Structure-based hydro-mechanical properties of sand-bentonite composites

Article


Ghadr, Soheil and Assadi Langroudi, A. 2018. Structure-based hydro-mechanical properties of sand-bentonite composites. Engineering Geology. 235, pp. 53-63.
AuthorsGhadr, Soheil and Assadi Langroudi, A.
Abstract

For the geological disposal of highly contaminated wastes, medical or other sorts, clay barrier systems are commonly designed and used. The engineered liners contain buffer material which is often carefully proportioned mixtures of pure bentonite and sand. Bentonite is an active clay mineral with very low hydraulic conductivity and extremely high expansive properties, which benefits in controlling the downward migration of hazardous contaminants to groundwater. In the design of such composite buffer geomaterial, deformation and pore-flow analysis is a pivotal matter and has therefore been thoroughly investigated in the decades past. When unsaturated, the coupling hydraulic-mechanical behaviour of sand-bentonite mixtures are complex. Among possible reasons behind this complex behaviour is the dependency of hydraulic hysteresis and consolidation properties on size, shape and sorting of solids and pores in the soil's skeleton, which are also rarely accounted for in most of the commonly used soil models.

In this contribution, the hydro-mechanical behaviour of saturated and unsaturated sand-bentonite soil is investigated in the context of the recently developed Concept of Double Porosity (CDP). The geomaterial under study is assumed to consist of an incompressible, rigid, elastic solid skeleton surrounded by viscous water and gas fluids, and connected via a network of elastoplastic clayey bridge/buttress units. Roundness and sorting are varied for the sand constituent. The clay fraction (CF) is also varied across testing specimens. The experimental work here introduces two micromechanical models (small clay and large clay) which facilitates interpretation of macro-scale coupled hydromechanical behaviour of composite sand-bentonite geomaterials. The findings from this work will aid design practitioners through a tentative decision support system proposed in closing remarks.

JournalEngineering Geology
Journal citation235, pp. 53-63
ISSN00137952
Year2018
PublisherElsevier
Accepted author manuscript
License
Digital Object Identifier (DOI)doi:10.1016/j.enggeo.2018.02.002
Web address (URL)https://doi.org/10.1016/j.enggeo.2018.02.002
Publication dates
Online06 Feb 2018
Publication process dates
Deposited07 Feb 2018
Accepted04 Feb 2018
Accepted04 Feb 2018
Permalink -

https://repository.uel.ac.uk/item/848zv

  • 10
    total views
  • 39
    total downloads
  • 3
    views this month
  • 5
    downloads this month

