Time-Dependent Reliability Assessment of Corrosion Affected Reinforced Concrete Structures

Book chapter


Nepal, J. and Chen, Hua-Peng 2014. Time-Dependent Reliability Assessment of Corrosion Affected Reinforced Concrete Structures. in: Topping, B.H.V. and Iványi, P. (ed.) Proceedings of the Twelfth International Conference on Computational Structures Technology Stirlingshire, UK Civil-Comp Press.
AuthorsNepal, J. and Chen, Hua-Peng
EditorsTopping, B.H.V. and Iványi, P.
Abstract

Corrosion of reinforcement is the most widespread and predominant cause of deterioration of reinforced concrete structures exposed to an aggressive environment. It is responsible for the loss of strength and serviceability of these structures by creating cracking in the concrete cover and reducing bond strength and hence the performance of the structure over time. A failure in the structure is considered to occur when the resistance of the structure drops below its acceptable limit. Deterioration arising from reinforcement corrosion is generally uncertain and non-decreasing therefore a stochastic process such as the gamma process could be useful to evaluate the structural reliability. This paper presents a stochastic gamma process model to evaluate the probability of failure in serviceability and in ultimate load capacity associated with the corrosion process in reinforced concrete structures. The deterioration and resistance of the structure are assumed to be a stochastic process, and the structure is considered to have failed when its resistance reaches its allowable limit. The results from the illustrative example show that the proposed approach can effectively predict the deterioration and survival capacity of corrosion damaged reinforced concrete structures.

Book titleProceedings of the Twelfth International Conference on Computational Structures Technology
Year2014
PublisherCivil-Comp Press
Publication dates
Print2014
Publication process dates
Deposited17 Oct 2018
Place of publicationStirlingshire, UK
Series Civil-Comp Proceedings
EventThe Twelfth International Conference on Computational Structures Technology (CST2014)
ISBN978-1-905088-61-4
ISSN1759-3433
Digital Object Identifier (DOI)https://doi.org/10.4203/ccp.106.96
Web address (URL)https://doi.org/10.4203/ccp.106.96
Journal citation106, p. Paper 96
Permalink -

https://repository.uel.ac.uk/item/85v60

  • 174
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review
Barbhuiya, S., Nepal, J. and Das, B. B . 2023. Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review. Journal of Building Engineering. 79 (Ar. 107794). https://doi.org/10.1016/j.jobe.2023.107794
Lifetime Performance Assessment of Flood Defence Structures Utilising Condition Grading Data.
Chen, Hua-Peng, Nepal, J. and Mehrabani, Mehrdad Bahari 2016. Lifetime Performance Assessment of Flood Defence Structures Utilising Condition Grading Data. Flood & Coast 2016: Risk, Resilience & Response in a Changing Climate. Telford, UK 23 - 25 Feb 2016
Gamma process modelling for lifecycle performance assessment of corrosion affected concrete structures
Nepal, J. and Chen, Hua-Peng 2014. Gamma process modelling for lifecycle performance assessment of corrosion affected concrete structures. in: The 2014 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM14) Techno-Press.
Reliability based structural performance assessment of corrosion damaged RC structures
Nepal, J. 2014. Reliability based structural performance assessment of corrosion damaged RC structures. in: Proceedings of the 16th Young Researchers' Conference The Institution of Structural Engineers.
Evaluation of structural behaviour of corrosion damaged reinforced concrete bridges
Nepal, J. and Chen, Hua-Peng 2014. Evaluation of structural behaviour of corrosion damaged reinforced concrete bridges. The 15th International Conference on Structural Faults & Repair. London, UK 08 - 10 Jul 2014
Evaluation of Residual Strength of Corrosion Damaged Reinforced Concrete Structures
Nepal, J. and Chen, Hua-Peng 2014. Evaluation of Residual Strength of Corrosion Damaged Reinforced Concrete Structures. in: Furuta, Hitoshi, Frangopol, Dan M. and Akiyama, Mitsuyoshi (ed.) Life-Cycle of Structural Systems: Design, Assessment, Maintenance and Management CRC Press.
State-Based Stochastic Performance Deterioration Modelling of Flood Defence Assets
Nepal, J., Chen, Hua-Peng, Gouldby, Ben, Simm, Jonathan and Tarrant, Owen 2016. State-Based Stochastic Performance Deterioration Modelling of Flood Defence Assets. in: De Stefano, Alessandro (ed.) 7th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII 2015) Curran Associates, Inc..
Risk-Based Life Cycle Maintenance Strategy of Corrosion Affected RC Structures
Chen, Hua-Peng and Nepal, J. 2016. Risk-Based Life Cycle Maintenance Strategy of Corrosion Affected RC Structures. in: De Stefano, Alessandro (ed.) 7th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII 2015) Curran Associates, Inc..
Residual bond strength behaviour of corroded reinforcement in natural corrosive environment
Nepal, J. and Chen, Hua-Peng 2016. Residual bond strength behaviour of corroded reinforcement in natural corrosive environment. in: Mangabhai, R.J., Bai, Y. and Goodier, C.I. (ed.) Young Researchers’ Forum II: Construction Materials: Extended Abstracts The Institute of Concrete Technology. pp. 61-66
Modeling Residual Flexural Strength of Corroded Reinforced Concrete Beams
Hua-Peng and Nepal, J. 2018. Modeling Residual Flexural Strength of Corroded Reinforced Concrete Beams. ACI Structural Journal. 115 (6), pp. 1625-1635.
Lifecycle performance deterioration modelling of corroded reinforced concrete structures
Chen, Hua Peng and Nepal, J. 2016. Lifecycle performance deterioration modelling of corroded reinforced concrete structures. International Journal of Lifecycle Performance Engineering. 2 (1/2), pp. 111-126. https://doi.org/10.1504/IJLCPE.2016.082710
Analytical Model for Residual Bond Strength of Corroded Reinforcement in Concrete Structures
Chen, Hua-Peng and Nepal, J. 2016. Analytical Model for Residual Bond Strength of Corroded Reinforcement in Concrete Structures. Journal of Engineering Mechanics. 142 (2). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000997
Time-dependent Reliability Analysis of Flood Defence Assets Using Generic Fragility Curve
Nepal, J., Chen, Hua-Peng, Simm, Jonathan and Gouldby, Ben 2016. Time-dependent Reliability Analysis of Flood Defence Assets Using Generic Fragility Curve. E3S Web of Conferences. 7 (Art. 03014). https://doi.org/10.1051/e3sconf/20160703014
Stochastic modelling and lifecycle performance assessment of bond strength of corroded reinforcement in concrete
Chen, Hua-Peng and Nepal, J. 2015. Stochastic modelling and lifecycle performance assessment of bond strength of corroded reinforcement in concrete. Structural Engineering and Mechanics. 54 (2), pp. 319-336. https://doi.org/10.12989/sem.2015.54.2.319
Risk-based optimum repair planning of corroded reinforced concrete structures
Nepal, J. and Chen, Hua-Peng 2015. Risk-based optimum repair planning of corroded reinforced concrete structures. Structural Monitoring and Maintenance: An International Journal. 2 (2), pp. 133-143. https://doi.org/10.12989/smm.2015.2.2.133
Assessment of concrete damage and strength degradation caused by reinforcement corrosion
Nepal, J. and Chen, Hua-Peng 2015. Assessment of concrete damage and strength degradation caused by reinforcement corrosion. Journal of Physics: Conference Series. 628, p. Art. 012050. https://doi.org/10.1088/1742-6596/628/1/012050