Risk-based optimum repair planning of corroded reinforced concrete structures

Article


Nepal, J. and Chen, Hua-Peng 2015. Risk-based optimum repair planning of corroded reinforced concrete structures. Structural Monitoring and Maintenance: An International Journal. 2 (2), pp. 133-143. https://doi.org/10.12989/smm.2015.2.2.133
AuthorsNepal, J. and Chen, Hua-Peng
Abstract

Civil engineering infrastructure is aging and requires cost-effective maintenance strategies to enable infrastructure systems operate reliably and sustainably. This paper presents an approach for determining risk-cost balanced repair strategy of corrosion damaged reinforced concrete structures with consideration of uncertainty in structural resistance deterioration. On the basis of analytical models of cover concrete cracking evolution and bond strength degradation due to reinforcement corrosion, the effect of reinforcement corrosion on residual load carrying capacity of corroded reinforced concrete structures is investigated. A stochastic deterioration model based on gamma process is adopted to evaluate the probability of failure of structural bearing capacity over the lifetime. Optimal repair planning and maintenance strategies during the service life are determined by balancing the cost for maintenance and the risk of structural failure. The method proposed in this study is then demonstrated by numerical investigations for a concrete structure subjected to reinforcement corrosion. The obtained results show that the proposed method can provide a risk cost optimised repair schedule during the service life of corroded concrete structures.

JournalStructural Monitoring and Maintenance: An International Journal
Journal citation2 (2), pp. 133-143
ISSN2288-6605
Year2015
PublisherTechno-Press
Digital Object Identifier (DOI)https://doi.org/10.12989/smm.2015.2.2.133
Web address (URL)https://doi.org/10.12989/smm.2015.2.2.133
Publication dates
PrintJun 2015
Publication process dates
Deposited08 Oct 2018
Accepted07 Mar 2015
Accepted07 Mar 2015
Copyright information© 2015 Techno-Press
Permalink -

https://repository.uel.ac.uk/item/855xq

  • 160
    total views
  • 0
    total downloads
  • 8
    views this month
  • 0
    downloads this month

Export as

Related outputs

Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review
Barbhuiya, S., Nepal, J. and Das, B. B . 2023. Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review. Journal of Building Engineering. 79 (Ar. 107794). https://doi.org/10.1016/j.jobe.2023.107794
Lifetime Performance Assessment of Flood Defence Structures Utilising Condition Grading Data.
Chen, Hua-Peng, Nepal, J. and Mehrabani, Mehrdad Bahari 2016. Lifetime Performance Assessment of Flood Defence Structures Utilising Condition Grading Data. Flood & Coast 2016: Risk, Resilience & Response in a Changing Climate. Telford, UK 23 - 25 Feb 2016
Time-Dependent Reliability Assessment of Corrosion Affected Reinforced Concrete Structures
Nepal, J. and Chen, Hua-Peng 2014. Time-Dependent Reliability Assessment of Corrosion Affected Reinforced Concrete Structures. in: Topping, B.H.V. and Iványi, P. (ed.) Proceedings of the Twelfth International Conference on Computational Structures Technology Stirlingshire, UK Civil-Comp Press.
Gamma process modelling for lifecycle performance assessment of corrosion affected concrete structures
Nepal, J. and Chen, Hua-Peng 2014. Gamma process modelling for lifecycle performance assessment of corrosion affected concrete structures. in: The 2014 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM14) Techno-Press.
Reliability based structural performance assessment of corrosion damaged RC structures
Nepal, J. 2014. Reliability based structural performance assessment of corrosion damaged RC structures. in: Proceedings of the 16th Young Researchers' Conference The Institution of Structural Engineers.
Evaluation of structural behaviour of corrosion damaged reinforced concrete bridges
Nepal, J. and Chen, Hua-Peng 2014. Evaluation of structural behaviour of corrosion damaged reinforced concrete bridges. The 15th International Conference on Structural Faults & Repair. London, UK 08 - 10 Jul 2014
Evaluation of Residual Strength of Corrosion Damaged Reinforced Concrete Structures
Nepal, J. and Chen, Hua-Peng 2014. Evaluation of Residual Strength of Corrosion Damaged Reinforced Concrete Structures. in: Furuta, Hitoshi, Frangopol, Dan M. and Akiyama, Mitsuyoshi (ed.) Life-Cycle of Structural Systems: Design, Assessment, Maintenance and Management CRC Press.
State-Based Stochastic Performance Deterioration Modelling of Flood Defence Assets
Nepal, J., Chen, Hua-Peng, Gouldby, Ben, Simm, Jonathan and Tarrant, Owen 2016. State-Based Stochastic Performance Deterioration Modelling of Flood Defence Assets. in: De Stefano, Alessandro (ed.) 7th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII 2015) Curran Associates, Inc..
Risk-Based Life Cycle Maintenance Strategy of Corrosion Affected RC Structures
Chen, Hua-Peng and Nepal, J. 2016. Risk-Based Life Cycle Maintenance Strategy of Corrosion Affected RC Structures. in: De Stefano, Alessandro (ed.) 7th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII 2015) Curran Associates, Inc..
Residual bond strength behaviour of corroded reinforcement in natural corrosive environment
Nepal, J. and Chen, Hua-Peng 2016. Residual bond strength behaviour of corroded reinforcement in natural corrosive environment. in: Mangabhai, R.J., Bai, Y. and Goodier, C.I. (ed.) Young Researchers’ Forum II: Construction Materials: Extended Abstracts The Institute of Concrete Technology. pp. 61-66
Modeling Residual Flexural Strength of Corroded Reinforced Concrete Beams
Hua-Peng and Nepal, J. 2018. Modeling Residual Flexural Strength of Corroded Reinforced Concrete Beams. ACI Structural Journal. 115 (6), pp. 1625-1635.
Lifecycle performance deterioration modelling of corroded reinforced concrete structures
Chen, Hua Peng and Nepal, J. 2016. Lifecycle performance deterioration modelling of corroded reinforced concrete structures. International Journal of Lifecycle Performance Engineering. 2 (1/2), pp. 111-126. https://doi.org/10.1504/IJLCPE.2016.082710
Analytical Model for Residual Bond Strength of Corroded Reinforcement in Concrete Structures
Chen, Hua-Peng and Nepal, J. 2016. Analytical Model for Residual Bond Strength of Corroded Reinforcement in Concrete Structures. Journal of Engineering Mechanics. 142 (2). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000997
Time-dependent Reliability Analysis of Flood Defence Assets Using Generic Fragility Curve
Nepal, J., Chen, Hua-Peng, Simm, Jonathan and Gouldby, Ben 2016. Time-dependent Reliability Analysis of Flood Defence Assets Using Generic Fragility Curve. E3S Web of Conferences. 7 (Art. 03014). https://doi.org/10.1051/e3sconf/20160703014
Stochastic modelling and lifecycle performance assessment of bond strength of corroded reinforcement in concrete
Chen, Hua-Peng and Nepal, J. 2015. Stochastic modelling and lifecycle performance assessment of bond strength of corroded reinforcement in concrete. Structural Engineering and Mechanics. 54 (2), pp. 319-336. https://doi.org/10.12989/sem.2015.54.2.319
Assessment of concrete damage and strength degradation caused by reinforcement corrosion
Nepal, J. and Chen, Hua-Peng 2015. Assessment of concrete damage and strength degradation caused by reinforcement corrosion. Journal of Physics: Conference Series. 628, p. Art. 012050. https://doi.org/10.1088/1742-6596/628/1/012050