Related outputs

A conceptual model for loess in England: Principles and applications
Assadi Langroudi, A. 2019. A conceptual model for loess in England: Principles and applications. Proceedings of the Geologists' Association. 130 (2), pp. 115-125.
Assessment of the Suitability of the Fall Cone Method to Replace the Casagrande Cup for Liquid Limit Determination of South African Soils
Theron, E., Stott, P. R., Vosloo, P. and Assadi Langroudi, A. 2019. Assessment of the Suitability of the Fall Cone Method to Replace the Casagrande Cup for Liquid Limit Determination of South African Soils. in: Proceedings of the 17th African Regional Conference on Soil Mechanics and Geotechnical Engineering International Society for Soil Mechanics and Geotechnical Engineering.
Anisotropy in Sand–Fibre Composites and Undrained Stress–Strain Implications
Ghadr, S., Bahadori, H. and Assadi Langroudi, A. 2019. Anisotropy in Sand–Fibre Composites and Undrained Stress–Strain Implications. International Journal of Geosynthetics and Ground Engineering. 5 (Art. 23).
A Probabilistic Approach to the Spatial Variability of Ground Properties in the Design of Urban Deep Excavation
Herridge, J. B., Tsiminis, K., Winzen, J., Assadi Langroudi, A., McHugh, M., Ghadr, S. and Donyavi, S. 2019. A Probabilistic Approach to the Spatial Variability of Ground Properties in the Design of Urban Deep Excavation. Infrastructures. 4 (Art. 51).
Compacted Expansive Elastic Silt and Tyre Powder Waste
Ghadr, S., Mirsalehi, S. and Assadi Langroudi, A. 2019. Compacted Expansive Elastic Silt and Tyre Powder Waste. Geomechanics and Engineering. 18 (5), pp. 535-543.
Lime Cake as an Alternative Stabiliser for Loose Clayey Loams
Assadi Langroudi, A., Ghadr, S., Theron, E., Oderinde, S. A. and Katsipatakis, E. M. 2019. Lime Cake as an Alternative Stabiliser for Loose Clayey Loams. International Journal of Geosynthetics and Ground Engineering. 5 (Art. 22).
Effect of Grain Size and Shape on Undrained Behaviour of Sands
Ghadr, S. and Assadi Langroudi, A. 2019. Effect of Grain Size and Shape on Undrained Behaviour of Sands. International Journal of Geosynthetics and Ground Engineering. 5 (Art. 18).
Gaps in Particulate Matters: Formation, Mechanisms, Implications
Assadi Langroudi, A. and Theron, E. 2019. Gaps in Particulate Matters: Formation, Mechanisms, Implications. in: Proceedings of the 17th African Regional Conference on Soil Mechanics and Geotechnical Engineering International Society for Soil Mechanics and Geotechnical Engineering.
A Conceptual Model for Climatic-responsive Vernacular Architectural Forms
Kamalifard, Solmaz and Assadi Langroudi, A. 2018. A Conceptual Model for Climatic-responsive Vernacular Architectural Forms. in: Elsharkaway, Heba, Zahiri, Sahar and Clough, Jack (ed.) International Conference for Sustainable Design of the Built Environment SDBE 2018: Proceedings SDBE. pp. 575-588
Loess as a Collapsible Soil: Some Basic Particle Packing
Assadi Langroudi, A., Ng’ambi, Samson and Smalley, Ian 2017. Loess as a Collapsible Soil: Some Basic Particle Packing. Quaternary International. 469 (Part A), pp. 20-29.
A Study on the liquefaction risk in seismic design of foundations
Ardeshiri-Lajimi, Saeid, Yazdani, Mahmoud and Assadi Langroudi, A. 2016. A Study on the liquefaction risk in seismic design of foundations. Geomechanics and Engineering. 11 (6), pp. 805-820.
Shear Strength in Terms of Coulomb C-Intercept
Assadi Langroudi, A. 2014. Shear Strength in Terms of Coulomb C-Intercept. Journal of Geotechnical Geology. 9 (4), pp. 283-292.
Constraints in using site-won calcareous clayey silt (loam) as fill materials
Assadi Langroudi, A. and Jefferson, I. 2015. Constraints in using site-won calcareous clayey silt (loam) as fill materials. in: Winter, M. G., Smith, D. M., Eldred, P. J. L. and Toll, D. G. (ed.) Geotechnical Engineering for Infrastructure and Development ICE Publishing (Institute of Civil Engineers). pp. 1947-1952
Quantitative evaluation of microstructure characteristics of cement-consolidated soil
Assadi Langroudi, A. 2013. Quantitative evaluation of microstructure characteristics of cement-consolidated soil. Bulletin of Engineering Geology and the Environment. 73 (1), pp. 203-204.
Micromechanics of quartz sand breakage in a fractal context
Assadi Langroudi, A., Jefferson, Ian, O'hara-Dhand, Kenneth and Smalley, Ian 2013. Micromechanics of quartz sand breakage in a fractal context. Geomorphology. 211, pp. 1-10.
Control of fault lay-out on seismic design of large underground caverns
Ardeshiri-Lajimi, Saeid, Yazdani, Mahmoud and Assadi Langroudi, A. 2015. Control of fault lay-out on seismic design of large underground caverns. Tunnelling and Underground Space Technology. 50, pp. 305-316.
The response of reworked aerosols to climate through estimation of inter-particle forces
Assadi Langroudi, A. and Jefferson, I. 2016. The response of reworked aerosols to climate through estimation of inter-particle forces. International Journal of Environmental Science and Technology. 13 (4), pp. 1159-1168.