Modeling Residual Flexural Strength of Corroded Reinforced Concrete Beams

Article


Hua-Peng and Nepal, J. 2018. Modeling Residual Flexural Strength of Corroded Reinforced Concrete Beams. ACI Structural Journal. 115 (6), pp. 1625-1635.
AuthorsHua-Peng and Nepal, J.
Abstract

This paper presents a new analytical method for evaluating concrete crack development, estimating reinforcing bar bond strength degradation and predicting residual flexural strength of concrete beams affected by reinforcement corrosion. First, cracking development in cover concrete due to reinforcement corrosion is investigated by using the reinforcing bar-concrete model where realistic concrete properties such as bilinear tension softening law for the cracked concrete are considered. Then, the bond strength evolution of the corroded reinforcing bar is evaluated by considering the contributions from adhesion, concrete confinement, and corrosion pressure acting at the bond interface. The effects of cover concrete cracking on the corroded reinforcing bar bond strength are analytically investigated. On the basis of the estimated concrete crack width and reinforcing bar bond strength degradation due to corrosion, the residual flexural strength of corroded concrete beams is predicted by assuming new strain compatibility at the reinforcing bar bond interface. Finally, the results obtained from the proposed methods are examined by experimental and field data available from various sources. From the results, the residual flexural strength of corroded reinforced concrete beams can be largely dependent on the residual bond strength of corroded reinforcing bar, and the failure mode of the beams may be changed from reinforcing bar tensile yielding to reinforcing bar anchorage failure due to reinforcing bar bond strength degradation. The results also show that the proposed analytical approach is capable of providing accurate predictions for concrete cracking, bond strength degradation, and residual flexural strength of corrosion-damaged reinforced concrete beams.

JournalACI Structural Journal
Journal citation115 (6), pp. 1625-1635
ISSN0889-3241
Year2018
PublisherAmerican Concrete Institute
Accepted author manuscript
License
File Access Level
Anyone
Web address (URL)https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&i=51702232
Publication dates
Online01 Nov 2018
Publication process dates
Deposited04 Jan 2021
Copyright holderAmerican Concrete Institute
Copyright information© American Concrete Institute, All Rights Reserved.
Additional information

"Authors are free to post their papers in their institutional repositories."

https://www.concrete.org/publications/acimaterialsjournal/submitting...

Permalink -

https://repository.uel.ac.uk/item/88wyv

Download files


Accepted author manuscript
Nepal_S-2017-261_RC Residual strength_ALL_R2.pdf
License: All rights reserved
File access level: Anyone

  • 411
    total views
  • 467
    total downloads
  • 5
    views this month
  • 1
    downloads this month

