2019. Assessment of the Suitability of the Fall Cone Method to Replace the Casagrande Cup for Liquid Limit Determination of South African Soils. 17th African Regional Conference on Soil Mechanics and Geotechnical Engineering. Cape Town, ZA 06 - 10 Oct 2019 International Society for Soil Mechanics and Geotechnical Engineering.
Anisotropy in Sand–Fibre Composites and Undrained Stress–Strain Implications
Ghadr, S., Bahadori, H. and Assadi Langroudi, A. 2019. Anisotropy in Sand–Fibre Composites and Undrained Stress–Strain Implications. International Journal of Geosynthetics and Ground Engineering. 5 (Art. 23). https://doi.org/10.1007/s40891-019-0174-x
A Probabilistic Approach to the Spatial Variability of Ground Properties in the Design of Urban Deep Excavation
Herridge, J. B., Tsiminis, K., Winzen, J., Assadi Langroudi, A., McHugh, M., Ghadr, S. and Donyavi, S. 2019. A Probabilistic Approach to the Spatial Variability of Ground Properties in the Design of Urban Deep Excavation. Infrastructures. 4 (Art. 51). https://doi.org/10.3390/infrastructures4030051
Compacted Expansive Elastic Silt and Tyre Powder Waste
Ghadr, S., Mirsalehi, S. and Assadi Langroudi, A. 2019. Compacted Expansive Elastic Silt and Tyre Powder Waste. Geomechanics and Engineering. 18 (5), pp. 535-543. https://doi.org/10.12989/gae.2019.18.5.535
Lime Cake as an Alternative Stabiliser for Loose Clayey Loams
Assadi Langroudi, A., Ghadr, S., Theron, E., Oderinde, S. A. and Katsipatakis, E. M. 2019. Lime Cake as an Alternative Stabiliser for Loose Clayey Loams. International Journal of Geosynthetics and Ground Engineering. 5 (Art. 22). https://doi.org/10.1007/s40891-019-0173-y
Effect of Grain Size and Shape on Undrained Behaviour of Sands
Ghadr, S. and Assadi Langroudi, A. 2019. Effect of Grain Size and Shape on Undrained Behaviour of Sands. International Journal of Geosynthetics and Ground Engineering. 5 (Art. 18). https://doi.org/10.1007/s40891-019-0170-1
Gaps in Particulate Matters: Formation, Mechanisms, Implications
Assadi Langroudi, A. and Theron, E. 2019. Gaps in Particulate Matters: Formation, Mechanisms, Implications. 17th African Regional Conference on Soil Mechanics and Geotechnical Engineering. Cape Town, ZA 06 - 10 Oct 2019 International Society for Soil Mechanics and Geotechnical Engineering. pp. 169-174
Structure-based hydro-mechanical properties of sand-bentonite composites
Ghadr, Soheil and Assadi Langroudi, A. 2018. Structure-based hydro-mechanical properties of sand-bentonite composites. Engineering Geology. 235, pp. 53-63. https://doi.org/10.1016/j.enggeo.2018.02.002
A Conceptual Model for Climatic-responsive Vernacular Architectural Forms
Kamalifard, S. and Assadi Langroudi, A. 2018. A Conceptual Model for Climatic-responsive Vernacular Architectural Forms. in: Elsharkaway, H., Zahiri, S. and Clough, J. (ed.) International Conference for Sustainable Design of the Built Environment (SDBE 2018): Proceedings International Conference for Sustainable Design of the Built Environment (SDBE 2018). pp. 575-588
Loess as a collapsible soil: Some basic particle packing aspects
Assadi Langroudi, A., Ng’ambi, Samson and Smalley, Ian 2017. Loess as a collapsible soil: Some basic particle packing aspects. Quaternary International. 469 (Part A), pp. 20-29. https://doi.org/10.1016/j.quaint.2016.09.058
Shear Strength in Terms of Coulomb C-Intercept
Assadi Langroudi, A. 2014. Shear Strength in Terms of Coulomb C-Intercept. Journal of Geotechnical Geology. 9 (4), pp. 283-292.
Constraints in using site-won calcareous clayey silt (loam) as fill materials
Assadi Langroudi, A. and Jefferson, I. 2015. Constraints in using site-won calcareous clayey silt (loam) as fill materials. in: Winter, M. G., Smith, D. M., Eldred, P. J. L. and Toll, D. G. (ed.) Geotechnical Engineering for Infrastructure and Development ICE Publishing (Institute of Civil Engineers). pp. 1947-1952
Quantitative evaluation of microstructure characteristics of cement-consolidated soil
Assadi Langroudi, A. 2013. Quantitative evaluation of microstructure characteristics of cement-consolidated soil. Bulletin of Engineering Geology and the Environment. 73 (1), pp. 203-204.
Micromechanics of quartz sand breakage in a fractal context
Assadi Langroudi, A., Jefferson, Ian, O'hara-Dhand, Kenneth and Smalley, Ian 2013. Micromechanics of quartz sand breakage in a fractal context. Geomorphology. 211, pp. 1-10.
Control of fault lay-out on seismic design of large underground caverns
Ardeshiri-Lajimi, Saeid, Yazdani, Mahmoud and Assadi Langroudi, A. 2015. Control of fault lay-out on seismic design of large underground caverns. Tunnelling and Underground Space Technology. 50, pp. 305-316. https://doi.org/10.1016/j.tust.2015.07.002
A Study on the liquefaction risk in seismic design of foundations
Ardeshiri-Lajimi, Saeid, Yazdani, Mahmoud and Assadi Langroudi, A. 2016. A Study on the liquefaction risk in seismic design of foundations. Geomechanics and Engineering. 11 (6), pp. 805-820. https://doi.org/10.12989/gae.2016.11.6.805