State-Based Stochastic Performance Deterioration Modelling of Flood Defence Assets

Book chapter


Nepal, J., Chen, Hua-Peng, Gouldby, Ben, Simm, Jonathan and Tarrant, Owen 2016. State-Based Stochastic Performance Deterioration Modelling of Flood Defence Assets. in: De Stefano, Alessandro (ed.) 7th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII 2015) Curran Associates, Inc..
AuthorsNepal, J., Chen, Hua-Peng, Gouldby, Ben, Simm, Jonathan and Tarrant, Owen
EditorsDe Stefano, Alessandro
Abstract

Flood defence assets are aging, and their performance in terms offlood prevention deteriorates withtime. In order to develop effective flood riskmanagement strategies and flood alleviationprogrammes, accurate current condition state and future performance predictions are essential forthe safe operation of the assets. This paper presents a state-based probabilistic performancedeterioration model to predict future states ofaging flood defence assets, where condition gradesand deterioration rates are utilised. The stochastic process e.g. Markov chains is employed in thisstudy to investigate the probability distribution ofvarious condition states during the assets’ lifecycle. Condition grade data obtained from visualinspection of flood defence assets are adopted toestimate the transition probabilities by using nonlinear optimization technique. The estimatedtransition probabilities are then utilised to evaluate the future condition of the assets and examinedby using statistical hypothesistest. Finally, the effectiveness of the proposed method isdemonstrated by a case study, and the results showthat the proposed method can provide reliablepredictions for future performance ofthe aging flood defence assets.

Book title7th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII 2015)
Year2016
PublisherCurran Associates, Inc.
Publication dates
Print2016
Publication process dates
Deposited17 Oct 2018
Event7th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII 2015)
ISBN9781510821071
Web address (URL)http://www.ishmii.org/events-meetings/events-meetings/
Journal citation3, pp. 1986-1996
Permalink -

https://repository.uel.ac.uk/item/85340

  • 154
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review
Barbhuiya, S., Nepal, J. and Das, B. B . 2023. Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review. Journal of Building Engineering. 79 (Ar. 107794). https://doi.org/10.1016/j.jobe.2023.107794
Lifetime Performance Assessment of Flood Defence Structures Utilising Condition Grading Data.
Chen, Hua-Peng, Nepal, J. and Mehrabani, Mehrdad Bahari 2016. Lifetime Performance Assessment of Flood Defence Structures Utilising Condition Grading Data. Flood & Coast 2016: Risk, Resilience & Response in a Changing Climate. Telford, UK 23 - 25 Feb 2016
Time-Dependent Reliability Assessment of Corrosion Affected Reinforced Concrete Structures
Nepal, J. and Chen, Hua-Peng 2014. Time-Dependent Reliability Assessment of Corrosion Affected Reinforced Concrete Structures. in: Topping, B.H.V. and Iványi, P. (ed.) Proceedings of the Twelfth International Conference on Computational Structures Technology Stirlingshire, UK Civil-Comp Press.
Gamma process modelling for lifecycle performance assessment of corrosion affected concrete structures
Nepal, J. and Chen, Hua-Peng 2014. Gamma process modelling for lifecycle performance assessment of corrosion affected concrete structures. in: The 2014 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM14) Techno-Press.
Reliability based structural performance assessment of corrosion damaged RC structures
Nepal, J. 2014. Reliability based structural performance assessment of corrosion damaged RC structures. in: Proceedings of the 16th Young Researchers' Conference The Institution of Structural Engineers.
Evaluation of structural behaviour of corrosion damaged reinforced concrete bridges
Nepal, J. and Chen, Hua-Peng 2014. Evaluation of structural behaviour of corrosion damaged reinforced concrete bridges. The 15th International Conference on Structural Faults & Repair. London, UK 08 - 10 Jul 2014
Evaluation of Residual Strength of Corrosion Damaged Reinforced Concrete Structures
Nepal, J. and Chen, Hua-Peng 2014. Evaluation of Residual Strength of Corrosion Damaged Reinforced Concrete Structures. in: Furuta, Hitoshi, Frangopol, Dan M. and Akiyama, Mitsuyoshi (ed.) Life-Cycle of Structural Systems: Design, Assessment, Maintenance and Management CRC Press.
Risk-Based Life Cycle Maintenance Strategy of Corrosion Affected RC Structures
Chen, Hua-Peng and Nepal, J. 2016. Risk-Based Life Cycle Maintenance Strategy of Corrosion Affected RC Structures. in: De Stefano, Alessandro (ed.) 7th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII 2015) Curran Associates, Inc..
Residual bond strength behaviour of corroded reinforcement in natural corrosive environment
Nepal, J. and Chen, Hua-Peng 2016. Residual bond strength behaviour of corroded reinforcement in natural corrosive environment. in: Mangabhai, R.J., Bai, Y. and Goodier, C.I. (ed.) Young Researchers’ Forum II: Construction Materials: Extended Abstracts The Institute of Concrete Technology. pp. 61-66
Modeling Residual Flexural Strength of Corroded Reinforced Concrete Beams
Hua-Peng and Nepal, J. 2018. Modeling Residual Flexural Strength of Corroded Reinforced Concrete Beams. ACI Structural Journal. 115 (6), pp. 1625-1635.
Lifecycle performance deterioration modelling of corroded reinforced concrete structures
Chen, Hua Peng and Nepal, J. 2016. Lifecycle performance deterioration modelling of corroded reinforced concrete structures. International Journal of Lifecycle Performance Engineering. 2 (1/2), pp. 111-126. https://doi.org/10.1504/IJLCPE.2016.082710
Analytical Model for Residual Bond Strength of Corroded Reinforcement in Concrete Structures
Chen, Hua-Peng and Nepal, J. 2016. Analytical Model for Residual Bond Strength of Corroded Reinforcement in Concrete Structures. Journal of Engineering Mechanics. 142 (2). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000997
Time-dependent Reliability Analysis of Flood Defence Assets Using Generic Fragility Curve
Nepal, J., Chen, Hua-Peng, Simm, Jonathan and Gouldby, Ben 2016. Time-dependent Reliability Analysis of Flood Defence Assets Using Generic Fragility Curve. E3S Web of Conferences. 7 (Art. 03014). https://doi.org/10.1051/e3sconf/20160703014
Stochastic modelling and lifecycle performance assessment of bond strength of corroded reinforcement in concrete
Chen, Hua-Peng and Nepal, J. 2015. Stochastic modelling and lifecycle performance assessment of bond strength of corroded reinforcement in concrete. Structural Engineering and Mechanics. 54 (2), pp. 319-336. https://doi.org/10.12989/sem.2015.54.2.319
Risk-based optimum repair planning of corroded reinforced concrete structures
Nepal, J. and Chen, Hua-Peng 2015. Risk-based optimum repair planning of corroded reinforced concrete structures. Structural Monitoring and Maintenance: An International Journal. 2 (2), pp. 133-143. https://doi.org/10.12989/smm.2015.2.2.133
Assessment of concrete damage and strength degradation caused by reinforcement corrosion
Nepal, J. and Chen, Hua-Peng 2015. Assessment of concrete damage and strength degradation caused by reinforcement corrosion. Journal of Physics: Conference Series. 628, p. Art. 012050. https://doi.org/10.1088/1742-6596/628/1/012050