Export as

Related outputs

Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review
Barbhuiya, S., Nepal, J. and Das, B. B . 2023. Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review. Journal of Building Engineering. 79 (Ar. 107794). https://doi.org/10.1016/j.jobe.2023.107794
Lifetime Performance Assessment of Flood Defence Structures Utilising Condition Grading Data.
Chen, Hua-Peng, Nepal, J. and Mehrabani, Mehrdad Bahari 2016. Lifetime Performance Assessment of Flood Defence Structures Utilising Condition Grading Data. Flood & Coast 2016: Risk, Resilience & Response in a Changing Climate. Telford, UK 23 - 25 Feb 2016
Time-Dependent Reliability Assessment of Corrosion Affected Reinforced Concrete Structures
Nepal, J. and Chen, Hua-Peng 2014. Time-Dependent Reliability Assessment of Corrosion Affected Reinforced Concrete Structures. in: Topping, B.H.V. and Iványi, P. (ed.) Proceedings of the Twelfth International Conference on Computational Structures Technology Stirlingshire, UK Civil-Comp Press.
Gamma process modelling for lifecycle performance assessment of corrosion affected concrete structures
Nepal, J. and Chen, Hua-Peng 2014. Gamma process modelling for lifecycle performance assessment of corrosion affected concrete structures. in: The 2014 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM14) Techno-Press.
Reliability based structural performance assessment of corrosion damaged RC structures
Nepal, J. 2014. Reliability based structural performance assessment of corrosion damaged RC structures. in: Proceedings of the 16th Young Researchers' Conference The Institution of Structural Engineers.
Evaluation of structural behaviour of corrosion damaged reinforced concrete bridges
Nepal, J. and Chen, Hua-Peng 2014. Evaluation of structural behaviour of corrosion damaged reinforced concrete bridges. The 15th International Conference on Structural Faults & Repair. London, UK 08 - 10 Jul 2014
Evaluation of Residual Strength of Corrosion Damaged Reinforced Concrete Structures
Nepal, J. and Chen, Hua-Peng 2014. Evaluation of Residual Strength of Corrosion Damaged Reinforced Concrete Structures. in: Furuta, Hitoshi, Frangopol, Dan M. and Akiyama, Mitsuyoshi (ed.) Life-Cycle of Structural Systems: Design, Assessment, Maintenance and Management CRC Press.
State-Based Stochastic Performance Deterioration Modelling of Flood Defence Assets
Nepal, J., Chen, Hua-Peng, Gouldby, Ben, Simm, Jonathan and Tarrant, Owen 2016. State-Based Stochastic Performance Deterioration Modelling of Flood Defence Assets. in: De Stefano, Alessandro (ed.) 7th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII 2015) Curran Associates, Inc..
Risk-Based Life Cycle Maintenance Strategy of Corrosion Affected RC Structures
Chen, Hua-Peng and Nepal, J. 2016. Risk-Based Life Cycle Maintenance Strategy of Corrosion Affected RC Structures. in: De Stefano, Alessandro (ed.) 7th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII 2015) Curran Associates, Inc..
Residual bond strength behaviour of corroded reinforcement in natural corrosive environment
Nepal, J. and Chen, Hua-Peng 2016. Residual bond strength behaviour of corroded reinforcement in natural corrosive environment. in: Mangabhai, R.J., Bai, Y. and Goodier, C.I. (ed.) Young Researchers’ Forum II: Construction Materials: Extended Abstracts The Institute of Concrete Technology. pp. 61-66
Lifecycle performance deterioration modelling of corroded reinforced concrete structures
Chen, Hua Peng and Nepal, J. 2016. Lifecycle performance deterioration modelling of corroded reinforced concrete structures. International Journal of Lifecycle Performance Engineering. 2 (1/2), pp. 111-126. https://doi.org/10.1504/IJLCPE.2016.082710
Analytical Model for Residual Bond Strength of Corroded Reinforcement in Concrete Structures
Chen, Hua-Peng and Nepal, J. 2016. Analytical Model for Residual Bond Strength of Corroded Reinforcement in Concrete Structures. Journal of Engineering Mechanics. 142 (2). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000997
Time-dependent Reliability Analysis of Flood Defence Assets Using Generic Fragility Curve
Nepal, J., Chen, Hua-Peng, Simm, Jonathan and Gouldby, Ben 2016. Time-dependent Reliability Analysis of Flood Defence Assets Using Generic Fragility Curve. E3S Web of Conferences. 7 (Art. 03014). https://doi.org/10.1051/e3sconf/20160703014
Stochastic modelling and lifecycle performance assessment of bond strength of corroded reinforcement in concrete
Chen, Hua-Peng and Nepal, J. 2015. Stochastic modelling and lifecycle performance assessment of bond strength of corroded reinforcement in concrete. Structural Engineering and Mechanics. 54 (2), pp. 319-336. https://doi.org/10.12989/sem.2015.54.2.319
Risk-based optimum repair planning of corroded reinforced concrete structures
Nepal, J. and Chen, Hua-Peng 2015. Risk-based optimum repair planning of corroded reinforced concrete structures. Structural Monitoring and Maintenance: An International Journal. 2 (2), pp. 133-143. https://doi.org/10.12989/smm.2015.2.2.133
Assessment of concrete damage and strength degradation caused by reinforcement corrosion
Nepal, J. and Chen, Hua-Peng 2015. Assessment of concrete damage and strength degradation caused by reinforcement corrosion. Journal of Physics: Conference Series. 628, p. Art. 012050. https://doi.org/10.1088/1742-6596/628/1/012050